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Overview of This Course
 Part 0: Introduction

 2 classes
 Part 1: OpenMP for shared memory programming 

 4 classes
 Part 2: GPU programming

 4 classes We are here (1/4)
 OpenACC (1.5 classes) and CUDA (2.5 classes)

 Part 3: MPI for distributed memory programming
 3 classes We are here (2/3)
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Class Evaluation/授業アンケート

 The URL is announced in the Zoom chat
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Shared Memory Model and
Distributed Memory Model

 In distributed memory model, a process CANNOT 
read/write other processes’ memory directory

 How can a process access data, computed by others?
 Message passing (communication) is required 4

Shared Memory Distributed Memory
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Basics of Message Passing:
Peer-to-peer Communication

Example: /gs/hs1/tga-ppcomp/20/test-mpi/
Rank 0 computes “int a[16]” 
Rank 1 wants to see contents of a!

Rank0:
 Computes a
 MPI_Send(a, 16, MPI_INT, 1, 

100, MPI_COMM_WORLD);

Rank1:
 Prepares a memory region (b here)
 MPI_Recv(b, 16, MPI_INT, 0,

100, MPI_COMM_WORLD, &stat);

 Now b has copy of a !

rank 0 rank 1

MPI_Send()

MPI_Recv()

b
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MPI_Send
MPI_Send(a, 16, MPI_INT, 1, 100, MPI_COMM_WORLD);

 a: Address of memory region to be sent
 16: Number of data to be sent
 MPI_INT: Data type of each element
 MPI_CHAR, MPI_LONG. MPI_DOUBLE, MPI_BYTE・・・

 1: Destination process of the message
 100: An integer tag for this message (explained later)
 MPI_COMM_WORLD: Communicator (explained later)

rank 0 source:0
dest: 1
tag:100
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MPI_Recv
MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, 0, 100, MPI_COMM_WORLD, &stat);

 b: Address of memory region to store incoming message
 16: Number of data to be received
 MPI_INT: Data type of each element
 0: Source process of the message
 100: An integer tag for a message to be received

 Should be same as one in MPI_Send
 MPI_COMM_WORLD: Communicator (explained later)
 &stat: Some information on the message is stored

Note: MPI_Recv does not return until the message arrives
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Notes on MPI_Recv:
Message Matching (1)

MPI_Recv(b, 16, MPI_INT, 2, 200, MPI_COMM_WORLD, &stat);

I only want a message with tag 200 from 2 !

• Receiver specifies “source” and “tag” that it wants to receive
 The message that matches the condition is delivered
• Other messages should be received by other MPI_Recv calls

source:0
dest:1
tag:100

source:2
dest:1
tag:200

rank 0

rank 1

rank 2



Notes on MPI_Recv:
Message Matching (2)

 In some algorithms, the sender may not be known beforehand
 cf) client-server model

 For such cases, MPI_ANY_SOURCE / MPI_ANY_TAG can be used
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MPI_Status stat;

MPI_Recv(b, 16, MPI_INT, MPI_ANY_SOURCE, MPI_ANY_TAG, 
MPI_COMM_WORLD, &stat);

1

0

source:1
tag:100

…data…

source:2
tag:200

…data…

Any message
is  welcome!

After receipt, receiver can
see stat.MPI_SOURCE and
stat.MPI_TAG



Notes on MPI_Recv:
What If Message Size is Unmatched

MPI_Recv(b, 16, MPI_INT, 0, 100, MPI_COMM_WORLD, &stat);
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0 1

If message is larger than
expected, it’s an error
(the program aborts)

If the message size is UNKNOWN beforehand,
the receiver should prepare enough memory

NG

0 1

If message is smaller than
expected, it’s ok
Receiver can know the 

actual size by
MPI_Get_Count(&stat, MPI_INT, &s);

OK



Case of “diffusion” Sample
related to [M1]
An example of diffusion phenomena:

The ink spreads gradually, and finally the density 
becomes uniform   (Figure by Prof. T. Aoki)

Available at /gs/hs1/tga-ppcomp/20/diffusion/

• Execution：./diffusion [nt]
• nt: Number of time steps

You can use /gs/hs1/tga-ppcomp/20/diffusion-mpi/ 
as a base. Makefile uses mpicc
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Data Structure in Original 
“diffusion”

An Array for “even” steps An Array for “odd” steps

NX

NY

How can we distribute data? 
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How Do We Parallelize 
“diffusion” Sample?
On OpenMP：
[Algorithm] Parallelize spatial (Y or X) for-loop

