
Multiplication and Shift Circuits

Dec 2012

Shmuel Wimer

Bar Ilan University, Engineering Faculty

Technion, EE Faculty

1

1 2 1 0

1 2 1 0

2 1 2 2 1 0

Multiplicand

Multiplier

Product ()

k k

k k

k k

a a a a a

x x x x x

p a x p p p p

 

 

 

Shift/Add Unsigned Multiplication Algorithms

Shift partial products

Dec 2012 2

How to obtain p=ax+y? Initialize p(0) to y2k

x0a2k will be multiplied by 2-k after k iterations. a is pre
multiplied by 2k to offset the effect of right shifts.

a is aligned to the left (MSB) k bits of a 2k-bit .

After k iteration the recurrence yields p(k)=ax+p(0)2-k=ax

In right shift multiplication the partial products xja, 0<=j<=k-1,
are recursively accumulated from top to bottom.

        1 012 2 with 0 and
j j kk

jp p x a p p p
     

shift right

add

Dec 2012 3

multiply by 2-1 by right-shift
add partial product aligned to left

multiply by 2-1 by right-shift
add partial product aligned to left

add partial product aligned to left
initialize

Dec 2012 4

In left shift multiplication the partial products xk-1-ja, 0<=j<=k-1,
are recursively accumulated from bottom to top.

       1 0
12 with 0 and

j j k
k jp p x a p p p


    

shift left

add

After k iteration the recurrence yields p(k)=ax+p(0)2k=ax

How to obtain p=ax+y? Initialize p(0) to y2-k

Dec 2012 5

multiply by 2 by left-shift
add partial product aligned to right

multiply by 2 by left-shift

add partial product aligned to right

multiply by 2 by left-shift

add partial product aligned to right

initialize

Dec 2012 6

Serial multiplication by add and shift entails k
additions and k shifts

Right shift is favored since the addition of partial
product takes place at the MSB k-bit part of the 2k
word. In left shift it takes place at the LSB k-bit part
and carry can propagate to MSB part.

Left shift algorithm requires therefore 2k bit adder,
while for right shift k bit suffice.

Dec 2012 7

Hardware of right-shift multipliers (without control)

Shift registers

Next bit of multiplier

Control requires
counter

Addition of a partial product
requires two clock cycles. One
for add and one for a shift.

Adder’s carry out
must be stored

Dec 2012 8

    1 12 2
j j k

jp p x a
   

Reducing addition of partial product to one cycle

2k-bit
Shift register

Next bit of
multiplier

At each clock cycle adder’s carry-out is written to MSB and
LSB is used for multiplication (via a MUX)

Dec 2012 9

Hardware of left-shift multipliers (without control)

Next bit of
multiplier

Shift registers

Register sharing of multiplier
and MSB of cumulative
partial product is possible.

Adder is 2k bits
rather than k bits
in right-shift.

Dec 2012 10

Multiplication of Signed Numbers

• Sign-magnitude representation requires only XOR-
ing of the operands’ sign bits.

• In 1’s-complement, a negative operand is
complemented and unsigned multiplication takes
place. The result is complemented by XOR-ing of
operands’ sign bits.

• For 2’s-complement, right-shift multiplication is
proper for negative multiplicand and positive
multiplier.

Dec 2012 11

Positive multiplier

Negative multiplicand

Negative sign
extensions

Right-shift multiplication

Dec 2012 12

Negative multiplicand and multiplier

Negative multiplier

Negative multiplicand

Negative sign
extensions

Dec 2012 13

Handle correctly by
subtracting xk-1a rather
than adding

Hardware complements
multiplicand and adds 1
via carry-in

Hardware implementation (control logic not shown)

Bypassed MUX for
positive multiplier

Subtracting xk-1a
by negation plus 1

Left-shift requires
more logic due to sign
extension, and is also
slower (2k bit adder).

Dec 2012 14

Dec 2012

1 1

1 1

0 0

0 0

2 2

 2

M N
j

j

N M

j

i
i

j i

i j
i

i i

P YX y x

x y

 

 

 



 

  
    

  



 



Parallel Multiplication Algorithms

15

Dec 2012

Dot diagram is convenient to illustrate large array multiplication.
m

u
ltip

lier

0x

15x

16

Dec 2012

The most obvious of
adding k N-bit numbers
is by cascading k-1 CPAs.

17

Dec 2012

The most obvious of adding k N-bit
numbers is by cascading k-1 CPAs.

This is slow and area consuming,
taking O(kN) time and area (not
really).

