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Mathematics and astronomy in traditional India

The history of Indian astronomy can roughly be summarised as follows.

(i) Indus civilization period (ca.2600/2500 BCE - ca.1900 BCE).

(i1) Vedic period (ca.1500 BCE - ca.500 BCE).

(iii)Vedariga astronomy period (From sometime between the 6™ and
4™ centuries BCE up to sometime between the 3™ and 5"
centuries CE?).

(iv)Period of the introduction of Greek astrology and astronomy
(Sometime around the 3" and 4" century CE?).

(v) Classical Siddhanta period (Classical Hindu astronomy period).
(From the end of the 5" century up to the 12" century).

(vi)Coexistent period of the Hindu astronomy and Islamic
astronomy (From the 13/14™ century up to the 18/19" century).

(vii) Modern period (Coexistent period of the modern astronomy
and traditional astronomy). (From the 18/19" century onwards).

[For an overview of Indian astronomy, see Ohashi (1998) in Japanese or
more detailed Ohashi (2009) in English. For an overview of Indian
mathematics, see Datta and Singh (1935 — 38), Sarasvati Amma (1979),
and Plofker (2009) in English, and Hayashi (1993) in Japanese.]


mailto:yukio-ohashi@chorus.ocn.ne.jp

Indian numerals:

Decimal place value system.
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Fig. 10. Genealogy of our digits. From Menninger, Zahlwort und Ziffer. p. 329

(From van der Waerden: Science Awakening I, 1961, p.52.)

The Indian system was transmitted to the Islamic World, and then
transmitted to Europe.

It should be noted that the shape of the figure which is now usually
used is the modern European style, and the shapes of traditional
figures in different areas are different.



Let us see some examples of modern Asian numerals.

Some examples of modern Asian numerals:

Modern Arabic numerals:
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Modern Hindi numarals:
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Modern Thai numerals:
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Now, let us see the numerals in an early inscription

and a manuscript:



One of the earliest inscriptions which has the symbol of “zero”:

.;‘

The face of the stele K-127, showing the ancient wri;ing:,
including the number 605.

The numerals 605, the zero being the dot in the middle,
[from the photograph above.

The upper part of artifact K-127, showing its broken top. The numerals
G605 are on the second line from the bottom.

An inscription found in Cambodia. It has the date “Saka 605”

which corresponds to 683 CE. (Saka is an Indian Era.)
(From Aczel: Finding Zero, New York, St. Martin’s Press, 2015, p.177.)



The Indian numerals in the Bakhshali Manuscript:
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Mathematics, Archaeological Survey of India, 1927/33, fol.

37R)
(From Hayashi: #F&ER [ > Fo%E], HARE. 1993, p.30.)

The Bakhshali Manuscript is the earliest Sanskrit

mathematical manuscript in India (probably composed in the

7" century CE or s0).

Now, let us see the development of mathematics and astronomy in
India from ancient time.



(1) Indus civilization period

(ca.2600/2500 BCE - ca.1900 BCE).

It is usually inferred that Munda people (one branch of the Austro-Asiatic
people) (mainly in the eastern part of India) and Dravidian people (mainly in the
western part of India) were already living in Indian subcontinent thousands of
years ago, and later (around 1500 BCE or so), Indo-Aryan people migrated to
Indian subcontinent from the northwest. Dravidian people are now living mainly
in South India.

The Indus civilization (ca.2600/2500 BCE ~ ca.1900 BCE) is the
earliest urban civilization in Indian subcontinent (before the
immigration of Indo-Aryan people). It developed in the Indus Valley
and nearby area of the western part of the Indian subcontinent. Its
cities Harappa and Mohenjo-daro were excavated since 1920s, and
some other cities were excavated later. It had Indus scripts, and some
people are trying to decipher them as Dravidian language, but the
results are still at the stage of hypothesis.

The cities are well planned, and we can suppose that they had
certain knowledge to determine cardinal directions. And also, they
had standardized system of weights and measures. As their
agriculture was well developed, we can suppose that they had certain
knowledge of calendar and related astronomy, which are necessary for
agriculture..
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(11) Vedic period (ca.1500 BCE - ca.500 BCE).

After the period of the Indus civilization (ca.2600 BCE ~ ca.1900
BCE), Aryans appeared in Northwest India in ca.1500 BCE or so.
The Aryans were originally pastoral people. The Aryans produced a
set of Brahmanic literature called \Veda in India

There are four Vedas, namely, the Rg-veda, the Sama-veda, the
Yajur-veda, and the Atharva-veda. Each of the four Vedas consists of
the Sashita, the Brahmana, the Aranyaka, and the Upanisad.

Firstly, the Rg-veda-samhita was produced in Northwest India
(present Punjab) during ca.1500 BCE and ca.1000BCE. Let us call
this period “Rg-vedic period”.

Then, the Aryans advanced towards east, and produced Later Vedic
literature (Vedic literature except for the Rg-veda-sarirhita) in North
India (roughly the western part of the plain of the Ganga) during
ca.1000 BCE and ca.500 BCE. Let us call this period “Later Vedic
period”.
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Rg-vedic period (ca.1500 BCE ~ ca.1000 BCE):

Certain calendrical knowledge (connected with annual monsoon) is
recorded.

In a late portion of the Rg-veda, the intercalary month seems to have
been mentioned.

Later Vedic period (ca. 1000 BCE ~ ca. 500 BCE):

The Aryans advanced towards east.

The society had become essentially agricultural in this stage.

The intercalary month is explicitly mentioned.

The complete set of naksatras (lunar mansions) is given in later Vedic
literature.

One year was divided into six seasons, namely, vasanta (spring),
grisma (summer), varsa (rainy), sarad (autumn), hemanta (winter), and
sisira (cool).

In the Vedic period, the regular calendar was symbolized in rituals.

(111) Vedarnga period.

Towards the end of the Later Vedic period, a class of works
regarded as auxiliary to the Veda was produced, which is
called Vedanga (limbs of the Veda).

The Vedanga consists of six divisions, namely, phonetics,
metrics, grammar, etymology, astronomy and ceremonial.

The ceremonial texts called “sulba-sitras” contain certain
geometrical knowledge.

It is this period when astronomy, which was called “jyotisa”

in Sanskrit, was established as an independent learning.



(111.1) Sulba-siitras (probably composed sometime between the 6

century BCE and the 2" centurie CE).

The Sulba-sitras (literally mean “rules of the measuring-cords”) are
the texts to construct the altar for Brahmanic ceremonies.

There are four main texts, namely, Apastamba-sulba-sitra,
Baudayana- sulba-satra, Katyayana-sulba-sitra, Manava-sulba-sitra.

Certain geometrical knowledge is used to construct altars.

Let us see some examples.
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Figure 2.1 Determining the east-west line with shadows cast by a stake.

The preliminary step is the drawing of a baseline running east and west.
We do not know for sure how this was accomplished in the time of the early
Sulba-sitra authors, but the later Katyayana-sulba-sitra prescribes using
the shadows of a gnomon or vertical rod set up on a flat surface, as follows:

Fixing a stake on level [ground and] drawing around [it] a circle
with a cord fixed to the stake, one sets two stakes where the
[morning and afternoon| shadow of the stake tip falls [on the
circle]. That [line between the two] is the east-west line. Making
two loops [at the ends| of a doubled cord, fixing the two loops on
the [east and west] stakes, [and] stretching [the cord] southward
in the middle, [fix another] stake there; likewise [stretching it]
northward; that is the north-south line. (KaSS 1.2)

The first part of the procedure is illustrated in figure 2.1, where the base
of the gnomon is at the point O in the center of a circle drawn on the
ground.'* At some time in the morning the gnomon will cast a shadow OM
whose tip falls on the circle at point M, and at some time in the afternoon
the gnomon will cast a shadow OA that likewise touches the circle. The line
between points A and M will run approximately east-west.

4 Note that the text itself is purely verbal and contains no diagrams. This figure and
all the remaining figures and tables in this chapter are just modern constructs to help
explain the mathematical rules.



Figure 2.2 Determining the perpendicular sides of a square with a marked cord.

Then a cord is attached to stakes at the east and west points, and its
midpoint is pulled southward, creating an isosceles triangle whose base is
the east-west line. Another triangle is made in the same way by stretching
the cord northward. The line connecting the tips of the two triangles is a
perpendicular bisector running north and south. Similar ways of stretching

a cord into a triangle are also used for basic determinations of right-angled
figures, as in the following construction of a square:

The length is as much as the [desired] measure; in the western
third of [that length] increased by its half, at the [place] less by a
sixth part [of the third], one makes a mark. Fastening [the ends
of the cord] at the two ends of the east-west line, stretching [the
cord] southward by [holding] the mark, one should make a marker
[at the point that it reaches]. In the same way [one should stretch
the cord] northward; and in the other two directions after revers-
ing [the ends of the cord]. That is the determination. [There
is] shortening or lengthening [of the side to produce the desired
half-side of the square with respect to] that marker. (ApSS 1.2)

Here a cord with length equal to the desired side of a square, say s, is
increased to a total length of %s, and a mark is made at a distance of
15—25 from one end, as shown in figure 2.2. So when the endpoints are fixed a
distance s apart along the east-west line, pulling the mark downwards creates
a 5-12-13 right triangle to make the sides perpendicular. The same technique

is also used with 3-4-5 right triangles (e.g., in BauSS 1.5, KaSS 1.4).