 Each thread computes its part in the space
 Time (T) loop cannot be parallelized, due to dependency

[Data] Data structure is same as original

On MPI:
[Algorithm] Same as above

 Each process computes its part in the space
[Data] Both arrays are divided among processes

 Each process has its own part of arrays
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Considering Data Distribution (1)

 A color = a process

An Array for “even” steps An Array for “odd” steps



Considering Data Distribution (2)
 How about below distribution?
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Computation requires data in other processes
Message passing is required
So, where should received data be put?
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Introducing “Halo” Region
 It is a good idea to make additional rows to arrays
 called “Halo” region or “sleeve” region

Halo

Halo

Each time step consists of:
(1) Communication: Recv data and store into “halo” region

 Also neighbor processes need “my” data
(2) Computation: Old data at time t (including “halo”) 
 New data at time t+1

(1)Comm

(1)Comm

(2)
Comp



The name of “Halo” Region
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The Sun

Halo
Sleeves

en.wiktionary.org

Body
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Overview of MPI “diffusion”

for (t = 0; t < nt; t++) {

if (rank > 0) Send B to rank-1

if (rank < size-1) Send D to rank+1

if (rank > 0) Recv A from rank-1

if (rank < size-1) Recv E from rank+1

Computes points in rows B—D

Switch old and new arrays

}

This version is still unsafe, for possibility of deadlock

A
B
C
D
E

(1) Communication
in “old” array

(2) Computation
“old” array ⇒ “new” array



A Sample with Neighbor 
Communication

A sample is available at /gs/hs1/tga-ppcomp/20/neicomm-mpi
Execution: mpiexec –np [np] ./neicomm
(1) Each process prepares its local data
(2) Each process receives data from its neighbors (rank-1 
and rank+1)
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Rank 0 Rank 1 Rank 2 Rank 3

0 1 4 9491401



Behavior of neicomm-mpi Sample

Send to rank-1

Send to rank+1

Recv from rank-1

Recv from rank+1
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Start to recv from rank-1

Start to recv from rank+1

Sent to rank-1

Sent to rank+1

Finish to recv from rank-1

Finish to recv from rank+1

Unsafe version  Safe version 
When neicomm_safe()
is called in main()

When neicomm_unsafe()
is called in main()

※The sample does not finish!
To abort it, press Ctrl+C
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Deadlock
 Why?
 The sample “deadlocks” with 2 

processes

This is caused by behavior of 
MPI_Recv() and MPI_Send()
 MPI_Recv() blocks (does not finish) 

until the message arrives
 MPI_Send() may block until the 

message is received by receiver

rank 0 rank 1

Send

Recv

Send

Recv

When message size is large



Non-Blocking Communication
to Avoid Deadlock
 Non-blocking communication: starts a communication 

(send or receive), but does not wait for its completion
 MPI_Recv is blocking communication, since it waits for message 

arrival
 Program must wait for its completion later
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rank 0 rank 1

Send

Irecv

Wait wait for message arrival

immediately returns

Process can do something
message



MPI_Status stat; 

MPI_Recv(buf, n, type, src, tag, comm, &stat);

MPI_Status stat; 

MPI_Request req;

MPI_Irecv(buf, n, type, src, tag, comm, &req);←start recv

:  (Do domething)

MPI_Wait(&req, &stat); ←wait for completion

MPI_Irecv: starts receiving, but it returns Immediately
MPI_Wait: wait for message arrival
MPI_Request looks like a “ticket” for the communication 23

Non-Blocking Receive



Functions Related to Non-
blocking Communication
 MPI_Isend(buf, n, type, dest, tag, comm, &req); ←start 

send

 MPI_Wait(&req, &stat); ←wait for completion of one 
communication

 MPI_Test(&req, &flag, &stat); ←check completion of 
one communication

 MPI_Waitall, MPI_Waitany, MPI_Testall, MPI_Testany…
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Assignments in MPI Part
(Abstract)
Choose one of [M1]—[M3], and submit a report
Due date: 11AM, June 29 (Monday)

[M1] Parallelize “diffusion” sample program by MPI.
[M2] Improve mm-mpi sample in order to reduce memory 

consumption.
[M3] (Freestyle) Parallelize any program by MPI.

For more detail, please see June 11 slides
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Next Class
 MPI (3)
 Improvement of “matrix multiply” sample
 Group Communication
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