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Abstract: In the history of astronomy in India, the Vedāṅga astronomy is the first systematic mathematical astronomy.  
In this paper, I would like to describe this system, and compare it with ancient Mesopotamian astronomy.  In the case 
of the Vedāṅga astronomy, some people suspected that it was influenced by ancient Mesopotamian astronomy, but I 
shall show that they are independent, and they were created at their own places which are located at different latitude. 
 
1  INTRODUCTION 
 

The chronological development of Indian astronomy is overviewed by Ôhashi (1998; 2009) but can 
roughly be summarised as follows:  
 

(1)  Indus Valley civilisation period. 
(2)  Vedic period (ca.1500 BC – ca.500 BC). 

   (2a)  Ṛg-vedic period (ca.1500 BC – ca.1000 BC). 
   (2b)  Later Vedic period (ca.1000 BC – ca.500 BC). 

(3)  Vedāṅga astronomy period. 
   (3a)  Period of the formation of the Vedāṅga astronomy (sometime between the 6

th
 and 4

th
 centuries 

BC?). 
   (3b)  Period of the continuous use of the Vedāṅga astronomy (up to sometime between the 2

nd
 and 

5
th
 centuries AD?). 

(4)  Period of the introduction of Greek astrology and astronomy. 
   (4a)  Period of the introduction of Greek horoscopy (the second (?) or third century AD). 
   (4b)  Period of the introduction of Greek mathematical astronomy (sometime around the fourth 

century AD?). 
(5)  Classical Siddhānta period (Classical Hindu astronomy period) (the end of the fifth century to the 

twelfth century AD). 
(6)  Coexistent period of the Hindu astronomy and Islamic astronomy (the thirteenth/fourteenth century to  

the eighteenth/nineteenth century AD). 
(7)  Modern period (Co-existent period of the modern astronomy and traditional astronomy) (the 

eighteenth/nineteenth century onwards). 
 

Among them, the Vedāṅga astronomy is the first systematic mathematical astronomy.  In this paper, I 
would like to discuss this system from astronomical point of view, and compare it with Mesopotamian 
astronomy.  This paper is based on the first half of my oral paper “Two Systems of Indian Astronomy” 
presented at ICOA-7 (2010, Tokyo), whose second half was on Classical Hindu astronomy.  The second 
half is omitted here due to the page limitation imposed.
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2  VEDĀṄGA ASTRONOMY 
 

2.1  The Beginnings of Indian Astronomy
 

 

The earliest decipherable literature in India is a class of texts called Veda, which was produced by 
Indo-Aryans who are said to have migrated to Northwest India in ca. 1600 BC.  They first produced the 
Ṛg-veda between 1500 and 1000 BC or so, and then produced Later Vedic literature between 1000 and 
500 BC or so. 
 

The Indo-Aryans were originally pastoral people.  They were mainly in the Panjab in the Ṛg-vedic 
period, and had some astronomical and calendrical knowledge. 
 

They migrated to the basin of the Ganga River in the Later Vedic period, and became essentially 
agriculturalists.  Accordingly, a more accurate calendar was required.  It should be noted that some 
rituals which symbolize the divisions of time were developed in this period, including the new and full 
moon offerings and four monthly offerings. 
 

Towards the end of the Later Vedic period, the Vedāṅga, which is a kind of supplemental learning for the 
Veda and consists of six divisions, was created.  One of its divisions is on calendrical astronomy and is 
called jyotiṣa.  Let us call the type of Indian astronomy present at this stage „Vedāṅga astronomy‟.  Its 
fundamental text, entitled Jyotiṣa-vedāṅga (or Vedāṅga-jyotiṣa), is extant (see Sastry, and Sarma, 1984; 
and also Kauṇḍinnyāyana, 2005; Mishra, 2005).  I think that it was created sometime between the sixth 
and fourth centuries BC.  There are two recensions (Ṛg-vedic and Yajur-vedic) of this text, but they are 
not so different. 
 

