
1

Practical Parallel Computing
(実践的並列コンピューティング)

Toshio Endo
School of Computing & GSIC

endo@is.titech.ac.jp

Part３: MPI (2)
June 15, 2020

Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming

 4 classes
 Part 2: GPU programming

 4 classes We are here (1/4)
 OpenACC (1.5 classes) and CUDA (2.5 classes)

 Part 3: MPI for distributed memory programming
 3 classes We are here (2/3)

2

Class Evaluation/授業アンケート

 The URL is announced in the Zoom chat

3

Shared Memory Model and
Distributed Memory Model

 In distributed memory model, a process CANNOT
read/write other processes’ memory directory

 How can a process access data, computed by others?
 Message passing (communication) is required 4

Shared Memory Distributed Memory

5

Basics of Message Passing:
Peer-to-peer Communication

Example: /gs/hs1/tga-ppcomp/20/test-mpi/
Rank 0 computes “int a[16]”
Rank 1 wants to see contents of a!

Rank0:
 Computes a
 MPI_Send(a, 16, MPI_INT, 1,

100, MPI_COMM_WORLD);

Rank1:
 Prepares a memory region (b here)
 MPI_Recv(b, 16, MPI_INT, 0,

100, MPI_COMM_WORLD, &stat);

 Now b has copy of a !

rank 0 rank 1

MPI_Send()

MPI_Recv()

b

6

MPI_Send
MPI_Send(a, 16, MPI_INT, 1, 100, MPI_COMM_WORLD);

 a: Address of memory region to be sent
 16: Number of data to be sent
 MPI_INT: Data type of each element
 MPI_CHAR, MPI_LONG. MPI_DOUBLE, MPI_BYTE・・・

 1: Destination process of the message
 100: An integer tag for this message (explained later)
 MPI_COMM_WORLD: Communicator (explained later)

rank 0 source:0
dest: 1
tag:100

7

MPI_Recv
MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, 0, 100, MPI_COMM_WORLD, &stat);

 b: Address of memory region to store incoming message
 16: Number of data to be received
 MPI_INT: Data type of each element
 0: Source process of the message
 100: An integer tag for a message to be received

 Should be same as one in MPI_Send
 MPI_COMM_WORLD: Communicator (explained later)
 &stat: Some information on the message is stored

Note: MPI_Recv does not return until the message arrives

8

Notes on MPI_Recv:
Message Matching (1)

MPI_Recv(b, 16, MPI_INT, 2, 200, MPI_COMM_WORLD, &stat);

I only want a message with tag 200 from 2 !

• Receiver specifies “source” and “tag” that it wants to receive
 The message that matches the condition is delivered
• Other messages should be received by other MPI_Recv calls

source:0
dest:1
tag:100

source:2
dest:1
tag:200

rank 0

rank 1

rank 2

Notes on MPI_Recv:
Message Matching (2)

 In some algorithms, the sender may not be known beforehand
 cf) client-server model

 For such cases, MPI_ANY_SOURCE / MPI_ANY_TAG can be used

9

MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG,
MPI_COMM_WORLD, &stat);

1

0

source:1
tag:100

…data…

source:2
tag:200

…data…

Any message
is welcome!

After receipt, receiver can
see stat.MPI_SOURCE and
stat.MPI_TAG

Notes on MPI_Recv:
What If Message Size is Unmatched

MPI_Recv(b, 16, MPI_INT, 0, 100, MPI_COMM_WORLD, &stat);

10

0 1

If message is larger than
expected, it’s an error
(the program aborts)

If the message size is UNKNOWN beforehand,
the receiver should prepare enough memory

NG

0 1

If message is smaller than
expected, it’s ok
Receiver can know the

actual size by
MPI_Get_Count(&stat, MPI_INT, &s);

OK

Case of “diffusion” Sample
related to [M1]
An example of diffusion phenomena:

The ink spreads gradually, and finally the density
becomes uniform (Figure by Prof. T. Aoki)

Available at /gs/hs1/tga-ppcomp/20/diffusion/

• Execution：./diffusion [nt]
• nt: Number of time steps

You can use /gs/hs1/tga-ppcomp/20/diffusion-mpi/
as a base. Makefile uses mpicc

12

Data Structure in Original
“diffusion”

An Array for “even” steps An Array for “odd” steps

NX

NY

How can we distribute data?

13

How Do We Parallelize
“diffusion” Sample?
On OpenMP：
[Algorithm] Parallelize spatial (Y or X) for-loop

 Each thread computes its part in the space
 Time (T) loop cannot be parallelized, due to dependency

[Data] Data structure is same as original

On MPI:
[Algorithm] Same as above

 Each process computes its part in the space
[Data] Both arrays are divided among processes

 Each process has its own part of arrays

14

Considering Data Distribution (1)

 A color = a process

An Array for “even” steps An Array for “odd” steps

Considering Data Distribution (2)
 How about below distribution?