(From Plofker: Mathematics in India, Princeton, 2009, pp.19 — 20.)



Mathematical constants in the Sulba-sitras:

Table 2.1 Sulba-siitra constants

Sutra Rule and modern equivalent Remarks; value
BauSS 2.9, Half diagonal of square, minus differ-
MaSS 1.8, ence of half diagonal and half side, plus
ApSS 3.2, one-third that difference, is radius of
KaSS 3.11 circle:
r=§+s‘/§23‘32 7~ 3.08831
BauSS§ 2.10 Seven-eighths diameter of circle, plus
one twenty-ninth of remaining eighth,
minus one sixth of that twenty-ninth di-
minished by its eighth, is side of square:
_ 2r 1 1 1 . -
$=2 <7+29 (29-6 29-6-8)) m & 3.08833
BauSS 2.11, Thirteen-fifteenths of diameter of circle Called “approx-
ApSS 3.3, is side of square: imate”
KaSS 3.12
—op. 13 R 4
8=2r 15 m =~ 3.00
BauSS 2.12, Side of square plus its third plus a KaSS says “ap-
ApSS 1.6, fourth of the third minus one thirty- proximate”
KaSS 2.9 fourth of the fourth is the diagonal
. . & ~
sV2=s <1+3 T 3'4_34) V2 =~ 1.4142
2
MaSS 11.9- s?= 3(247') So interpreted
10 in [Hay1990]
T3
Mass 1115 r=42. ﬁs So inter-
5 2 :
preted in,
e.g., [Gup2004b]
T 3.125

(From Plofker: Mathematics in India, Princeton, 2009, p.27.)

For original text and English translation of the four Sulba-sitras, see Sen and Bag (1983). A
Japanese translation of the Apastamba-sulba-sitra by Ikari is included in Yano (1980).
(1932) is an early monumental study of geometry in the Sulba-sitras.

Datta



(111.2) Jyotisa-vedanga (probably composed sometime between

the 6" and 4™ centuries BCE).

The Jyotisa-vedanga of Lagadha is a small monograph of astronomy written in
Sanskrit. It has two recensions, namely, the Rg-vedic recension entitled
Arca-jyotisa, and the Yajur-vedic recension entitled Yajusa-jyotisa.

The calendrical system of the Jyotisa-vedarnga can be summarized as
follows.

1 savana day (civil day) is from sunrise to sunrise.

1 savana month (civil month) is 30 savana days.

1 tithi is 1/30 of a synodic month.

1 synodic month is from new moon to new moon.

1 solar month is 1/12 of a solar year.

1 rtu (season) is 1/6 of a solar year.

1 solar year is from winter solstice to winter solstice.

1 solar year = 2 ayanas (half years),

= 6 rtus (seasons),
= 12 solar months,
= 366 savana days (civil days),
= 372 tithis.
1 yuga = 5 years,
= 60 solar months,
= 61 savana months = 1830 savana days,
= 62 synodic months = 1860 tithis,
= 67 sidereal months,
= 1835 sidereal days.

In the Jyotisa-vedanga, celestial longitude was expressed using naksatra (lunar mansion).
One naksatra used there is a segment which is equivalent to 1/27 of the ecliptic. The system of
28 or 27 nakgsatras already appeared in some of the later Vedic literature. The nakgsatras
described in the later Vedic literature must have been consisted of the actual visible stars.
The Jyotisa-vedanga started to use it as an artificial system of coordinates. It may be
mentioned here that the systems of 28 and 27 naksatras are used for different purposes in the
later Hindu astronomy since the Classical Siddhanta period, the system of 28 naksatras as
actual stars, and the system of 27 naksatras as artificial coordinates. The Vedanga astronomy

may be considered to be the beginning of this division.



Accuracy of the Vedanga astronomy:
1 solar year = 366 civil days,
1 yuga = 5 years,
= 1830 civil days,
= 62 synodic months,

= 67 sidereal months,

Modern accurate value:
1 solar year = 365.24219 days.
1 synodic month = 29.530589 days.
--- 62 synodic months = 1830.8965 days.
1 sidereal month = 27.321662 days.

--- 67 sidereal months = 1830.5485 days.

--- Enough exact regarding lunar months!

(For more detail, see Ohashi, Yukio: “On Vedarnga astronomy: The Earliest Systematic Indian
Astronomy”, in Nakamura, Orchiston, Séma and Strom (eds.): Mapping the Oriental Sky.
Proceedings of the Seventh International Conference on Oriental Astronomy, Tokyo, National

Astronomical Observatory of Japan, 2011, pp.164 —170.  For other references, see this paper.)



DISTRIBUTION OF
~ NORTHERN BLACK POLISHED WARE

S ony LY
’l!llljl’;;;;:::::;mmlf”lH

INDIA IN ABOUT aD 150
TN '\i.

ARABIAN SEA

xxxxxx
‘‘‘‘‘ BAY OF BENGAL
5 ¢ .
o Sono fg' . 5 .
3 I\ ko] g
» Sz z
Y z% . : (RS L
R Y L
INDIAN OCE AN k"%*’ IND IAN OCE AN w“tp%b
Map 7 Distribution of Northern Black Polished Ware. Courtesy ASI Mar 9 India in about AD 150. Courtesy ASI
Rrod of Northern Black Polished Ware
{c, 500 BCE =~ )
(From Sharma (2005) | facing r\s's)

I-na(ia. in aboit 150 CE

(Prom ,Sharma (zoos‘)j ‘Facfh-j P 227.)
(From Sharma, R. S.: India 5 Ancient Past, New Delhi, Oxford University Press, 2005)

(1V) Period of the introduction of Greek astrology
and astronomy

(Sometime around the 3™ and 4" century CE?)

Greek horoscopy is mentioned in the Yavana-jataka (ca. 3
century CE?) of Sphujidhvaja

The most of the contents of
the Yavana-jataka is Greek horoscopic astrology

With Greek astrology, zodiacal signs, seven-day week, etc
were introduced into India



Greek mathematical astronomy seems to have been
introduced into India sometime around the 4" century CE.
There is little source material of the development of
astronomy during this period. The Pafca-siddhantika of
Varahamihira (6" century CE) (see below) gives the most
important information, although its information is

fragmental.

It seems that the Indian traditional \edarnga
astronomy was continually used until the 3™ ~ 5%
centuries CE. After the end of the 5" century, India
did not receive foreign influence for sometimes, and

created its own classical mathematics and astronomy.



(V) Classical Siddhanta period
(Classical Hindu astronomy period).

(The end of the 5" century ---- the 12" century).

In the Classical Hindu Astronomy period (Classical Siddhanta
period) (from the end of the 5" century to the 12" century), Indian
astronomy did not receive apparent foreign influence, and developed
individually. Some of the Sanskrit works in this period are still
considered to be authoritative by modern traditional Hindu calendar
makers etc. This period can be called Classical Siddhanta period or
Classical Hindu Astronomy period. @ The “Siddhanta” is the
fundamental treatise of mathematical astronomy in Sanskrit.

Famous astronomers and mathematicians in this period:

Aryabhata (b.476 CE) --- astronomy and mathematics,
Varahamihira (6" century) --- astronomy and astrology,
Bhaskara I (f1.629) --- astronomy and mathematics,
Brahmagupta (b.598) --- astronomy and mathematics,
Sridhara (8" century) --- mathematics,

Lalla (ca.8" or 9" century) --- astronomy and astrology,
Mahavira (9" century) --- mathematics,

Vatesvara (b.880) --- astronomy,

Manjula (f1.932) --- astronomy,

Sripati (f1.1039/1056) --- astronomy, mathematics and astrology,
Bhaskara II (b.1114) --- astronomy and mathematics.

And also the anonymous Sirya-siddhanta (ca.10™ or 11™ century) is
a very popular Sanskrit astronomical text of this period.

The Bakhshali Manuscript (probably composed in the 7™ century CE
or so) is also an important Sanskrit mathematical manuscript in India.



Main contents of Hindu classical astronomy:

“Graha-ganita” (calculation of planetary position):
————— Calculation of the sun, moon, and planets for calendar
making using eccentric and epicyclic models..
————— (mean motion, true motion, “three problems” (direction,
place and time), lunar and solar eclipses, conjunction of planets
and stars, heliacal rising and setting, lunar phase etc.)

