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Flip-flop is edge triggered. It transfers input data to Q on clock rising edge. 
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Static Sequencing by Flip-Flops 

One flip-flop is used on each cycle boundary. Tokens advance from one 

cycle to the next on rising edge. 
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Static Sequencing by Latches 

2-phase system. Phases may be separated by some non overlapping  time. 
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Static Sequencing by Pulsed Latches 
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Flip-flop sequencing can be viewed as a back-to-back latch pair 
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Sequencing Elements Timing Notations 

Logic Propagation Delay
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Latch / Flop Clock-to-  Propagation Delay

pcqt
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Latch / Flop Clock-to-  Contamination Delay

ccqt

Q

Logic Contamination Delay

cdt
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Latch is transparent when clock is high. In order for a 

data change to transfer to output, the latest change 

must occur at tsetup before latch turns to opaque. It must 

sustain thold after latch turns opaque. 
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When a latch turns transparent the data is transferred 

to output at min delay of tccq and max delay of tpcq. 

Data change at transparency is transferred to output at 

min delay of tcdq and max delay of tpdq . 
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Max-Delay Constraints 
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    c pcq pd pd c pcqT t t t t T t t      
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c pdq pd pdq pd

pd pd c pdq pdq

T t t t t

t t T t t

   

    

Notice that the non overlap between clocks doesn’t 

degrade performance.  

Flip-Flop can be realized by two latches connected 

back to back, yielding expression similar to Flip-Flop 

sequencing.   

 1 2
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overhead

2pd pd pd c pdqt t t T t   
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If the pulse width is wide enough the max delay is 

similar to two-phase latches, except that only one 

latch is in the critical path. 

setup:    pw c pdq pdt t T t t   

If the pulse width is narrower than the setup time, 

the data must be set up before the pulse falls. 
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 setup

sequencing overhead

 max ,pd c pdq pcq pwt T t t t t   
Consequently: 



Min-Delay Constraints 

Logic circuits cannot be too fast.  

Such malfunction is called race condition, hold time 

failure or min-delay failure.  

Otherwise the input data to next sequential circuit will 

change while it is still holding its current data. 
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Taking large enough non overlapping time will avoid 

min delay problems, but distributing two clocks and 

controlling non overlapping time is difficult and 

expensive. 

Latch-based systems are usually using single clock 

and its complement, making non overlapping time be 

zero. In that case min delay constraint for flip-flop and 

latches is the same. 
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Here is a paradox: The logic in latch-based system 

requires twice min-delay as in flip-flop. On the other 

hand flip-flop can be built by a pair of latches! 

The resolution follows from the fact that a flip-flop 

has an internal race condition, making its hold time 

longer than in latch.  
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Time Borrowing 

In flip-flop systems clock sharply delineates the cycles. 

Hence clock imposes hard edge. 

Latch systems are more flexible due to latch transparency. 

Data input of a latch must set up before falling edge. 
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Loops may borrow time internally but must complete 

within the cycle. 
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Clock Skew 

• Clock should theoretically arrive simultaneously to all 

sequential circuits. 

• Practically it arrives in different times. The differences 

are called clock skews. 

• Clock skew consists of the following components: 

– Systematic is the portion existing under nominal conditions. It 

can be minimized by appropriate design. 

– Random is caused by process variations like devices’ channel 

length, oxide thickness, threshold voltage, wire thickness, width 

and space. It can be measured on silicon and adjusted by delay 

components. 
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Clock skew worsen max and min delay constraints. Max 

delay constraint becomes shorter. Min delay constraint 

becomes longer. 
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In transparent latch system max delay constraints are 

not hooked to clock edge since it is assumed that 

transparency period is long enough. Hence clock skew 

doesn’t affect max delay constrained. 

1 2 hold non-overlap skew,cd cd ccqt t t t t t   

Min delay constraints are worsen however since they 

depend on the non overlap time, which may effectively 

be shortened by skew.  
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hold skewcd pw ccqt t t t t   

Min delay constrained in pulsed latch is increased since 

skew effectively increases hold time. 

It is also reducing time borrowing. 

 borrow setup skewpwt t t t  

Max delay constraint in pulsed latch is not affected if 

pulse is wide enough.  

 setup skew

sequencing overhead

 max ,pd c pdq pcq pwt T t t t t t    
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Latches and Flip-flops 
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Buffered input inverting 

latch. It is a tristate inverter. 

Both are fast dynamic latches. 
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In high leakage, the dynamic latches retain their output 

value only for a short period and in order to sustain it, 

latches must be static to avoid floating output. 
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Tristate feedback inverter 

sustains output voltage when 

clock is low (latch is opaque). 

Input was also be isolated. 

