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I. Introduction 

  I have presented two papers on the history of Indian astronomy in a conference and a seminar at 

NAOJ, namely, Ôhashi (2011a) on the Vedāṅga astronomy and Ôhashi (2011b) on the planetary 

theory of the Classical Siddhānta astronomy.  The present paper is a kind of continuation of these 

papers.  I would like to discuss the spherical astronomy of the Classical Siddhānta astronomy, 

where orthographic projection and plane trigonometry are used. 

  The history of Indian astronomy can roughly be summarised as follows. [For an overview of 

Indian astronomy, see Ôhashi (1998) in Japanese or more detailed Ôhashi (2009) in English.] 

(i) Indus civilisation period (ca.2600BCE – ca.1900 BCE). 

(ii) Vedic period (ca.1500 BCE – ca.500 BCE). 

(iii) Vedāṅga astronomy period (From sometime between the 6
th

 and 4
th
 centuries BCE up to 

sometime between the 3
rd

 and 5
th
 centuries CE?). 

(iv) Period of the introduction of Greek astrology and astronomy (Sometime around the 3
rd

 and 

4
th
 century CE?). 

(v) Classical Siddhānta period (Classical Hindu astronomy period). (From the end of the 5
th
 

century up to the 12
th
 century). 

(vi) Coexistent period of the Hindu astronomy and Islamic astronomy (From the 13/14
th
 century 

up to the 18/19
th
 century). 

(vii) Modern period (Coexistent period of the modern astronomy and traditional astronomy). 

(From the 18/19
th
 century onwards). 

  Around the 3
rd

 (?) century CE, Greek horoscopic astrology was introduced into India, and around 

the 4
th
 (?) century CE, Greek mathematical astronomy seems to have been introduced into India.  In 

the Classical Hindu Astronomy period (Classical Siddhānta period) (from the end of the 5
th

 century 

to the 12
th
 century), Indian astronomy did not receive apparent foreign influence, and developed 

individually. 
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The Classical Hindu Astronomy period produced several famous astronomers, such as, Āryabhaṭa 

(b.476), Varāhamihira (6
th

 century), Bhāskara I (fl.629), Brahmagupta (b.598), Lalla (ca.8
th
 or 9

th
 

century), Vaṭeśvara (b.880), Mañjula (fl.932), Śrīpati (fl.1039/1056), Bhāskara II (b.1114) etc.  And 

also the anonymous Sūrya-siddhānta (ca.10
th
 or 11

th
 century) is a very popular Sanskrit astronomical 

text of this period.  Some of these works are still considered to be authoritative by modern 

traditional Hindu calendar makers etc.  The period during which these classical astronomical works 

were composed can be called Classical Siddhānta period or Classical Hindu Astronomy period.  

The “Siddhānta” is the fundamental treatise of mathematical astronomy in Sanskrit. 

 

 

II. Three problems ----- Indian spherical astronomy 

(II.1) Introduction 

  The Siddhāntas usually consist of two parts, namely, the section of the calculation of planetary 

position, and the section of spherics.  The section of the calculation of planetary position is 

subdivided into the chapter on the mean motion, the chapter on the true motion, the chapter on the 

“three problems” (direction, place and time), the sections of lunar and solar eclipses, the sections of 

the conjunction of planets and stars, the section of heliacal rising and setting, the section of lunar 

phase etc. 

  What I am going to present here is the spherical astronomy in the chapter on the “three problems” 

(chap.III) in the Sūrya-siddhānta (ca.10
th

 or 11
th
 century), one of the most popular Sanskrit work on 

astronomy.  There are some versions of the Sūrya-siddhānta, and I followed the most popular 

Raṅganātha’s version.  Raṅganātha (son of Ballāla) flourished around 1603 AD at Kāśī (=Varanasi 

=Banaras) in India.  He was born in a family of astronomers.  He wrote a very popular Sanskrit 

commentary (1603 AD) on the Sūrya-siddhānta.  Raṅganātha’s son Munīśvara (b.1603 AD) was 

also an astronomer, and composed a Sanskrit astronomical treatise Siddhānta-sārva-bhauma (1646 

AD) etc.  There are some other astronomers in their relatives also. 