“Gola” (spherics).
----- Topics concerning celestial sphere, astronomical instruments

Main contents of Hindu classical mathematics:

“Pati-ganita” (arithmetical mathematics),
----- Calculation of known quantities using certain algorithms.

“Bija-ganita” (algebraic mathematics).

----- Methods to solve equations using letters to express unknown
guantities.

The above mentioned “Graha-ganita”, “Gola”, “Pati-ganita”, and
“Bija-ganita” are usually used Sanskrit term.

Let us see some examples.
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Aryabhata (b.476 CE) and Varahamihira (6" century) lived around
this period.



Aryabhata (b.476 CE)

Aryabhata is an astronomer who was born in 476 CE. He probably
lived in Kusumapura (=Pataliputra) in ancient Magadha, i.e. modern Patna
in Bihar. He is the earliest astronomer in the Classical Siddhanta period
whose name and date are definitely known

Aryabhata composed two astronomical works, the 4ryabhaza-siddhanta
(now lost) and the Aryabhatiya (499 CE).

The Aryabhasa-siddhanta is a lost text belonging to the Ardharatrika
school. Only its fragments are found to be quoted in later works.

The Aryabhariya (499 CE) is a celebrated work of Hindu astronomy. It
consists of four sections, namely, the Gitika section on astronomical
constants, the Garita section on mathematics, the Kalakriya section on the
reckoning of time, and the Gola section on the celestial sphere.

Significance of this work is that the rotation of the earth is mentioned
there. In the Aryabhasiya (I. 3, and I. 6), Aryabhata mentions the
eastward rotation of the earth. This theory was, however, not accepted by
other Hindu astronomers. What Aryabhata told is the rotation of the earth,
and not the revolution of the earth. The earth was considered to be at the
centre of the universe. Therefore, Aryabhata’s theory is different from
Copernican heliocentric theory. This difference should not be confused.

Aryabhata explained several topics in the section of mathematics, and it
is the beginning of the systematic mathematics in India.

For its text and English translation, see Shukla and Sarma (1976).
There is also a Japanese translation by Yano in Yano (1980).

The contents of the Aryabhasiya

(from Shukla and Sarma (1976), pp.vii-Xii):



I. 1HE GITIKA SECTION

Invocation and Introduction

Method of writing numbers

Revolution-numbers and zero point

Kalpa, Manu and beginning of Kali

Planetary orbits, Earth’s rotation

Linear diameters

Obliquity of the ecliptic and inclinations of orbits
Ascending nodes and Apogees

Manda and Sighra epicycles

Rsine-differences

Aim of the Dasagitika-Satra

II. GANITA OR MATHEMATICS

Invocation and Introduction
The first ten notational places
Square and squaring

Cube and cubing

Square root

Cube root

Area of a triangle

Volume of right pyramids
Area of a circle

Volume of a sphere

Area of a trapezium

Area of plane figures

Chord of one-sixth circle
Circumference-diameter ratio
Computation of Rsine-table geometrically

Derivation of Rsine-differences

Construction of circle etc. and testing of level and verti-
cality

Radius of the shadow-sphere
Gnomonic shadow due to a lamp-post

Tip of the gnomonic shadow from the lamp-post and height
of the latter

Theorems on square of bypotenuse and on square of half-
chord

Arrows of intercepted arcs of intersecting circles

Sum (or partial sum) of a series in A.P.

Number of terms in a series in A.P.

Sum of the series 14+ (142)-+(1+2-+3)+-... to n terms

Sum of the series Zn® and Zn®

Product of factors from their sum and squoares
Quantities from their difference and product

Interest on principal

Rule of three

Simplification of the quotients of fractions

Reduction of two fractions to a common denominator
Method of inversion

Unknown quantities from sums of all but one
Unknown quantities from equal sums

Meeting of two moving bodies

Pulveriser
Residual pulveriser
Non-residual pulveriser

1II. KALAKRIYA OR THE RECKONING OF TIME
Time divisions and circular divisions
Conjunctions of two planets in a yuga
Vyatipatas in a yuga
Anomalistic and synodic revolutions
Jovian years in a yuga
Solar years and lunar, civil and sidereal days
Intercalary months and omitted lunar days
Days of men, manes and gods, and of Brahmza
Utsarpini, Apasarpini, Susama and Dugsama
Date of Aryabhata I
Beginning of the Yuga, year, month and day
Equality of the linear motion of the planets
Consequence of equal linear motion of the planets
Non-equality of the linear measures of the circular
divisions
Relative positions of asterisms and planets
Lords of the hours and days
Motion of the planets explained through eccentric circles
Motion of planets explained through epicycles
Motion of epicycles
Addition and subtraction of Mandaphala and Sighraphala

A special pre-correction for the superior planets

Procedure of Mandaphala and Sighraphala corrections for
the superior planets

Mandaphala and Sighraphala corrections for inferior

planets

Distance and velocity of a planet



IV. GOLA OR THE CELESTIAL SPHERE
1. Bhagola

Position of the ecliptic

Motion of the_nodes, the Sun and the Earth’s shadow
Motion of the Moon and the planets

Visibility of the planets

Bright and dark sides of the Earth and the planets
Situation of the Earth, its constitution and shape
Earth compared with the kadamba flower

Increase and decrease in the size of the Earth

Apparent motion of the stars due to the Earth’s rotation
Description of the Meru mountain

The Meru and the Badavamukha
The four cardinal cities
Positions of Lanka and Ujjayini

Visible and invisible portions of the Bhagola
Motion of the Bhagola from the north and south poles

Visibility of the Sun to the gods, manes and men

2. Khagola

The prime vertical, meridian and horizon
Equatorial horizon

The observer in the Khagola

The observer’s Drimandala and Drkksepavrtta

The Automatic sphere (Gola-yantra)

3. Spherical astronomy
(1. Diurnal motion)
The latitude-triangle
Radius of the day-circle

Right ascensions of Aries, Taurus and Geminj

Earthsine

Rising of the four quadrants and of the individual signs
Rsine of the altitude

Sankvagra

Sun’s dgra

Rsine of the Sun’s prime vertical altitude

Sun’s greatest gnomon and the shadow thereof

(2. Parallax in a solar eclipse)
Rsine of the zenith distance of the central ecliptic point
Drggatijyas of the Sun and the Moon

Parallax of the Sun and the Moon
(3. The visibility corrections)

Visibility correction Aksadrkkarma fo.r the Moon

Visibility correction Ayanadrkkarma of the Moon

(4. Eclipses of the Moon and the Sun)

Constitution of the Moon, Sun, Earth and Shadow,

and the eclipsers of the Sun and the Moon
Occurrence of an eclipse
Length of the shadow
Earth’s shadow at the Moon’s distance
Half-duration of a lunar eclipse
Half-duration of the totality of the lunar eclipse
The part of the Moon not eclipsed
Measure of the eclipse at the given time
Aksavalana
Ayanavalana for the first contact
Colour of the Moon during eclipse
When the Sun’s eclipse is not to be predicted
Planets determined from observation

Acknowledgement to Brahma

Conclusion



Rotation of the Earth in the Aryabhariya:

(The quotations from the Aryabhasiya are from Shukla and Sarma (1976).)
Aryabhariya (1. 3-4):

REVOLUTION.NUMBERS AND ZERO POINT

g ©79, iy

wafifigggy, 3 oz o )
gft gRas, ov f@-
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IR=T qiET, 39
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3.4. In a yuga, the eastward revolutions of the Sun are 43,20,000 ;
" of the Moon, 5,77,53,336 ; of the Earth,® 1,58,22,37,500 ; of
Saturn, 1,46,564 ; of Jupiter, 3,64,224 ; of Mars, 22,96,824 ;
of Mercury and Venus, the same as those of the Sun ; of the
Moon’s apogee, 4,88,219 ; of (the sighrocca of) Mercury,
1,79,37,020 ; of (the Sighrocca)of Venus, 70,22,388 ; of (the
sighroccas of ) the other plamets, the same as those of the
Sun ; of the moon’s ascending node in the opposite direction
(i.e., westward), 2,32,226.* These revolutions commenced at
the -beginning of the sign Aries om Wednesday at sunrise

at Lanka (when it was the commencement of the current yuga).

The ‘Moon’s apogee’ is that point of the Moon’s orbit which is at
the remotest distance from the Earth, and the ‘Moon’s ascending node’
is that point of the ecliptic where the Moon crosses it in its
northward motion.

The Sighroccas of Mercury and Venus are the imaginary bodies
which are supposed to revolve around the Earth with the heliocentric
mean angular velocities of Mercury and Venus, respectively, their
directions from the Earth being always the same as those of the mean

Go. .
C.D. Kr. Pa. Su. Jifs@er; Bh. Ni. Pa. (alt.), Ra. So. Sifeas.
These are the rotations of the Earth, eastward.