The Vedāṅga calendar was a luni-solar calendar with 366-day year, and had two intercalary months in 
five years.  The reason why calendrical astronomy was included in the Vedāṅga was that a calendar was 
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necessary for the determination of the proper time of rituals.  We should not forget that the development 
of the rituals was connected with the development of agriculture and the calendar.  The origin of the 
Indian astronomy looks ritualistic religion at first sight, but the astronomy actually originated in productive 
activities such as agriculture, and the rituals were the symbols of these activities. 
 

In the modern Indian languages (such as Hindi), the word jyotiṣa means astrology rather than 
astronomy, but the original jyotiṣa of the Vedāṅga was calendrical astronomy and was not astrology.  It is 
wrong to consider that ancient astronomy was mixed with astrology.  As an accurate calendar is 
indispensable for productive activities such as agriculture, calendrical astronomy was forced to be rational 
from the beginning. For further details of Vedic astronomy see Ôhashi (1993).  
 
2.2  The Structure of Vedāṅga Astronomy 
 

The contents of the Jyotiṣa-vedāṅga are almost exclusively calendrical.  The calendar described there is 
a kind of luni-solar calendar, where two intercalary months are inserted in a five-year cycle called yuga.  
Two intercalary months were inserted at the middle and the end of the five-year yuga.  The calendrical 
system of the Jyotiṣa-vedāṅga can be summarized as follows. 
 

1 sāvana day (civil day) is from sunrise to sunrise. 
1 sāvana month is 30 sāvana days. 
1 tithi is 1/30 of a synodic month. 
1 synodic month is from new moon to new moon. 
1 solar month is 1/12 of a solar year. 
1 ṛtu (season) is 1/6 of a solar year. 
1 solar year is from the winter solstice to the winter solstice. 
1 solar year = 2 ayanas (half years); 
           = 6 ṛtus (seasons); 
           = 12 solar months; 
           = 366 sāvana days (civil days); 
           = 372 tithis. 
1 yuga = 5 years; 
      = 60 solar months; 
      = 61 sāvana months = 1830 sāvana days; 
      = 62 synodic months = 1860 tithis; 
      = 67 sidereal months; 
      = 1835 sidereal days. 

 

In the Jyotiṣa-vedāṅga, celestial longitude was expressed using a nakṣatra (lunar mansion).  One 
nakṣatra used there is a segment which is equivalent to 1/27 of the ecliptic.  The system of 28 or 27 
nakṣatras already appeared in some of the later Vedic literature, but the nakṣatras described in the later 
Vedic literature must have consisted of the actual visible stars.  The Jyotiṣa-vedāṅga started to use it as 
an artificial system of coordinates.  It may be mentioned here that the systems of 28 and 27 nakṣatras 
are used for different purposes in the later Hindu astronomy since the Classical Siddhānta period, the 
system of 28 nakṣatras as actual stars, and the system of 27 nakṣatras as artificial coordinates.  The 
Vedāṅga astronomy may be considered to be the beginning of this division. 
 
2.3  Length of Day Time 
 

2.3.1  The Indian Linear Zig-zag Function with the Ratio 3:2 
 

A kind of zig-zag function was used in order to calculate the length of day time in Vedāṅga astronomy as 
well as in Ancient Mesopotamia.  Some people suspected that the Mesopotamian function was 
transmitted to India (e.g. see Pingree, 1973).  However, I would like to show that both Indian and 
Mesopotamian functions were created independently, and that each function was based upon actual 
observations made in each region, but at quite different latitudes. 
 

The Jyotiṣa-vedāṅga (Ṛg -vedic recension vs.7, and Yajur-vedic recension vs.8) reads: 
 

The increase of day time and decrease of night time is [the time equivalent of] one prastha of water [in the 
clepsydra per day] during the northward course [of the Sun].  They are in reverse during the southward course.  
[The total difference is] 6 muhūrtas during a half year. 

 

Another verse (Ṛg -vedic recension vs.22, and Yajur-vedic recension vs.40) reads: 
 
[The number of days] elapsed in the northward course or remaining in the southward course is doubled, divided 
by 61, and added to 12.  The result is the length of day time … [in terms of muhūtras]. 