A noise spike at output may invert the latch output. 
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This is a robust non 

inverting latch addressing 

all deficiencies  

To reduced clock load and save two transistors, the 

tristate can be replaced by a weak inverter, called 

jamb latch. 
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Dynamic inverting flip-flop can be constructed by a pair 

of back-to-back dynamic latches.  

To reduce delay at the expense of noise sensitivity, 

either first or last inverters can be removed. 
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For very slow rise / fall time both latches will be 

simultaneously transparent, which will require to increase 

FF’s hold time. 

To sharpen clock edges local clock buffers can be used. 

The expense is more area and clock load (power).  

Non-overlapping clocks avoid simultaneous transparency. 

Making it large enough, large skew can also be tolerated. 

Large non-overlapping causes however large setup time 

(sequencing overhead). 
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Pulsed latch is built from conventional latch driven by 

a brief clock pulse, generated by a clock chopper.  
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Sequencing elements require a reset signal to enter a 

known initial state or startup. Asynchronous reset forces Q 

immediately, while synchronous reset waits for clock edge. 
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Asynchronous  settable and resettable flip-flop 

Set and reset must enter in both master and slave stages 
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Synchronous resettable flip-flop 

Reset affects Q only at clock rising  

Reset must be stable for setup and hold time 

around clock edge. 
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Enabling latches and flip-flops 
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Enabling is done on data change. The savings is mostly in 

suppressing the D generation, known to be unchanged. 

It doesn’t affect clock, but affects delay, adds area and 

power. 

43 
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Clock gating doesn’t affect delay but may add clock skew. 

The savings is on the CLK network and FFs. 

It significantly reduces power consumption since clock is not 

toggling on disabled element. AND gate is added to clock 

driver. 
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Static Sequencing Methodology 

• Flip-flops: Most popular in non aggressive deigns. 

– Simple and robust. 

– Setup and hold times are penalties. 

– No time borrowing across clock cycle (unless clock is shifted). 

• Pulsed Latches: Similar behavior to flip-flops. 

– Simpler than FF or transparent latches, less area and power. 

– Faster than FF. 

– Higher effective hold time, min-delay constraints more difficult. 
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• Transparent Latches: Use in high-end designs 

– Lower sequencing overhead, faster than FF. 

– Allows nearly half cycle time borrowing. 

– Complex clock design, sensitive to clock slew rate 
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Metastability in a latch 

D QA

B

D QA
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At transparency sample 

switch is closed and hold 

switch is open. 

When latch is opaque sample 

switch is open and hold switch is 

closed, and the two inverters are 

connected in a feedback loop. 
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metastable 
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Latch can enter into 

metastable state where 

voltages are consistent. 

It can remain so 

unbounded time! 
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Though the latch can stay metastable infinite time, the 

probability of remaining metastable drops off exponentially 

with time. 

Stable Stable 

Metastable 

Any noise or other disturbance will cause A and B node 

to switch into one of the stable states. 
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When A is near the metastable voltage Vm the cross-

coupled inverters behave like a linear amplifier with gain 

G. 

Inverter delay can be modeled by output resistance R 

and load capacitance C. 

G
 a t R

C

Small signal model 

of bistable element 

in metastability 
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To predict metastability behavior, let latch turn opaque

at 0. The voltage 0  at point  is 0 0 ,

where 0  is a small signal offset.
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The current throug  is charging ,

,

which solves to 0 exp 1 .

R C
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R dt
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   
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 
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If the node is defined to reach legal logic level

when ,  the time to reach this level is 

1 ln ln 0 .DQ

a t V

t RC G V a

 

         

 

Latch propagation delay may reach infinity

if 0 0,  which cannot happen in reality

because of noise. There's however no upper

bound for the time until output becomes valid.

a 
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 

To quickly recover from

metastability the term 

1  should be

sufficiently large.
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output becomes valid. The probability it will be

1
longer than  is exp .
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or simulations.
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stable data 

unstable data 
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Synchronizers and Metastability 

• Proper operation of synchronous circuits requires that 

data is stable around the clock rising edge. 

• Connection to an external input may not satisfy it. 

– Input devices like keyboard or mouse are blind to internal system. 

– Two systems of different clocks may feed each other. 

• What happens when data is changed in the aperture 

between setup and hold times? 

– Output may be unpredictable and the time for settling to a good 

logic level may be unbounded. This is called metastability. 
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• A synchronizer is a circuit that accept an input that can 

change arbitrarily and produce an output aligned to the 

synchronizer’s clock. 

• Because the input can change arbitrarily in the 

synchronizer’s aperture, there is non zero probability that 

synchronizer’s output is still metastable. 

• Synchronizers are built to make this probability 

sufficiently small. 

– It is measured by mean time between failures (MTBF), which 

can be set arbitrarily long. 
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And one here will almost certainly get resolved. 

A metastable state here will probably resolve itself to 

a valid level before it gets into my circuit.  