BowoN e

. 'These very revolutions, excepting those of the Earth, are stated
in MBbh,vii. 1-5; LBh, i. 9-14 ; and $iDVr, Grahaganita, i. 3-6.



Verses 3-4 ] REVOLUTIONS AND ZERO POINT ?

positions of Mercury and Venus from the Sun. It will thus mean that
the revolutions of Mars, the Sighrocca of Mercury, Jupiter, the Sighrocca
of Venus, and Saturn, given above, are equal to the revolutions of Mars,
Mercury, Jupiter, Venus and Saturn, respectively, round the Sun,

The following table gives the revolutions of the Sun, the Moon
and the planets along with their periods of one sidereal revolution.
The sidereal periods according to the Greek astronomer Ptolemy
(A.D. c. 100-c. 178) and the modern astronomers are also given for the
sake of comparison.

Table 2. Mean motion of the planets

Revolutions Sidereal period in
Planet in terms of days
4320000 :
years Aryabhata 1 Ptolemy? Moderns?®
Sun 43,20,000 365-25868 365-24666  365-25636
Moon 5,77,53,336 27-32167 27.32167 27-32166
Moon’s apogee 4,88,219 3231.98708 3231-61655 3232-37543
Moon’s asc. node 2,32,226 6794-74951 6796-45587 6793-39108
Mars 22,96,824 686-99974 686-94462 686.9797
Sighrocca of

Mercury 1,79,37,020 8796988 87:96935 879693
Jupiter 3,64,224 4332:27217 4330:96064  4332-5887

Sighrocca of p
Venus  70,22,388 224-69814 224.69890 224.7008
Saturn 1,46,564 10766:06465 10749.94640  10759-201

The epoch of the planetary motion mentioned in the text
marks the beginning of the current yuga and not the beginning

1. Taken from Bina Chatterjee, “The Khanda-khadyaka of
Brahmagupta, World Press, Calcutta, 1970, vol. I, Appendix VII,
p. 281.

2. Taken from H.N. Russell, Dugan and J.Q. Stewart, 4strono-
my, Part 1 : The Solar system, Revised edition, Ginn and Company,
Boston, Appendix. Also, see ibid., pp. 150, 159. The sidereal periods
of Moon’s apogee and ascending node are taken from P.C. Sengupta
and N.C, Lahiri’s introduction (p. xiv) to Babudji Misra’s edition of
Sripati’s Siddhanta-Sekhara.
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of the current Kalpa as was supposed by P.C. Sengupta. The current
Kalpa, according to Aryabhata I, started on Thursday 1,98,28,80,000
years or 7,24,26,41,32,500 days before the beginning of the current
yuga ; and 1,98,61,20,000 years or 7,25,44,75,70,625 days before the
beginning of the current Kaliyuga.! The current Kaliyuga began
on Friday, February 18, 3102 B.C., at sunrise at Lanka (a hypothetical
place on the equator where the meridian of Ujjain intersects it), which
synchronized with the beginning of the light half of the lunar (synodic)
month of Caitra.

One thing that deserves special notice is the statement of the
Earth’s rotations. Aryabhata I is, perhaps, the carliest astronomer in
India who advanced the theory of the Earth’s rotation and gave the
number of rotati ons that the Earth performs in a period of 43,20,000
years. The period of one sidereal rotation of the Earth according
of Aryabhata I is 23® 56™ 4%1. The corresponding modern value is
232 56 4%091.2 The accuracy of Aryabhata I's value is remarkable.

Of the other Indian astronomers who upheld the theory of the
Earth’s rotation, mention may be made of Prthudaka (A.D. 860) and
Makkibhatta (A.D. 1377). In the Skanda-purana (1. 1. 31.71), too, the

Earth is described as revolving like a bhramarika (spinning top, potter’s
wheel or whirlpool).

The commentators of the Aryabhatiya, who hold the opinion
that the Earth is stationary, think that Aryabhata I states the rotations of
the Earth because the asterisms, which revolve westward around the earth
by the force cf the provector wind, see that the Earth rotates eastward.

These commentators were indeed helpless because Aryabhata I's
theory of the Earth’s rotation received a severe blow at the hands
of Varahamihira (d. A.D. 587) and Brahmagupta (A.D. 628) whose

arguments against this theory could not be refuted by any Indian
astronomer,

It is noteworthy that the Greek astronomer Ptolemy, following
Aristotle (B.C. 384-322), believed that the Earth was stationary and
adduced arguments in support of his view,

1. Vide infra notes on verse 5.
2. See W.M. Smart, Text-Book on Spherical Astronomy,
Cambridge, 1940, p. 420.

(From Shukla and Sarma (1976), p.6 —8.)

Astronomical constants concerning the movement of heavenly bodies are given by their
revolution (or rotation) numbers (with respect to fixed stars) in a “yuga” (4320000 years).
rotation number of the Earth corresponds to the number of sidereal days in a yuga.

The



Aryabhariya (1. 6):

Verse 6 ] ORBITS AND EARTH’S ROTATION 13

PLANETARY ORBITS, EARTH'S ROTATION

qfggass s
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6. Reduce the Moon’s revolutions (in a yuga) to signs, multiplying
them by 12 (lit. using the fact that there are 12 signs in a circle
or revolution). Those signs mutiplied successively by 30, 60 and
10 yield degrees, minutes and yojanas, respectively. (These
yojanas give the length of the circumference of the sky). The
Earth rotates through (an angle of) one minute of arc in one
respiration (=4 sidereal seconds). The circumference of the
sky divided by the revolutions of a planet in a yuga gives (the
length of) the orbit on which the planet moves.? The orbit of
the asterisms divided by 60 gives the orbit of the Sun.®

Thus we have

Orbit of the sky=57753336 x 12X 30x 60X 10 yojanas
==12474720576000 yojanas
Orbit of the asterisms=173260008 yojanas

Orbit of the Sun=28876665 yojanas
Orbit of the Moon=216000 yojanas

; 132027
f Mars=15431291 j
Orbit of Mars=543129 287103 yojanas
Orbit of (Sighrocca of ) Mercury=695473§%%§g yojanas
Orbit of Jupiter=34250133 693 yojanas
1897

. i B 255221 .
Orbit of (Sighrocca of) Venus—l77642lmg- yojanas
Orbit of Saturn—=85114493 32?{1’ yojanas.

1. Br.Pr. Ud. ¥: ; all others ¥.
2. Cf Someévara : ugwrar ggafef: qgFadead: |

3. The same rule, excepting the rate of the Earth’s motion,
occurs in MBh, vii. 20, also,
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These orbits are hypothetical and are based on the following two
assumptions :

1. That all the planets have equal linear motion in their res-
pective orbits.!

2. That one minute of arc (1’) of the Moon’s orbit is equal to
10 yojanas in length.?

From the second assumption, the length of the Moon’s orbit
comes out to be 216000 yojanas. Maultiplying this by the Moon’s
revolution-number (viz. 57753336), we get 12474720576000 yojanas.
This is the distance described by the Moon in a yuga. From the first
assumption, this is also the distance described by any other planet in
a yuga. Hence
distance described by a planet in a yuga

Orbit of a planet== X
revolution-number of that planet

This is how the lengths of the orbits of the various planets stated above
have been obtained. :

In the case of the asterisms, it is assumed that their orbit is 60
times the orbit of the Sun. By saying that ‘‘the orbit of the asterisms
divided by 60 gives the orbit of the Sun’, Aryabhata I really means to
say that “the orbit of the asterisms is 60 times the orbit of the Sun.”

Indian astronomers, particularly the followers of Aryabhata I,
believe that the distance described by a planet in a yuga denotes the
circumference of the space, supposed to be spherical, which is illumined
by the Sun’s rays. This space, they call ‘the sky’ and its circumference
‘the orbit of the sky’. Bhaskara I says :

“(The outer boundary of) that much of the sky as the Sun’s rays
illumine on all sides is called the clrcumference or orbit of the
sky. Otherwise, the sky is beyond limit; it is impossible to
state its measure.””®

““For us the sky extends to as far as it is illumined by the rays
of the Sun. Beyond that, the sky is immeasurable.”*

See 4, iii, 12.
This is implied in the text under discussion.
See Bhaskara I's commentary on 4, i. 6, in Vol. IL

Ll T

See Bhaskara I’s commentary on 4, iii. 12, in Vol, IL
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According to the Indian astronomers, therefore,

Orbit of the sky

CIbit of & plasete Planet’s revolution-number

The statement of the FEarth’s rotation through 1° in one

respiration,? stated in the text, has been criticised by Brahmagupta,
who says :

“If the Earth moves (revolves) through one minute of arc in one
respiration, from where does it start its motion and where
does it go ? And, if it rotates (at the same place), why do tall
lofty objects not fall down 7"

The reading bharn (in place of bhuh) adopted by the commentators
is evidéntly incorrect. The correct reading is bhuh, which has been

mentioned by Brahmagupta (A.D. 628), Prthudaka (A.D. 860) and
Udayadivakara (A.D. 1073).