15

Computation requires data in other processes
Message passing is required
So, where should received data be put?

16

Introducing “Halo” Region
 It is a good idea to make additional rows to arrays
 called “Halo” region or “sleeve” region

Halo

Halo

Each time step consists of:
(1) Communication: Recv data and store into “halo” region

 Also neighbor processes need “my” data
(2) Computation: Old data at time t (including “halo”)
 New data at time t+1

(1)Comm

(1)Comm

(2)
Comp

The name of “Halo” Region

17

The Sun

Halo
Sleeves

en.wiktionary.org

Body

18

Overview of MPI “diffusion”

for (t = 0; t < nt; t++) {

if (rank > 0) Send B to rank-1

if (rank < size-1) Send D to rank+1

if (rank > 0) Recv A from rank-1

if (rank < size-1) Recv E from rank+1

Computes points in rows B—D

Switch old and new arrays

}

This version is still unsafe, for possibility of deadlock

A
B
C
D
E

(1) Communication
in “old” array

(2) Computation
“old” array ⇒ “new” array

A Sample with Neighbor
Communication

A sample is available at /gs/hs1/tga-ppcomp/20/neicomm-mpi
Execution: mpiexec –np [np] ./neicomm
(1) Each process prepares its local data
(2) Each process receives data from its neighbors (rank-1
and rank+1)

19

Rank 0 Rank 1 Rank 2 Rank 3

0 1 4 9491401

Behavior of neicomm-mpi Sample

Send to rank-1

Send to rank+1

Recv from rank-1

Recv from rank+1

20

Start to recv from rank-1

Start to recv from rank+1

Sent to rank-1

Sent to rank+1

Finish to recv from rank-1

Finish to recv from rank+1

Unsafe version  Safe version 
When neicomm_safe()
is called in main()

When neicomm_unsafe()
is called in main()

※The sample does not finish!
To abort it, press Ctrl+C

21

Deadlock
 Why?
 The sample “deadlocks” with 2

processes

This is caused by behavior of
MPI_Recv() and MPI_Send()
 MPI_Recv() blocks (does not finish)

until the message arrives
 MPI_Send() may block until the

message is received by receiver

rank 0 rank 1

Send

Recv

Send

Recv

When message size is large

Non-Blocking Communication
to Avoid Deadlock
 Non-blocking communication: starts a communication

(send or receive), but does not wait for its completion
 MPI_Recv is blocking communication, since it waits for message

arrival
 Program must wait for its completion later

22

rank 0 rank 1

Send

Irecv

Wait wait for message arrival

immediately returns

Process can do something
message

MPI_Status stat;

MPI_Recv(buf, n, type, src, tag, comm, &stat);

MPI_Status stat;

MPI_Request req;

MPI_Irecv(buf, n, type, src, tag, comm, &req);←start recv

: (Do domething)

MPI_Wait(&req, &stat); ←wait for completion

MPI_Irecv: starts receiving, but it returns Immediately
MPI_Wait: wait for message arrival
MPI_Request looks like a “ticket” for the communication 23

Non-Blocking Receive

Functions Related to Non-
blocking Communication
 MPI_Isend(buf, n, type, dest, tag, comm, &req); ←start

send

 MPI_Wait(&req, &stat); ←wait for completion of one
communication

 MPI_Test(&req, &flag, &stat); ←check completion of
one communication

 MPI_Waitall, MPI_Waitany, MPI_Testall, MPI_Testany…

24

Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: 11AM, June 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see June 11 slides

25

26

Next Class
 MPI (3)
 Improvement of “matrix multiply” sample
 Group Communication

	Practical Parallel Computing�(実践的並列コンピューティング)�
	Overview of This Course
	Class Evaluation/授業アンケート
	Shared Memory Model and�Distributed Memory Model
	Basics of Message Passing:�Peer-to-peer Communication
	MPI_Send
	MPI_Recv
	Notes on MPI_Recv:�Message Matching (1)
	Notes on MPI_Recv:�Message Matching (2)
	Notes on MPI_Recv:�What If Message Size is Unmatched
	Case of “diffusion” Sample�related to [M1]
	Data Structure in Original “diffusion”
	How Do We Parallelize “diffusion” Sample?
	Considering Data Distribution (1)
	Considering Data Distribution (2)
	Introducing “Halo” Region
	The name of “Halo” Region
	Overview of MPI “diffusion”
	A Sample with Neighbor Communication
	Behavior of neicomm-mpi Sample
	Deadlock
	Non-Blocking Communication�to Avoid Deadlock
	Non-Blocking Receive
	Functions Related to Non-blocking Communication
	Assignments in MPI Part�(Abstract)
	Next Class