  Some texts of the Sūrya-siddhānta have 51 verses in its chap.III, while some texts have 50 verses 

in its chap.III, where verse no.32 occurs twice.  For example: 

  The Súrya-siddhánta, an ancient system of Hindu atronomy; with Ranganátha’s exposition, the 

Gúḍhártha-prakáśaka, edited by FitsEdward Hall with the assistance of Bápú Deva Śástrin, 

(Bibliotheca Indica), Calcutta, Asiatic Socirty of Bengal, 1859, has 50 verses in its chap.III. 

  The Súrya-siddhánta, an ancient system of Hindu atronomy; with Ranganátha’s exposition, the 

Gúḍhártha-prakáśaka, Calcutta, Sangbada Jnanaratnakara Press, 1871, has 51 verses in its chap.III. 

  There are two English translations of the Sūrya-siddhānta as follows.  The both have detailed 

English commentary. 



  Bápú Deva Sástri and Lancelot Wilkinson (tr.): The Súrya Siddhánta, or an Ancient System of 

Hindu Astronomy, followed by the Siddhánta Śiromani, translated into English, with extensive 

explanatory notes, Bibliotheca Indica Vol.32, Calcutta, Asiatic Society of Bengal, 1861; Reprinted: 

Amsterdam, Philo Press, 1974.  This translation has 50 verses in its chap.III. 

  Ebenezer Burgess (with the help of the Committee of Publication, particularly W.D. Whitney) 

(tr.): The Sûrya Siddhânta, a text-book of Hindu astronomy, (originally published in the Journal of 

the American Oriental Society, 6(2), 1860, 141 ~ 498), Reprint edited by Phanindralal Gangooly 

with an introduction by Prabodhchandra Sengupta, Calcutta, University of Calcutta, 1935; 

Reprinted: Delhi, Motilal Banarsidass, 1989.  This translation has 51 verses in its chap.III. 

 

 

(II.2) Construction of the gnomon 

  The Sūrya-siddhānta (III.1-4) reads as follows. 

“1. On a water-levelled even stone-surface or hard cement, draw a circle with a radius of a desired 

number of digits (aṅgulas) of the gnomon (śaṅku).” 

“2. At its centre, a gnomon with a height of fixed 12 digits should be erected.  The tip of its 

shadow will touch the circle in the forenoon and afternoon. ”  (See Fig.1 (a).) 

“3. On the circle, mark the two points which are called former and latter.  Between them, draw 

the south-north line by a “fish figure”.”  (See Fig.1 (b).)  (The “two points” are the points Fp and 

Ap in Fig.1 (a) and (b).) 

  “4. Between the south and north directions, draw the east-west line by a “fish figure”.  By fish 

figures” between the cardinal points, intermediate directions may be determined likewise.”  (See 

Fig.1 (c).) 

 

 

Fig.1, Construction of the gnomon 

 



(II.3) An observed shadow and the celestial sphere 

  The Sūrya-siddhānta (III.5-7) reads as follows. 

  “5. Draw a circumscribed rectangular by the lines going out from the centre.  The desired 

shadow (prabhā) is known to be on the line of the “base” (bhuja).”  (Here, the “desired shadow” is 

the segment CB in Fig.2 (a), and the “line of the base” is the line BeBw in Fig.2 (a).) 

          “6. The (vertical) line (on the celestial sphere) passing through the east and west points is called 

prime vertical (sama-maṇḍala).  And also, the six o’clock line (un-maṇḍala) and the meridian 

(viṣuvan-maṇḍala) are known.”   (See Fig.2 (b).) 

  “7. Establish an east-west line which passes through the tip of the equinoctial midday shadow.  

The distance between the (tip of) desired shadow and the equinoctial line (established as above) is 

called “amplitude” (agrā).”  (The “equinoctial midday shadow” is the segment Cm in Fig.2, and the 

“east-west line which passes through the tip of the equinoctial midday shadow” is the line MeMw in 

Fig.2 (a).  The “amplitude” is the distance between the lines MeMw and BeBw in Fig.2 (a).  Its 

corresponding segment Gh (in Fig.2 (b)) on the celestial sphere is also called “amplitude”.) 