LINEAR DIAMETERS
-0 A=, G g
STy, shequar frg, & A |
YT-T&-T- Q-0
QT A-W-A-AIHE, TARTAE 1O 1|

7. 8000 ny make a yojana. The diameter of the Earth is 1050
yojanas ; of the Sun and the Moon, 4410 and 315 yojanas,
(respectively) ;* of Meru, 1 yojana ; of Venus, Jupiter, Mercury,
Saturn and Mars (at the Moon’s mean distance), one-fifth,
one-tenth, one-fifteenth, one-twentieth, and one-twentyfifth,
(respectively), of the Moon’s diameter.> The years (used in this
work) are solar years.

1. 1 respiration==4 seconds of time.
2. wmadfa wat ydfe afg Fat a9 saeamg
qiIgdageaiaasg qafa ag=gan e
BrSpSi, xi. 17.
See his commentary on LBh, i. 32-33.
The same values are given in MBh, v. 4 ; LBh,iv. 4,
Cf. MBh, vi. 56.

(From Shukla and Sarma (1976), pp.13-14.) (From Shukla and Sarma (1976), pp.13-15.)



The rotating earth theory is explained in the following verses.
(Aryabhasiya (1V. 9-10)).

APPARENT MOTION OF THE STARS DUE TO
THE EARTH'S ROTATION

AgMIRAltes: azaead AW a8q |
AN Wift agq anufzEamia agrag e |

sggranataies faed gagq argan f@ea |
AFEAAUETAA AFC a8 qAf U 9o 1l

9. Justas amanin a boat moving forward sees the statiomary
objects (on either side of the river) as moving backward, just
so are the stationary stars seen by people at Lanka (on the
equator), as moving exactly towards the west.

10. (It so appears as if) the entire structure of the asterisms
together with the planets were moving exactly towards the
west of Lanka, being constantly driven by the provector wind,
to cause their rising and setting.

The theory of the Earth’s rotation underlying the above passage
was against the view generally held by the people and was severely
criticised by Varahamihira (4. A.D. 587) and Brahmagupta (628 A.D.)
The followers of Aryabhata I, who were unable to refute the criticism
against the theory, fell in line with Varzhamihira and others of his
ilk and have misinterpreted the above verses as conveying the contrary
sense. See how the commentator Some§vara interprets the above
verses :

“Just as one seated on a boat sees the stationary objects
such as trees etc. standing on the two sides of the river or
" sea moving in the contrary direction, in the same way those
situated on the Earth rotating eastwards see the stationary
stars located in the sky as moving in the opposite direction
towards the west. Likewise, those living in Lank@ see the
stars as moving towards the west. Lanka is only a token,
others also see in the same way. So, it isthe Earth that
moves towards the east; the stars are fixed. And that part
of the circle of the asterisms which lies (at the moment)
towards the east appears to rise, that which lies in the middle
of the sky appears to culminate, and that which lies towards
the west appears to set. Otherwise, the rising and setting of
the stars is impossible.” After saying all this he adds :

“This is the false view. For, if the Earth had a motion, the
world would have been inundated by the oceans, the tops of
the trees and castles would have disappeared, having been
blown away by the storm caused by the velocity of the Earth,
and the birds etc. flying in the sky would never have returned
to their nests. So, there exists not a single trace of the Earth’s
motion. Hence this stanza must be interpreted in another
way (as follows) ¢

“Just as a man seated on a boat moving forward sees the
stationary objects moving in the contrary direction, in the
same way the asterisms driven by the provector wind, due to
their own motion, see the objects at Lainka as moving in the
opposite direction, i e., they see the stationary Earth lying
below as if it were rotating. Apparently also the asterisms
rise in the east and move towards the west.”

Prthudaka (860 A.D.) in his commentary on the Brahma-sphuta-
siddhanta, supports Aryabhata I's theory of the Earth’s rotation. The
followers of Aryabhata I, who misinterpreted Aryabhata I, were,
according to him, afraid of the public opinion which was against the
motion of the Earth.

It is noteworthy that the Greek astronomor Ptolemy (e¢. A.D.
100-178) holds that the Earth is stationary and does not move in
any way locally.?

1, See The Almagest, translated by R.C. Taliaferro, pp. 10-12.

(From Shukla and Sarma (1976), pp.119-120.)



Sine table in the Aryabhasiya (11.12):

Verse 12 ] SINE-DIFFERENCES 29

RSINE-DIFFERENCES
wfg wiw wfE afe ofy afe
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12. 225, 224, 222, 219, 215, 210, 205, 199, 191, 183, 174, 164,
154, 143, 131, 119, 106, 93, 79, 65, 51, 37, 22, and 7—
these are the Rsine.differences (at intervals of 225 minutes
of arc) in terms of minutes of arc.

The following table gives the Rsines and the Rsine-differences
at intervals of 225" (or 3° 45) according to Aryabhata I and the
corresponding modern values correct to three decimal places.

Table 10. Rsines and Rsine.differences at the intervals
of 225’ or 3°45°

Aryabhata I's values Modern Values

first used in India.

Arc  Rsine  Rsine-differences Rsine Rsine-differences
225’ 225" 225’ 224'.856 224’ 856
450" 449’ 224" 448'.749 223'.893
675" 671" 222’ 670'.720 221971
900" 890" 219" 889'.820 219".100
125" 1105" 215" 1105'.109 215'.289
1350" 1315 210 1315'.666 210".557
1575 1520 205" 1520°.589 204'.923
1800 1719 199" 1719".000 198'.411
2025 1910 191 1910°.050 191°.050
2250" 2093.' 183’ 2092922 182°.872

1. D.G. Su. fFear ; others fireq.

2. A g#m w5 5 9; Bh. $a. gew ufs 6w ; E. g wgr e,
Pa. Ra, Su. g% 91g1 & ; So. f&u aafs f5y fF,

3. Bh. %¥; others T.

(From Shukla and Sarma (1976), pp.29-30.)
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Aryabhata I's values
Arc  Rsine Rsine-differences

2475" 2267 174
2700° 2431 164’
2925' 2585 154
3150" 2728’ 143’
3375 2859' 131
3600" 2978’ 119’
3825' 3084’ 106’
4050 3177 93’
4275 3256’ 79’
4500° 3321 65'
4725 3372 51’
4950" 3409 37
5175' 3431 22'
5400° 3438 7

Modern Values
Rsine  Rsine-differences

2266'.831 173°.909
2431".033 164'.202
2584’ 825 153'.792
2727'.549 142".724
2858'.592 131.043
2977'.395 118,803
3083'.448 106".053
3176'.298 92'.850
32557.546 79'.248
3320'.853 65,307
3371.940 51'.087
3408'.588 36".648
3430".639 22'.051
3438°.000 7'.361

The twenty-four Rsines given in the Sarya-siddhanta® are exactly
the same as those in column 2 above. P.C. Sengupta is of the opinion
that the author of the Sarya-siddhanta has based his Rsines on the

Rsine-differences given by Aryabhata 1.2

The 16th Rsine, viz., 2978, was modified by Aryabhata II®
(c. A.D. 950) who replaced it by the better value 2977. The table of
Rsines given by Bhaskara 1I* (A.D. 1150) is the same as that of

Aryabhata II (c, A.D. 950).

Astronomer Sumati of Nepal, who lived anterior to Aryabhata IT
(c. A.D. 950), gives® the values of the 4th and 16th Rsines as 889" and
2977" respectively instead of 890’ and 2778’ given by Aryabhata L
Sumati’s table contains ninety Rsines at the intervals of one degree.

1. i 17-22.

2. See P. C. Sengupta’s introduction (p. xix) to E. Burgess’

Translation of the Sury thai
3. See MSi, iii. 4-6.
4. See SiSi, Grahaganita, ii. 3-6.

5. Both in Sumati-mahatantra and Sumati-karana,

The relationship between arc and chord was used in ancient

Greece for astronomical calculation, but the relationship

between arc and half-chord (which corresponds to sine) was

trigonometry.

This is the direct origin of the modern



Varahamihira (6" century, probably expired in 587)

Vrahamihira is an astronomer and astrologer of the 6™ century
CE. He resided in Avanti, i.e. Ujjain in modern Madhya Pradesh.

He composed an astronomical work Parica-siddhantika, and
several astrological works. Among his astrological works,
the Brhaj-jataka (on the hora branch of astrology, or
horoscopic astrology) and the Brhat-sam:hita (on the samhita
branch of astrology, or the astrology concerning several
natural phenomena) are famous and important. Especially,
the Brhat-sarthit@ is an encyclopaedic work, and is an
Important source material of Indian science, technology, and

culture at his time.