It is producing an output s of weight 1 and
an output c of weight 2.

Observation:

A Full-adder has three inputs x, y and z.

The inputs are symmetric with respect to s and c.

18

Dec 2012

The sum X+Y+Z can therefore
be obtained by first summing
xi+yi+zi in parallel, producing
C and S.

Then summing S and left shifted
C by CPA. This is called Carry-
Save Adder (CSA).

Carry-Save Adder

19

Dec 2012

Summation of k numbers requires stacking k-2 CSAs and a
single CPA.

The resulting delay is O(k+n) rather than O(kn) if CPAs
were used (not exactly…).

CSA was invented by von Neumann early digital computer
(1946).

20

Dec 2012

Unsigned Array Multiplication

B

Cin

Critical path has N CASs and M-bit CPAs, yielding O(N+M) delay.

The N LSBs are obtained directly from the sum outputs of CSAs.

The M MSBs are obtained by CPA.

It can be squashed in layout to occupy a rectangle.
21

Dec 2012

2’s Complement Array Multiplication

Same CSA array multiplication can be used.

2 2
1 1

1 1
0 0

2 2 2 2
M N

M j N
jM N

i
i

j i

P yx y y x x
 

 
 

 

  
       

  
 

2’s
complement

2 2

1 1

2 2
1

1 1

2

0 0

1

0 0

2 2

2 2

N M

j N M

N M
j N

jM N

i j M N
i

i j

i M
i

i j

x y x y

x y x y

 

 

 
 

 

  

 

 

 

 

 
  
 

 

 

positive

negative

To handle the negative part, 2’s complement will be used.

Recall that 2’s complement equals 1’s complement plus 1.

1’s complement is obtained by bit complement.

22

Dec 2012

2 2

0 0

2
N M

j
i j

i
i j

x y
 



 
 

0 4 0 3 0 2 0 1 0 0 x y x y x y x y x y

1 4 1 3 1 2 1 1 1 0 x y x y x y x y x y

2 4 2 3 2 2 2 1 2 0 x y x y x y x y x y

3 4 3 3 3 2 3 1 3 0 x y x y x y x y x y

4 4 4 3 4 2 4 1 4 0 x y x y x y x y x y

1 1
22N M

M Nx y 
 

5 5x y

5 4 3 2 1 0

5 4 3 2 1 0

y y y y y y

x x x x x x

7 511 10 9 8 6 4 3 2 2 0 P P P P P P P P P P P P



23

2

1
1

0

2
N

M
i M

i
i

x y



 



 5 5 5 5 54 3 2 1 01 1 1 1 1 1 1x y x y x y x y x y

1

2
1

1
0

2
M

j N
jN

j

x y


 




 5 5 5 5 54 3 2 1 01 1 1 1 1 1 1x y x y x y x y x y

1

bit complement + 1

bit complement + 1

Dec 2012

Physical layout

0 4 0 3 0 2 0 1 0 0 x y x y x y x y x y

1 4 1 3 1 2 1 1 1 0 x y x y x y x y x y

2 4 2 3 2 2 2 1 2 0 x y x y x y x y x y

3 4 3 3 3 2 3 1 3 0 x y x y x y x y x y

4 4 4 3 4 2 4 1 4 0 x y x y x y x y x y

5 5x y 5 5 5 5 54 3 2 1 0 x y x y x y x y x y

1 5 0x y

1

5 4 3 2 1 0

5 4 3 2 1 0

y y y y y y

x x x x x x

7 511 10 9 8 6 4 3 2 1 0 P P P P P P P P P P P P

5 1x y

5 2x y

5 3x y

5 4x y

Notice how all 1s were
summed and propagated
leftward.

24

Acceleration of Serial Multiplication

Observation: 2j + 2j-1 + … + 2i+1 + 2i = 2j+1 - 2i

Consequently, additions occurring by a string of 1s in the
multiplier can be replaced by an addition and a subtraction.

Bits xi-1 and xi of the multiplier are encoded in yi as follows:
(xi,xi-1) = (00) => yi = 0 ; No string of 1s in sight

(xi,xi-1) = (01) => yi = 1 ; End of string of 1s

(xi,xi-1) = (10) => yi = -1 ; Beginning of string of 1s

(xi,xi-1) = (11) => yi = 0 ; Continuation of string of 1s

1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0

artifact Example: radix-2 encoding of a 16-bit word

x
-1 0 1 0 0 -1 1 0 -1 1 -1 1 0 0 -1 0 y

Dec 2012 25

Problem: Assume that the unsigned value of X is intended.