  The observed shadow changes at every moment, and it corresponds to the hypotenuse of the 

shadow.  The hypotenuse is obtained by the Pythagorean theorem: 

  (Shadow-hypotenuse)
2 
= (Gnomon-height)

2
 + (Shadow-length)

2
. 

  The gnomon-height is usually considered to be 12 digits. 

  The Radius (= R) of the celestial sphere is usually considered to be 3438, because 360×60 minutes 

divided by 2π are about 3438 minutes. 

 

Fig.2, Observed shadow and celestial sphere 

 



(II.4) Midday shadows 

  The Sūrya-siddhānta (III.12cd-13ab) tells to obtain the “equinoctial midday shadow” 

(viṣuvat-prabhā) (the segment Cm in Fig.3 (b)) at the observer’s place. 

  The Sūrya-siddhānta (III.13cd-14ab) tells to convert the “equinoctial midday shadow” (the 

segment Cm) and the “gnomon height” (the segment CG in Fig.3 (b)) to the celestial sphere, using 

shadow hypotenuse (the segment Gm in Fig.3 (b)), and obtain the co-latitude (90°－φ) and latitude 

(φ) of the observer as follow. 

   
𝑅

𝑆ℎ𝑎𝑑𝑜𝑤−ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑠𝑒 (𝐺𝑚)
 × Gnomon-height (CG) = Rsine of the co-latitude. 

   
𝑅

𝑆ℎ𝑎𝑑𝑜𝑤−ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑐𝑒 (𝐺𝑚)
 × Shadow-length (Cm) = Rsine of the latitude. 

They are converted into the arcs of co-latitude and latitude. 

  The Sūrya-siddhānta (III.14cd-16) tells the relationship between the desired midday shadow, 

called “base” (bhuja) (the segment Cd in Fig.3 (b)), the Sun’s midday zenith distance (ζ) and its 

declination (δ).  The “shadow-hypotenuse” is the segment Gd in Fig.3 (b). 

   
𝑅

𝑆ℎ𝑎𝑑𝑜𝑤−ℎ𝑦𝑝𝑜𝑡𝑒𝑛𝑢𝑐𝑒 (𝐺𝑑)
 × “base” (Cd) = Rsine of the Sun’s zenith distance (= Rsinζ). 

It is converted into the arc of the Sun’s midday zenith distance (ζ). 

  If the Sun’s midday zenith distance and declination are in the opposite directions, φ =ζ + δ. 

  If the Sun’s midday zenith distance and declination are in the same direction, φ =|ζ－δ|. 

 

Fig.3, Midday shadows 



(II.5) Solar longitude 

  The Sūrya-siddhānta (III.17cd-19) tells to obtain the Sun’s longitude (λ) from its declination (δ), 

when the obliquity of the ecliptic (ε) is known.  In the case of the first quadrant, it is as follows. 

   
𝑅×𝑅𝑠𝑖𝑛𝛿

𝑅𝑠𝑖𝑛
= Rsinλ. 

  This formula can be understood as follows.  The segment gKc in Fig.4 (a), which is projected as 

the segment GKc in Fig.4 (b), is equal to Rsinλ.  And also, the segment KqKc is equal to Rsinδ.  

As the triangles gKcKq and GLcLq are similar, and the segment LqLc is equal to Rsinε, the above 

equation is obtained. 

 

Fig.4, Solar longitude 

 

 

(II.6) Time and shadow 

  The “ascensional difference” (cara) corresponds to the arc between the point of sunrise and the six 

o’clock line.  The “Rsine of the ascensional difference” (cara-jyā) (the segment GAe in Fig.5 (c)) is 

obtained as follows.  (The angle AGB is equal to the observer’s latitude (φ).) 

     GB = Rsinδ, 

     AB = GB ×
𝑅𝑠𝑖𝑛𝜑

𝑅𝑐𝑜𝑠𝜑
 (= Rsinδ×tanφ). 

     “Cara-jyā” (GAe) = 
𝑅

𝑟
 AB, 

where r is the rdius (BD) of the diurnal circle, that is r = Rcosδ. 

  The Sūrya-siddhānta (III.34cd-36 in the texts of 51 verses) tells that the sum or difference of the 



Radius and the “cara-jyā“ is the “day-measure“ (antyā) (the segment AeM in Fig.5 (c)): 

  When the Sun’s declination is north: “Day-measure” (antyā) (AeM) = R + “cara-jyā” (GAe). 