The Pafica-siddhantika is a compilation of five earlier astronomical
works, namely, the Paitamaha-siddhanta, the Vasistha-siddhanta, the
Paulisa-siddhanta, the Romaka-siddhanta, and the Saura-siddhanta.
The Paitamaha-siddhanta is a remnant of Vedanga astronomy after the
introduction of Greek horoscopy. The Paulisa-, Romaka-, and
Saura-siddhanta are the texts after the introduction of Greek
astronomy, and the Saura-siddhanta (also called Sirya-siddhanta) is,
according to Varahamihira’s own word, more accurate than other
works. (This Sarya-siddhanta should not be confused with the famous
modern Sarya-siddhanta, which was composed in ca. 10" — 11" century
CE.) This Pafica-siddhantika of Varahamihira gives very important
information of the early history of Hindu astronomy.



Brahmagupta (b.598 CE)

Brahmagupta is an astronomer who was born in 598 CE.
He probably lived at Bhillamala (modern Bhinmal in the
southwest of Rajasthan)

Brahmagupta composed two works, namely, the
Brahma-sphuza-siddhanta (628 CE) (Precise treatise of the
Brahma school), which is a basic text of the Brahma school
which was also followed by Bhaskara II, and the
Khanda-khadyaka (665 CE) (“Candied sugar”).
Brahmagupta criticized Aryabhata (b.476 CE) in his
Brahma-sphuga-siddhanta, and Brahmagupta himself was
criticized by Vatesvara (b.880 CE) who followed the Arya
school which was founded by Aryabhata. Brahmagupta
later accepted the system of Ardharatrika school, another
school founded by Aryabhata, in his Khanda-khadyaka.
Brahmagupta was contemporary with another Indian
astronomer Bhaskara I, but it is not known whether they

knew each other.



The Brahma-sphura-siddhanta has some chapters of
mathematics.
Contents of two mathematical chapters of the

Brahma-sphura-siddhanta:

BRAHMEGUPTA.
CHAPTER XI1I. ARITHMETIC (Ganita.)
Sect. I. AlGOTIENM | FA%HET o8 AR a77

ESect LT NVEIXTUTC s s i s - AR SRS 0.8 7
SectsTIL " Brogression: .5 @ iad tar . Bits, 296

Sect. IV. Plane Figurc ., .4 .=+ .l . 805
Sect. V. TR CAVATIONS L e A e 2 EE 5 310

It VAl S S taACIS Tori ) Suby e, o ot ST e B S ] 4,
Sect. VII. Saw S RRRE e SN 1
Sects VIT I NMounds of: Grain =& " Faiis, - - 816
Sect. IX. Mecasure by Shadow . . . o . . 3817
Sect. X MSupplément: -t USRS S0 5319

CHAPTER XVIII. ALGEBRA (Cultaca.)

Sect. 1. PUlVenzer i 75 o s e e Ao e e i 4825
Sect.oTT 2 Algonthmey: =i gu e i C. 0 830
Sect. III. Simple Equation . . . . . . . 344
Sect. IV. Quadratic Equation . . . . . . 846
Sect. V.  Lquation of several unknown : . . 348
Sect. VI. Equationinvolving a factum . . . 361

Sect. VII. Square affected by coefficient . . . 363
et I RroDlems = thii s s savmin s e 8978

(From Colebrooke (1817).)

Brahmagupta mentioned the basic calculations including “zero” as
follows. Besides the Indisn numerals including symbol of “zero”, the
calculations including “zero” are also great significance of Indian
mathematics.



SECTION II

ALGORITHM.

51. RurLk for addition of affirmative and negative quantities and cipher:
§19. The sum of two affirmative quantitics is affirmative; of two negative
is negative; of an affirmative and a negative is their difference; or, if they
be equal, nought. The sum of ciplier and negative is negative; of affirma-
tive and nought is positive; of two ciphers is cipher. * :

82—33. Rule for subtraction: §20—21. The less is to be taken from
the greater, positive from positive; negative from negative.  When the
greater, however, is subtracted from the less, the difference is reversed.
Negative, taken from cipher, becomes positive; and affirmative, becomes ne-
gative. Negative, less cipher, is negative; positive, is positive; cipher;
nought. When affirmative is to be subtracted from negative, and negative
from affirmative, they must be thrown together. i

34. Rule for multiplication: § 22. The product of a negative quantity
and an affirmative is negative; of two negative, is positive; of two affirma-
tive, is affirmative. The product of cipher and negative, or of cipher.and
affirmative, is nought; of two ciphers, is cipher.

85—86. Rule for division: § 23—24. Positive, divided by positive, or
negative by negative, is affirmative.  Cipher, divided by cipher, is nought;
Positive, divided by negative, is negative. Negative, divided by affirmative,

* Shal-triniat-paricarman. Thirty-six operatioos or modes of process. See Arithm. §1. V-
gan. § 3. :

\

XX 2
340 BRAIMEGUDPTA. Cuarrer XVIIIL

is negative. Positive, or negative, divided by cipher, is a fraction with that
for denominator:* or cipher divided by negative or aflirmative.

[36 Concluded.] Rule for involution and evolution: § 24. The squarc
of negative or aflirmative is positive; of cipher, is cipher. The root of a
squarc is such as was that from which it was [raised].?

v Tach-ck'héda, having that for denominator : having, in this instance, cipher for denominator,

to a finite.quantity for numerator. See V%j.-gan. § 16.-
- * Isin like manner expressed by a fraction having a finile denominator to a cipher for nume-

rator. $
3 The root is to be taken either negative or affirmative, as best answers for the further operations.
: Cox.

(From Colebrooke (1817), pp.339-140.)



Bhaskara 11 (b.1114 CE)

Bhaskara 1l is an astronomer who was born in 1114 CE. The
number “II” is added by modern historians only for convenience’ sake
in order to differentiate from his namesake (Bhaskara 1) of the 7™
century. Bhaskara Il probably lived in Vijjadavida (possibly present
Bijapur in the north of Karnataka). His father was Mahesvara who
was also an astronomer.

Bhaskara Il composed the Siddhanta-siromani (1150 CE) with his
auto-commentary, the Karapa-kutzhala (1183 CE), and the
Sisyadhi-vrddhida-vivarapa (Commentary on the
Sisyadhi-vrddhida-tantra of Lalla (ca. 8" century CE)).

The Siddhanta-siromani (1150 CE), which was written at the age of
36 with his own commentary, is a comprehensive treatise of
mathematics and astronomy. It consists of 4 parts as follows.

(1)Lilavatr on arithmetical operations [Its English translation is
included in Colebrooke, H.T. (1817). Its Japanese translation by
Hayashi and Yano is included in Yano (1980).],

(2) Brjaganita on algebraic operations [Its English translation is
included in Colebrooke, H.T. (1817). For its Japanese translation,
see Hayashi (2016).],

(3) Graha-ganita-adhyaya (= Grahaganitadhyaya) on the calculation of
the position of planets [For its English translation, see
Arkasomayaji, D. (1980/2000).], and

(4)Gola-adhyaya (= Goladhyaya) on spherics [For its English
translation, see Sastri and Wilkinson (1861).].

The first two parts on mathematics are sometimes treated as
independent works. In the last two parts, the word “adhyaya” stands
for “chapter”.



Contents of the Lilavatr and Bzjaganita:

BHASCARA.
" ARITHMETIC (Lildvati.)
" Cnarrer L - Introduction. Axioms.  Weights and Measures . . 1
Cuaprer II. - Sect. I.  Invocation. Numeration . . . 4

Sect. II.  Eight Operations of Arithmetic: Addmon, &c. 5
Sect. IT1. Fractlons ot R . o . 13

AUDEENIE Oiphicr . ... AaEER | . D Eg
Cuarrer III.  Miscellancous.
Sect. I InyerSion,:, oo Sggeaiie LU 21
Sect. IT. " Supposition . . .. . . . . . 28
Sect. III. Concurrence . : . . . . . . . 26
Sect. IV. Problem concerning Squares . . . a7
Sece. V. - Assimilation .7 5 s el 0 29
Sect. VI. Ruleof Proportion . . . . . . 33
Cuarrer IV, Mixture. © : : :
Sect. . ciInterest i v 2 e iRk at, I raeneat 39
Sect. II. Fractions . % . . . . .. 4 42
Sect. III. Purchascand Sale . . . . . . . 43
Sect. IV. AProblem . . .. , .,. . . . 45
‘Sect. V. A]lxgatlon R R 46
Sect. VI. Permutation and Comlnuatxon SRS 49
Cuaprer V. Progression.
Sect. I.  Arithmetical’.” . *. . .. . . . 51
Sect. II. Geometncnl A O S SRR 55
CuarteER V1. Plane Figure . ", D i 58
Cuarrer VII. E\cavatlons an(l Contem of' %hds LA Al 97
Cuarren VIIL - Stacks 't ‘. . 7. 58 A0 8P SSe e SBIREENTE 100
Cuarter IX. Saw '. g TR PRt G SR e R (|
CuaPpTER X. Mound'of Gmm BRRORES: e S oSN 0
Cuarter XI. ShadowofaGnomon . . . . . . . . . . 106
Cuarrer XII. ° Pulverizer ( Cut’l'aca) Sace SR RIS e o O 1D
Cuaprer XIII. Combimation . . . . . ./. . . . . . . 128