Booth encoding results in -215 rather than +215.

Solution: Add 216 by extending y with 1 MSB.

(1)
1 0 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 x

-1 0 1 0 0 -1 1 0 -1 1 -1 1 0 0 -1 0 y

Above is a proper interpretation for signed multiplication.
A MSB string 111…111 of 1s will be encoded into a string
of 000…00-1, resulting in appropriate subtraction.

Dec 2012 26

2’s Comp. addition (negative)

2’s Comp. addition (positive)

Dec 2012 27

Dec 2012

Booth Encoding

Proposed by Booth in 1951 to accelerate serial multiplication
(series of shift and add).

00111110P Y X Y    requires 5 shifts and additions.

 

   

5 4 3 2 1

6 1

00111110 2 2 2 2 2

2 2 01000000 00000010

Y Y

Y Y

  

     

   

requires 1 add, 1 subtract (add 2’s complement) and 2 shifts.

   

 

5 4 3 1 6 3 100111010 2 2 2 2 2 2 2

01000000 00001000 00000010

Y Y Y

Y

      
 

   

   

Multiplication can be considerably accelerated by turning
sequences of 1s into leading and trailing 1s.

28

Dec 2012

011001 100111

Y X

P  

Instead of multiplying Y and adding bit-by-bit of X we look at
groups of 2 bits, hence working in radix-4.

32 1

011001 100111

Y X

 

Radix-4 multiplication will reduce to half the number of partial
products, with 2-bit left shift at each one. The partial products
are {0, Y, 2Y, 3Y}.

In radix-4 each partial product has 4 times the weight of its
predecessor one.

3Y is a problem since it cannot be obtained by a shift but rather
requires addition 3Y=2Y+Y .

Radix-4 algorithm implements 3Y= 4Y –Y and 2Y= 4Y –2Y.

29

Dec 2012

Weight of LSB in current pair is twice the MSB in previous.

Weight of MSB in current pair is 4 times the MSB in previous.

011001 100111

Y X

P  

0 0 0 0 1 1 0 0 1 0

Sign ext. X=1. PP=2Y. 4Y is carried
from previous, which is 1
in current.

X=2. PP=–2Y. 4Y will be
discovered in next step.

Sign ext.

1 1 0 0 1 1 1 0

0 1 1 0 0 1X=0. PP=Y. No need for
sign. Always Y or 0.

0 0 1 1 1 1 0 0 1 1 1 1

30

1

1

1

0

0

1

0

0

0

X
















artifact

artifact

LSB

MSB

1 1 1 1 1 1 1 0 0 1 1 1

Sign ext.
X=3. PP=–Y. 4Y will be
discovered in next step.

Y’s 2’s comp.

Dec 2012

Partial Product (PP) Selection Table

Multiplier Selection Explanations

000 +0

001 Multiplicand MSB=1 in previous pair

010 Multiplicand LSB=1 in current pair

011 2 x Multiplicand 1 from prev., 1 from current

100 -2 x Multiplicand compensated by +1 in next

101 -Multiplicand +1 from prev., -2 from current

110 -Multiplicand compensated by +1 in next

111 -0 +1 from prev., -1 from current

PP table defines the appropriate encoding of multiplicand: 0,
Y, - Y, 2Y or -2Y.

31

Dec 2012

Inputs Partial

Products

Booth Selects

X2i+1 X2i X2i-1 PP i SINGLE i DOUBLE i NEG i

0 0 0 0 0 0 0

0 0 1 Y 1 0 0

0 1 0 Y 1 0 0

0 1 1 2Y 0 1 0

1 0 0 -2Y 0 1 1

1 0 1 -Y 1 0 1

1 1 0 -Y 1 0 1

1 1 1 -0(=0) 0 0 1

Radix-4 modified Booth encoding values

32

Dec 2012

Radix-4 Booth encoder and selector

Encodes 0, Y, or 2Y according to
3 successive bits of multiplier.

Multiplicand Y is 0-extended to M+1 bits.
If the NEG is asserted Y is negated and
extra 1 is added in the next row.

33

0x

15x

1x0

0
0 17x16x

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

m
u

ltip
lier

Dec 2012

Radix-4 Booth-encoded partial products with sign extension
for unsigned multiplication

Though unsigned, Booth Alg.
generates negative PPs.

Negative PPs are handled in 2’s complement
by sign extension and addition of the sign bit.

To squash into rectangular floor plan the sign bit triangle
should better be out.

34

PP0

PP1

PP2

PP3

PP4

PP5

PP6

PP7

PP8

Dec 2012

Suppose that all partial products are negative.