  When the sun’s declination is south: “Day-measure” (antyā) (AeM) = R－“cara-jyā” (GAe). 

  The “day-measure“ (antyā) (AeM) diminished by the “Rversed-sine (utkrama-jyā) of the hour 

angle (nata) of the Sun” (the segment MHe in Fig.5 (c)), then multiplied by the “day-radius” 

(ahorātra-ardha) (r = BD), and divided by the Radius (R = GM) is the “divisor” (cheda) (the 

segment AHn in Fig.5 (c)): 

     “Divisor” (cheda) (AHn) = 
𝑟

𝑅
 (“day-measure”－“Rversed-sine of the hour angle”). 

  Then, the “divisor” (the segment AHn in Fig.5 (c) or AHm in Fig.5 (b)) multiplied by the “Rsine 

of co-latitude” (lamba-jyā) (the segment MMg), and divided by the Radius (the segment GM) is the 

“Rsine of the Sun’s altitude” (śaṅku) (the segment HnTn in Fig.5 (c) or HmTm in Fig.5 (b)): 

     Rsine of the Sun’s altitude (HnTn or HmTm) = 
"𝑑𝑖𝑣𝑖𝑠𝑜𝑟" ×"𝑅𝑠𝑖𝑛𝑒 𝑜𝑓 𝑐𝑜−𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒"

𝑅
 

  By the Pythagorean theorem: 

(Radius)
2－(Rsine of the Sun’s altitude)

2
 = (“Rsine of the Sun’s zenith distance” (dṛg-jyā))

2
. 

The actual gnomon-shadow can be calculated from this value. 

  The Sūrya-siddhānta (III.37-39 in the texts of 51 verses) explains the method to obtain time from 

the observed shadow.  The method is just opposite to the above procedure. 

 

Fig.5, Time and shadw 



(II.7) Zodiacal signs 

  The Sūrya-siddhānta (III.42 in the texts of 51 verses) explains the method to calculate the right 

ascension (“laṅkā-udaya”, which means the ascension at Laṅkā which is supposed to be on the 

equator) of the first points of the zodiacal signs.  The method is: 

   𝑅sinα =  
𝑅𝑠𝑖𝑛𝜆 × 𝑅𝑐𝑜𝑠

𝑅𝑐𝑜𝑠𝛿
. 

  From its result, the arcs of the right ascensions of the first points of zodiacal signs can be 

calculated. 

  This equation can be understood as follows.  In the Fig.6 (a), the segment Q1q1 is the Rsine of 

the right ascension (α) of the first point of Taurus.  The segment GC1 is Rcosine of the declination 

(δ) of the first point of Taurus.  Now, the segment GC3 is the Rcosine of the obliquity of ecliptic (ε).  

The segment C1g1 is the Rsine of the longitude (λ) of the first point of Taurus (λ = 30°) projected to 

the plane of the equator, that is: 

The segment C1g1 = 𝑅sinλ ×
𝑅𝑐𝑜𝑠

𝑅
. 

  Considering the above equations, 

 Rsinα (the segment Q1q1) = C1g1×Radius÷GC1, that is: 

   𝑅sinα = 𝑅sinλ ×
𝑅𝑐𝑜𝑠

𝑅
×

𝑅

𝑅𝑐𝑜𝑠𝛿
=  

𝑅𝑠𝑖𝑛𝜆×𝑅𝑐𝑜𝑠

𝑅𝑐𝑜𝑠𝛿
. 

 

 

Fig.6, Zodiacal signs 

 



  The Sūrya-siddhānta also tells related topics conceding the oblique ascension of the observer’s 

latitude, the rising point of the ecliptic called “lagna”, etc.  In Fig.6 (b), the point Ve is the first 

point of Aries, the point C1 is the first point of Taurus, etc., and the segment VeQ1 corresponts to the 

right ascension of the first point of Taurus, etc., and the segment VeD1 corresponds to the oblique 

ascension of the first point of Taurus at the latitude of observer, etc. 

 

 

III. Conclusion 

  We have seen that several problems of spherical astronomy can be solved by plane trigonometry.  

They can be understood easily, and sometime they will be useful in astronomy education. 
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