ALGEBRA (Vija-gaita)

Cuarter I.  Sect. I. Invocation, &c. . . . 129
Sect. IT. Algorithm of Ncgqtucan(l Aﬂirmatue

Quantities . . . . . L. . . 183

Sect. IIT. ———— of Cipher . . . L4+ 2196;

Sect. IV. ———— of Unknown Qu'mtxty . 3189

Sect. V. - ofiSitrds® %L A. . . | . AHH5

Guarrer 1. Pulverizer. . . . . -c#57% JALter, Lok 056

Cunaprer III.  Affected Square. Sect. I. . . . . . . . . 170

Sect. IT. CyclicMethod . . . . . . . . 175

; Sect. II1. Miscellaneous . . . . . . . . 179

Cuaprer IV.  Simple Equation . . e R |

Cuarrer V. Quadratic, &c. Equanons SRR e e, e w207

Cuarren VI -Multiliteral Equations . . . . . . . . . .- 227

Cuarrer VII.  Varieties of Quadratics . .- 245

Cuarrer VIII.  Equation involvinga Factum of Unknown Quantmes 268

Cuarrer IX. COnCRISIDIMN IR PR £ e o 3 e 275

(From Colebrooke (1817).)



In the Bijaganita:, indeterminate equations, multiple variable
equations, equations of higher degree etc. are systematically explained.
For example:

Exa.mr\fes f Wra‘lic indelerminate equation given by Bhaskara II

R 110, X=XHASDEAZEHEEKDEIE
(FF R~ o aEAF, BG=e' — v #'=%,)
1) 8x*4+1=y% (BGT74) 9) 6x%+75=y* (BGS80)
2) 11lx*+1=y2 (BGT74) 10)  6x24+300=y> (BG80)
3) 67x*+1=y*> (BG76) 11) 32x%+1=y* (BGS83)
4) 6lx*+1=y%> (BG76) 12) 9x24+52=y2 (BGS85)
5) 13x2—1=y%* (BGT79) 13)  4x%+33=y* (BGS85)
6) 8x?—1=y% (BG79) 14) 13x2—13=y%* (BGS86)
7) 6x*+3=y2 (BG80) 15) 13x2+13=y%> (BG86)
8) 6x2+12=y% (BG30) 16) —5x%+21=y%> (BG87)

Multiple variable equalions of degree fwo and more explained by Bhaskara L

R T.1. R=ZXHSHhRAUEEAZ=-XRULDSEFERDIM4T
(FE R RGN BIEF, BG=fv'— Y v 4= &)

1) ax®+bx+c=u? (BG151)

2)  ax*+bx*=u* (BGI154)

3)  ax®+bx=u® (BGI154)

4) ax*+bx+c=a’y*+b'y+c¢ (BG157)

5) ax*+by*+te=u? (BG159)

6) a*x*+bxy+cy*=u® (BG162)

7) xtyta=s?, x—y+a=t?, B*+y*+b=u?, x2—y*+c=v? (BG166)

8) ax+b=u* (BG169)

9) ax+b=u® (BG169)

10) y=(ax*+c)/b (BG174,176,177,178)

11) y=(x*+b)/a (BG174)

12)  axy=bx+cy+d (BGI185)

Examples of equation of higher degree gven by Bhaskara IL

R 112 XN=XASHBBIHT3ERFIER
(G R RO 2IEF. BG=e' — v "= %)
1) x*+y*+z24u?=x3+y*+2%+u®  (BG106)
2) x*+y*=uc, x3+yi=02 (BG109)
3) x*+12x=6x2+35 (BG122)
4) x*—2(x%*+200x)=10*—1 (BGI123)
5) (x+y)2+(x+y)3=2(x*+y%) (BGI153)
6) 5x*—100x%=u> (BGI155)
7) x—y=u?, x*+y?=v3 (BG156)
8) x+y*=u?, x+y=0 (BGI161)
9) 3x+1=u?, 3ui+l1=02 (BG171)
10) y=(x*-6)/5 (BG179)
11) 20(x+y+z+u)=xyzu (BG183)

(From Hayashi (1993), p.253.)



An example from the Bijaganita:

132. Example: The square-root of half the number of ‘a swarm of bees
is gone to a shrub of jasmin; and so ar¢ cight-ninths of /the whole swarm:
a female is buzzing to one remaining male, that is humming within a lotus,

in which lie is confined, having been allured to it by its fragrance at night.
‘Say, lovely woman; the number of bees.! o
Put the-number of the swarm of bees ya v 2. The square-root of half this
isya 1. Eight-ninths of the whole swarm are yav 4. Thesum of the square-
root and fraction; added to the pair of bees specified, is equal to the amount
of the swarm, namely ga v 2. Reducing the two sides of the cquation to a
common denomination, and dropping the denominator, the equation is
yarv 18 ya0 ru O and, sultraction being made, the two sides are
yaw 16 ya9 ru 18 2 S
yav?2 ya9 ru O Multiplying both these by cight, and adding the
yav0 yaO rul8 -
number eighty-one, and extracting both roots, the statement of them for an

cquation is ya 4 7Tu O Whence the value yédovat-téeat comes out 6. By
ya0 ru 1S '

substituting the square of this, the number of the swarm of bees is found 72.

* This example is repeated from the Lildcati, § 68.

(From Colebrooke (1817), pp.211-212.)

The following is an exposition by Hayashi (2009).

E61=L 71: A flock of bees.
z = number of the bees.
Statement of problem. /z/2+ 8- (z/9) + 2 = z.

Solution. Let z = 2s? (= yava 2). Then, \/z/2 = s, 8- (z/9) = (16/9)s?%, and
s+ (16/9)s® + 2 = 2s. Reduce all terms to a common denominator and eliminate
the denominators: 18s% = 16s% + 9s + 18. By the equal subtraction, 2s? — 9s = 18.
Multiply both sides by 8 and add 92 to them: 16s2 — 72s + 81 = 225. Take the
square-roots of both sides: 4s—9 = 15. Hence follows s = 6. Raised by this, z = 72.

In the L, this problem is given as an example for the algorithm of the ‘multiplier
operation’ (L 65-66) and, in order to apply that algorithm, the statement is rewritten

as (1/2)v/z/2 + (8/9)(x/2) +1 = z/2 in the prose part of L 71.

(From Hayashi (2009), p.139.)



Contents of the Sarya-siddhanta:

The anonymous Sirya-siddhanta (ca.10™ or 11" century) is a very
popular Sanskrit astronomical text belonging to the Saura school of
Hindu astronomy. There are two English translations of this text
(Sastri and Wilkinson (1861), and Burgess (1860).).

The contents of the Sirya-siddhanta:.

CrarTER I.—Called MADTuYA-0ATI which treats of the Rules
for finding the mean places of the planets,

CarTER JdI.-—Called SPUTA-GATI Which treats of the Rules
for finding the true places of the planets,

CuapTER III.—Called the TRirrAs’~a, which treats of the
Rules for resolving the questions on time, the position of
places, and directions,

Craarrer IV.—On the Eclipses of the Moon,

CaarTER V.—On $he Eclipses of the Sun,

CriarTER VI.—On tho projection of Solar and Lunar Eclipses,

Crarrer VIL—On the conjunction of the planets,

Cuarrer VIII.—On the conjunction of the planets with the
stars,

CuarrER IX.—On the heliacal rising and setting of the planets
and stars,

CuarrEr X.—On the phases of the Moon and the position of
the Moon’s cusps,

Ciarrer XI.—Called PAr{puixfra, which treats of the Rules
for finding the time at which the declination of the Sun
and Moon become equal,

CuarrER XII.—On Cosmographical matters,

CuoarrEr XIII.—On the construction of the armillary sphere
and other astronomical instruments,

CizarTER XIV.—On kinds of time,

(From Sastri and Wilkinson (tr.): The Sirya Siddhanta, Calcutta, 1861)



(V1) Coexistent period of the Hindu astronomy
and Islamic astronomy

(The 13/14™ century ----- the 18/19™ century).

After the establishment of Islamic dynasties in North India, the
coexistent period of Hindu astronomy and Islamic astronomy (the
13/14™ century ~ the 18/19" century) began.

(Actually, the earliest Sanskrit work which mentions a kind of the
information of Islamic calendar is the Kalacakra-tantra (an esoteric
Buddhist work, probably composed in the 11" century), where the year
of Hijra is mentioned with two years’ error, which | shall mention in
the section of Tibetan astronomy.)