 

The above rule can be expressed as follows: 

 









 nT

61

2
12                 (1) 

 
Here, T is the length of day time in terms of muhūrtas, and n is the number of days that have elapsed from 
or remain until the winter solstice.  One muhūrta is 1/30 of a day.  This is a kind of linear zigzag function, 
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where the length of the day time changes by one muhūrta during one solar month. 
 

According to Equation (1), the proportion of day time and night time is 2:3 at the time of the winter 
solstice.  This proportion is observed at the latitude of around 35° N.  So, some people have conjectured 
that this function was produced at about this latitude (e.g. see Pingree, 1973).  This conjecture is based 
on the assumption that this function is the result of the interpolation of data at the solstices (see Figure 1).  
However, there is also a possibility that this function is the result of the extrapolation of data around the 
equinoxes.  Let us discuss about this possibility. 
 

A source belonging to Later Vedic literature tells that Vedic people observed the Sun (most probably in 
the direction of sunrise) which moved constantly during its northward and southward courses, and 
considered that it was stationary around the solstices.  The Kauṣītaki-brāhmaṇa (XIX.3), one of the Later 
Vedic texts, reads: 
 

On the new moon of Māgha he rests, being about to turn northwards … He goes north for six month … Having 
gone north for six months he stands still, being about to turn southwards … He goes south for six months … 
Having gone south for six months he stands still, being about to turn north … (Keith, 1920: 452). 

 

In this text, “he” refers to the Sun.  It is seen from this text that Vedic people noticed that the Sun 
(probably the direction of sunrise) moved constantly, except for a certain period around the solstices.  It 
was also considered that the Sun “stands still” around the solstices.  From this fact, we are obliged to 
think that Vedic people thought that a linear function should be based on the data excluding those around 
the solstices, and that Equation (1) in the Jyotiṣa-vedāṅga was not obtained by interpolation from the 
observations at the solstices, but was obtained by extrapolation from observations of the length of day 
time around the equinoxes.  Practically, there were two possibilities: (I) If the formula was obtained from 
one muhūrta‟s difference of the length of day time during one 
solar month after the equinox, the most suitable latitude for 
this observation was around 27°N.  (2) If it was obtained 
from two muhūrtas‟ difference during two solar months, the 
most suitable latitude was around 29°N.  I graphed Equation 
(1) together with the actual seasonal change of the length of 
day time at the latitudes 35°N, 29°N , and 27°N in Figure 1. 
 

From the above consideration, I conclude that Equation (1) 
is the result of extrapolation of data around the equinoxes 
observed at a latitude of 27°~29°N, and that the Jyotiṣa- 
vedāṅga was produced in North India (most probably in the 
western part of the basin of the Ganga River where Later 
Vedic people resided) without apparent foreign influence (see, 
also, Ôhashi, 1993 and 2002).  
 
2.3.2  Mesopotamian Functions 
 

The history of ancient Mesopotamia can roughly be divided as follows: 
 

(1)  Sumerian and Old Akkadian Periods. 
(2)  Old Babylonian and Old Assyrian Periods (from about the twentieth century BC to about the sixteenth 

century BC). 
(3)  Middle Babylonian and Middle Assyrian Periods (from about the sixteenth century BC to ca.1000 

BC). 
(4)  Neo-Babylonian and Neo-Assyrian Periods (from ca.1000 BC to the end of the seventh century BC).

2
  

(5)  Late Babylonian Period (from the end of the seventh century BC to the first century AD). 
   (5.1)  Neo-Babylonian (Chaldean) Dynasty (625 BC ~ 539 BC). 
   (5.2)  Achaemenid Dynasty (559 BC ~ 330 BC). 
   (5.3)  Seleucid Dynasty (312 BC ~ 64 BC). 

 
2.3.2.1  The Mesopotamian Linear Zigzag Function with the Ratio 2:1 

 

Already in the Old Babylonian tablet BM 17175+17284
3
 the lengths of day time and night time at the 

equinoxes and solstices are given (see Hunger and Pingree, 1989: 163-164 and Plate XIIa; cf. Brown, 
2000: 128-129, 249; Hunger and Pingree, 1999: 50).  The length is given in terms of mina, which is used 
to measure the weight of water poured into a water clock.  One mina corresponds to 4 hours, and one 
day corresponds to 6 mina.  It has the following values. 
 