(a) Delhi Sultanate period (1206 ~ 1526 AD)
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(From Davis: An Historical Atlas of the Indian Peninsula, 1959, p.37.)



The first Sanskrit work in which Islamic astronomy is
explained in detail is the Yantra-raja (1370) of Mahendra Siiri,
which is the first Sanskrit work on the astrolabe. At this
time, some Sanskrit works on Hindu astronomical sciences
were also translated into Persian by the order of Firiiz Shah
(reign 1351 ~ 1388), a Sultan of the Tughlug dynasty. These
events mark the real beginning of the coexistent period of
Hindu and Islamic astronomy. For convenience’ sake, let us
divide this period into two subdivisions, namely the Delhi

Sultanate period and the Mughal Empire period.

The astrolabe is a very convenient astronomical instrument.

The Astrolabe



LU A |
VA

Spider b Alidade

ComFonents of the astrolabe

(For detail about introduction of the astrolabe into India, see Ohashi, Yukio: “Early History of the
Astrolabe in India”, Indian Journal of History of Science, 32(3), 1997, 199-295.)

During the Delhi Sultanate period, only one siddhanta
(fundamental treatise of astronomy) was produced. It is the
Sundara-siddhanta (also called Siddhanta-sundara) (1503 CE)
of Jaanaraja.

Some interesting karamas (handy practical works of
astronomy) were produced in this period. One is the
Karapa-kautuka (1496 CE) of Kesava. Kesava’s son Ganesa
(b. 1507 CE) was also a great astronomer, and his

Graha-laghava (1520 CE) is a quite popular karana.



There is also a popular Sanskrit astronomical table

Makaranda-sarant (1478 CE) of Makaranda, which is based

on the Sirya-siddhanta.

(b) Mughal Empire period (1526 ~ 1858 AD) @
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Notes.—This map gives a rough idea of the distribution of the various political authorities in
1705. The imperial troops of Delhi were holding many important strongholds in the Deccan ;
but the balance of power had tilted in favour of the Marathas. Their forces were reorganized and

their power made strong by Rajaram and ‘Tarabai, and they had brought the Mogul provinces of
the Deccan under their overlordship.

(From Kini and Rao: Oxford Pictorial Atlas of Indian History, 1967, p.32.)



Some new siddhantas were composed during the Mughal
Empire period. Nityananda wrote the Siddhanta-sindhu
(1628 CE) (I have not seen this text.), and the Siddhanta-raja
(1639 AD) under the reign of Emperor Shah Jahan (reign
1628~1658). At the same time, Farid ad-Din Mas‘ad ibn
Ibrahim Dihlawi, a court astronomer of Shah Jahan,
composed the Zij-i Shah Jahani (Astronomical table dedicated
to Emperor Shah Jahan)(1629 CE) in Persian.

Muni$vara (b.1603) wrote the Siddhanta-sarva-bhauma in
1646 CE.

Kamalakara wrote the Siddhanta-tattva-viveka in 1658 CE,

which basically follows the Sirya-siddhanta.

Obervatories of Sawai Jai Singh (18™ century)

In the first half of the 18" century, five traditional
astronomical observatories, among which four still exist, were
built by Sawai Jai Singh (or Savai Jaya Sirmha in literal
transcription of Nagari script) (reign 1699 ~ 1743), a

maharaja who constructed the city of Jaipur.



At his court, some astronomical works in Sanskrit and
Persian were composed, for example, the Zi-i jadid-i
Muhkammad Shaht (New astronomical table dedicated to
Emperor Muhammad Shah) (1728) in Persian. And also, at
his court, Jagannatha translated at-Tusi’s Arabic version of
Ptolemy’s Almagest into Sanskrit as the Samrat-siddhanta, and
at-Tust’s Arabic version of Euclid’s Elements into Sanskrit as

the Rekha-ganita.

Jai Singh’s observatory is extant at Jaipur, Delhi, Banaras,
and Ujjain. His observatory at Mathura is not extant.

Among them, the Jaipur observatory is the largest.

BT

An overview of the Jalpur observatory.



Samrat-yantra:

Among the several instruments in Jai Singh’s observatories, the most famous instrument is
probably the Samrat-yantra (“emperor instrument”). It is a kind of equatorial sundial. In the
figure, ¢ is the latitude of the observer, 6 is the sun’s declination, and h is the sun’s hour angle. In
the afternoon, the shadow of the gnomon (AB) is cast on the quadrant (EFGH), and its position (Y)
indicates time. The position (X) indicates the sun’s declination. In the forenoon, the shadow of
the gnomon (CD) is cast on the quadrant (JKLM).

Sun

North Pole
A

(Samrat-yantra)

(Samrag-yantra in Jaipur)



Sasthamsa-yantra

Under the each quadrant of the larger Samrat-yantra in the Jaipur observatory is constructed a
chamber in which the Sasthamsa-yantra (“sextant instrument”) is kept. The image of the sun (D
and D) through a pair of pinholes (A and A’) at its ceiling is cast on a pair of mural sextants (BC and
B’C’) at midday. The sun’s declination and zenith distance are obtained by this instrument. This

is probably the most precise instrument in Jai Singh’s observatories.

(Sasthamsa-yantra)



(Sasthamsa-yantra in Jaipur)

(Sasthamsa-yantra in Jaipur)



Misra-yantra in Delhi

The Misra-yantra is a unique instrument in the Delhi observatory, which is a combination of some
instruments. Its front side is used to observe a heavenly body’s declination four times a day. It

may not be so useful astronomically, but is certainly a beautiful art object. There are several other

interesting instruments in Jai Singh’s observatories.

(The Misra-yantra in Delhi, looking from northheast)



Development of mathematics and astronomy

In several regions:

Hindu traditional mathematics and astronomy further developed in
several regions of India, and the development in South India
(Telangana, Andhra Pradesh, Karnataka, Kerala and Tamil Nadu) is
significant.
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The Aryabhariya, was popular in Kerala and Tamil Nadu, while the
Sarya-siddhanta was popular in the Telugu speaking area (Telangana
and Andhra Pradesh).



Telugu speaking area (Telangana and Andhra Pradesh):

Already in 1825, John Warren pointed out in his Kala Sankalita that
the solar calendar of Tamil region is based on the Arya-siddhanta
(=Aryabhariya), and the luni-solar calendar of “Telingana” region is
based on the Sarya-siddhanta, while Muslims are using lunar calendar.
It is known that Mallikarjuna Sari, the author of the earliest extant
commentary of the Sirya-siddhanta, wrote the commentary both in
Sanskrit and Telugu. Therefore, the tradition of the Sirya-siddhanta
in Telugu speaking area is very important.

Kerala:

There were two major systems of Kerala astronomy.

One is the Parahita system, which is based on the Aryabhasiya (499
CE) of Aryabhata, and was started by Haridatta (ca.650 — 700) who
composed the Graha-cara-nibandhana. It is said that this Parahita
system was started in AD 683.

The other system is the Drk system started by Paramesvara (ca.1360
— 1455) who composed the Drg-ganita (1431) etc.

Paramesvara’s teacher Madhava (ca.1340 — 1425) was a great
mathematician and astronomer.  Paramesvara’s son’s disciples
Nilakantha Somayajin (1443 — ca.1543) and Jyesthadeva (ca.1500 —
1610), and Jyesthadeva’s disciple Acyuta Pisarati (ca.AD 1550 — 1621)
were also great astronomers.

Putumana Somayajin (ca.AD 1700 — 1760) and Sarkaravarman
(AD 1800 — 38) were also great astronomers.

Tamil Nadu:

Astronomy in Tamil Nadu is also closely connected with the
astronomy of Kerala. Before the introduction of modern astronomy,
Tamil calendars were solely based on the Vakya-karanra (ca.1300 AD)
and its auxiliary tables. This is a practical work for calendar making,
and is basically based on the Mahda-bhaskarzya of Bhaskara I, who was
a follower of the school of Aryabhata, and the Parahita system of
Haridatta.



(VI1) Modern period
(Coexistent period of the modern astronomy
and traditional astronomy).

(From the 18/19™ century onwards).

Hindu Classical Astronomy is still used in order to make
traditional regional calendars etc. There are several
traditional regional calendars in several different places. Let

us see some example of traditional calendars.

(Some examples of Hindi traditional calendars in Hindi language)



A page from a Hindi traditional calendar publidhed by Tej Kumar Press (Lucknow)
For the period 9 to 23 March 1993 (Vikrama Era 2049, Saka Era 1914)

Number of tithi at sunrise
Ending time of tithi
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Yoga Karana  Karana sunset Length of daytime
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(A page from a Hindi traditional calendar with my notes)

(Some examples of Bengali traditional calendars)
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