Summer solstice: day time = 4 mina, night time = 2 mina. 
Autumnal equinox: day time = 3 mina, night time = 3 mina. 
Winter solstice: day time = 2 mina, night time = 4 mina, 
Vernal equinox: day time = 3 mina, night time = 3 mina. 

 

It is not clear whether the above value was meant to be a step function or a linear zig-zag function. 
 

The linear zigzag function of the length of day time with the ratio 2:1 is given in Enūma Anu Enlil XIV, 
Table C (Al-Rawi and George, 1991/1992: 57-58; cf. Brown, 2000: 128-129, 254-256; Hunger and Pingree, 
1999: 44-50; Rochberg, 2004: 73-75).  It tells us that the length of day time (or night time) changes from 
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2 mina to 4 mina, and that the length changes linearly 
by one-sixth mina per quarter month.  I graphed this 
function of the length of the day time in Figure 2 
together with the actual of seasonal change in the 
length of the day time at the latitude 35°N.  The 
Mesopotamian function looks different from the actual 
change at first sight, and was considered to be “very 
inaccurate”, “incorrect for Mesopotamia” etc. by 
previous researchers.  However, I suspect that the 
Mesopotamian linear function is the result of the 
extrapolation of data collected around the equinoxes.  
We should note that the Mesopotamian linear function 
gives a more or less acceptable value around the 
equinoxes.  This point will become clearer when we 
discuss the later development of the polygonal 
function. 
 
2.3.2.2  The Mesopotamian Linear Zigzag Function 
with the Ratio 3:2 
 

According to Pingree‟s interpretation, the linear zigzag 
function with the ratio 3:2 is implied in the shadow 
table of Mul.Apin (II.ii.21 – 42) (Hunger and Pingree, 
1989: 153-154; cf. Hunger and Pingree, 1999: 79-83).  
However, Brown (2000: 120) objected to Pingree‟s 

interpretation, because the ratio 2:1 is otherwise used throughout the series of Mul.Apin. 
 

According to Brown (2000: 120, 261), the earliest 
attestation of the ratio 3:2 is in the late Neo-Assyrian 
period in BM 36731 (see Neugebauer and Sachs, 
1967: 183-190).  This text implies the ratio 3:2 of the 
length of day time and night time at the solstices, but it 
is not clear whether the linear zigzag function was 
implied or not.  A table which is based on the linear 
zigzag function with the ratio 3:2 is given in the Late 
Babylonian tablet BM 29371 (see Brown, Fermor and 
Walker, 1999/2000: 144-148).  In this tablet, the value 
is given for every 5 days. 
 

I graphed this function of the length of day time in 
Figure 3 together with the actual seasonal change of 
the length of the day time at the latitude 35°N.  The 
Mesopotamian function is evidently the result of the 
interpolation of data obtained at the solstices. 
 

2.3.2.3  The Mesopotamian Polygonal Function with the Ratio 3:2 
 

The mathematical astronomical texts in the Seleucid Dynasty, which is the last phase of the Late 
Babylonian Period, have been collected together in the Astronomical Cuneiform Texts (≡ ACT) of Otto 
Neugebauer (1955). 
 
Table 1: Changes in the length of day time with solar longitude. 
 

The polygonal function of the length of day time 
with the ratio 3:2 is given in Section 2 of ACT 200 (= 
BM 32651) (see Neugebauer, 1955,1: 187; 3: Plates 
223 and 234) and ACT 200b (= BM 33631) (see 
Neugebauer, 1955,1: 214; 3: Plate 236), which 
belong to the „Procedure texts‟ of “System A” (cf. 
Neugebauer, 1955,1:47, and 1975, 1:369-371).  The 
value is given for every 30º of the solar longitude 
starting from the vernal equinox as listed in Table 1.  
For other longitudes, the value is obtained by linear 
interpolation.  Therefore, this is a kind of polygonal 
function.  The length of day time is given in terms of 
„large-hours‟, where one „large-hour‟ is 4 hours, and 
one day is 6 „large-hours‟.  Fractions are 
sexagesimally expressed.  A sexagesimal point is 

expressed by a semicolon instead of a dot for the decimal point. 
 

I graphed this polygonal function of the length of day time in Figure 4, together with the linear zigzag 

Solar longitude (°) Length of day time (large-hours) 

  0 3;00 

 30 3;20 

 60 3;32 

 90 3;36 

120 3;32 

150 3;20 

180 3;00 

210 2;40 

240 2;28 

270 2;24 

300 2;28 

330 2;40 
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function with the ratio 2:1 and that with the ratio 3:2, 
and the actual change at the latitude 35ºN. 

 
2.3.2.4 The Polygonal Function as a Synthesis of 

Extrapolation and Interpolation 
 

From Figure 4 it is seen clearly that the polygonal 
function from the solar latitude 0º to 30º is exactly the 
same as the linear zigzag function with the ratio 2:1.  
From this fact, I suppose that the astronomers during 
the Seleucid Dynasty considered that the linear 
zigzag function with the ratio 2:1 was the result of the 
extrapolation of data collected around the equinoxes, 
as I suspected.  So, it will be justified to say that the 
polygonal function is the result of the synthesis of 
extrapolation (linear function with the ratio 2:1) and 
interpolation (linear function with the ratio 3:2). 

 
2.3.3 The Indian Function and the Mesopotamian   

Function 
 

We have seen that the Indian function is based on the 
data observed at the latitude of 27º~29º N, and that 
their preference of extrapolation can be understood 
from a description in the Vedic literature.  And also, 
we have seen that Mesopotamian functions are 
based on the data collected at the latitude of about 35º N. From these facts, I conclude that the Indian 
function and the Mesopotamian function are independent.  This point will become clearer following a 
comparison of the functions of the length of the gnomon shadow. 
 
2.4  The Gnomon Shadow 
 

2.4.1  The Gnomon Shadow in India 
 

The Artha-śāstra, of which the actual date is controversial, is a political work and is traditionally attributed 
to Kauṭilya, a minister of Candragupta Maurya (throned in 321 BC).  The Artha-śāstra also records 
knowledge of Vedāṅga astronomy (and for an edited text with an English translation see Kangle, 
1965-1972). 
 

The Artha-śāstra (II.20.41–42) gives the annual variation of the length of the gnomon shadow, and I 
have graphed it in Figure 5, together with the actual variation at 21º N, 27º N, and 35º N.  From this figure, 
it is clear that the variation of the Artha-śāstra is based on the observation in North India (around 27º N). 
 

The Artha-śāstra (II.20.39–40) also lists the diurnal variation in the length of the gnomon shadow which 
is given by the following equation (after Abraham, 1981), which gives almost the correct value at the 
summer solstice at the Tropic of Cancer.  

 

1
2


g

s

t

d
               (2) 

 
Here, t/d is the fraction of day time (d stands for the duration of day time, and t the time elapsed since 
sunrise or remaining until sunset measured by the same unit as d), s is the length of the shadow of the 
gnomon of length g. 
 

The Yavana-jātaka (AD 269/270) of Sphujidhvaja is the earliest extant Sanskrit work on Greek 
horoscopy (and for an edited text with 
an English translation see Pingree, 
1978).  Most of its contents is Greek 
horoscopic astrology,

4
 and only its last 

chapter (Chapter 79) is devoted to 
mathematical astronomy.  The text 
states that “the instruction of the 
Greeks” (Yavana-upadeśa) is explained 
there, but developed Greek geometrical 
astronomy (the epicyclic theory, etc.) is 
not found there.  On the contrary, 
according to my analysis, a certain 
theory which is part of Indian Vedāṅga 
astronomy is found there.  Let us 
examine the variation in the length of 
the gnomon shadow.  
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The Yavana-jātaka (Chapter 79, 
verse no.32) tells us that the 
diurnal variation of the gnomon 
shadow is given by the following 
formula (after Abraham, 1981): 
 

1
'

2





g

ss

t

d
     (3) 

 
Here, t/d is the fraction of day time 
which has elapsed since sunrise 
or remains until sunset, s is the 
length of the shadow of the 
gnomon of length g, and s’ is its 
midday shadow. 
 

I have graphed the diurnal 
variation according to Equation 
(3)

5
 at the equinoxes and 

solstices in Figure 6, together with 
the actual variation at latitude 
23.7º N (latitude of the Tropic of 
Cancer at the time of Kauṭilya).  

As regards the value of the midday shadow, I used the correct value. 
 
2.4.2 The Gnomon-shadow in Mesopotamia 
 

According to Otto Neugebauer (1975, 1: 544-545) the Mesopotamian shadow table in Mul.Apin (II.ii.21-42; 
see Hunger and Pingree, 1989: 96-101, 153-154) can be obtained from the following formula.  
 

s

c
t                     (4) 
 
Here, t is the time after sunrise which is counted in time degrees (1 day = 360°), s is the length of the 
shadow in terms of cubits, and c is a constant.  The amount of the constant, c, is 60 at the winter solstice, 
75 at the equinoxes, and 90 at the summer solstice.  Strangely, the midday shadow is always 5/6 cubit, 
and the reason of this unreality is not known. 
 

I have graphed the diurnal variation according to the Equation (4) at the equinoxes and solstices in 
Figure 7 together with the actual variation at the latitude of 35º N.  As regards the value of the midday 
shadow, I used the correct value. 
 
2.4.3  The Gnomon Shadow in India and Mesopotamia 
 

From Figures 6 and 7 we can suppose that the Indian Equation (3) originated from observation made in 
India at the time of the summer solstice, while the Mesopotamian Equation (4) seems to have originated 
from observations made in Mesopotamia at the time of equinoxes.  They are mathematically different, 
and must have been derived independently. 

 

3  CONCLUSION 
 

No researcher is free from 
preconception.  It is also a fact 
that previous authorities‟ wrong 
preconceptions, sometimes even 
against their own wishes, pro- 
duced chances for newcomers to 
make breakthroughs. 
 

The assumption that the an- 
cient astronomers only used 
interpolation is also a preconcep- 
tion.  Some previous research- 
ers considered that the Indian 
linear zigzag function with the 
ratio of 3:2 and the Mesopot- 
amian linear zigzag function with 
the ratio of 2:1 were quite in- 
accurate, because they assumed 
that the ancient astronomers 
used interpolation.  Some of the 

previous researchers even suspected that the Indian linear zigzag function with the ratio 3:2 was 
borrowed from Mesopotamia, although there is no historical evidence to prove this. 
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I have shown here that ancient astronomers in India and Mesopotamia must have used extrapolation, 
and that they must have produced their astronomy independently, which could have been developed at a 
particular latitude.  The Indian preference for extrapolation can be understood given the historical 
background provided in the Vedic literature.  And also, the dialectical development of the Mesopotamian 
function can be traced, which must have taken place at their proper latitude. 
 

Some previous researchers laid too much stress on the transmission of ancient astronomical ideas, but 
what is more important is to understand ancient astronomy in its own cultural context. 
 
4  NOTES 
 

1. Some parts of the first half of this paper, which is presented in this volume, were presented as an 
unpublished oral paper at the 22

nd
 International Congress of History of Science (Beijing, 2005), and its 

Japanese summary has been published as Ôhashi (2006).  The second half, which is omitted here, was 
further discussed at the 4

th
 Symposium on “History of Astronomy” held at the National Astronomical 

Observatory of Japan, Tokyo, in January 2011, and will be published in its proceedings. 
2. This „Neo-Babylonian period‟ should not be confused with the „Neo-Babylonian Dynasty‟ which appears 
later in this listing. 
3. Here „BM‟ is used to denominate tablets in the British Museum, London. 
4. Along with Greek astrology, zodiacal signs and the seven-day week were introduced into India. 
5. Equation (3) becomes the same as the Equation (2) at the summer solstice. 
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