Summation of the
1s results in

35

Dec 2012

If a particular PP is positive, the negation can be reverted
by adding 1 to the LSB of the original 1s string.

resulting in this
configuration

36

Booth Encoder

Dec 2012

Critical path involves:

N/2 CSAs and final CPA.

Booth encoder, select line driver,

Booth selector,

Selector resides in every bit of the array, consuming significant
area. Good area/power/performance tradeoff is to downsize it
as much as possible. (why?)

negation

1-bit shift

37

Dec 2012

Booth Encoding Signed Multiplier

PP0
PP1
PP2
PP3
PP4
PP5
PP6
PP7

x16
x17

Multiplier needs not 2-bit extension (x16, x17) since it
is already sign extended (x15) . Then x15=x16=x17 and
encoding is 0.

PP8 is therefore not required.

38

Dec 2012

Wallace Tree Multiplication

Consider the following 9-bit
unsigned multiplication

Multiplication time complexity is O(n), There are n-2 sequential
CSAs additions.

Wallace tree accelerates CSAs time complexity to O(logn) by
different organization of CSAs sums.

Every dot of the array represents
a partial product.

Partial products are vertically
summed by half and full adders
(CSA).

39

Dec 2012

Reduction in each group is done by one of the following cases:

In each column of partial products, every three adjacent rows
construct a group.

Applying a full adder (CSA) to the 3-bit
groups

Applying a half adder to the 2-
bit groups

Passing any 1-bit group
to the next stage
without change

40

Dec 2012

Sum of half adder
stays in column,
carry sent to next
column.

Sum of full adder
stays in column,
carry sent to next
column.

Passing any 1-bit group to the
next stage without change

41

Dec 2012 42

Dec 2012

All the full-adder (CSA) and half-adder additions in a stage are
performed simultaneously.

Every stage has its own adders.

Data is progressing through O(log3/2n) stages (proven below).

The final two rows are summed by CPA.

Other groups organizations called Modified Wallace and
Dadda reductions, yielding slight area improvement (number
of circuits), are possible. Asymptotically all are similar.

43

Dec 2012

Time and Area Complexity

At each stage of the computation each group of 3 bits is reduced
to 2 bits, with at most 2 bits left over.

The depth of Wallace
tree D(n) satisfies

 

 

0 if 2

1 if 3

1 2 3 if 4

n

D n n

D n n

 


 
    

This is a recursive equation solved to .    logD n n 

The final addition is implemented by CPA.

44

Carry-lookahead adder takes , so using CLA for final
addition yields overall time complexity.  log n

 log n

Dec 2012

The number of adders C(n) is .  2n

The number of bits in a row is between n and 2n. There are
n rows so 2/3n2 full and half adders are required in the first
stage.

The number of rows is reducing by factor 2/3 from stage to
stage, hence the total sums to as well.  2n

45

Dec 2012

Shifters

Logical shifter: Shifts the number to left or right and fills the
empty spots with 0s. Specified by << or >> in Verilog.

1011 LSR 1 = 0101; 1011 LSL 1 = 0110

Arithmetic shifter: Similar to logical, but on right shift fills
empty spots with sign bit. Specified by <<< or >>> in Verilog.

1011 ASR 1 = 1101; 1011 ASL 1 = 0110

Barrel shifter (rotator): Rotates numbers cyclically.

1011 ROR 1 = 1101; 1011 ROL 1 = 0111

46

Dec 2012

Conceptually, rotation of N -bit word involves array of N N-

input MUXes to select each of the outputs from each of the

possible input positions. This is called array shifter.

Array shifter requires a decoder to produce 1-of-N shift.

MUXes of more than 8 inputs have excessive parasitic

capacitance, so it is faster to construct shifters from logvN

v-input MUXes. This is called logarithmic shifter.

47

Left rotate by k bits is equivalent to right rotate by N-k bits.

Computing N-k requires subtracter in the critical path.

Dec 2012

Left shift can therefore be done by first pre shifting right

by 1 and then right shifting by the complement.

Logical and arithmetic shifts are similar to rotate except

that the bits at one end or the other are replaced by 0 or

sign bit.

48

We take advantage of 2’s complement and the fact that

rotation is cyclic modulo N . 1 1N k N k k     

Dec 2012

Funnel Shifter

Creates a 2N-1 bit input word

Z from A and kill variables. It

then selects N-bit field from Z

according to shift amount.

Shift Style Z2N-2:N ZN-1 ZN-2:0 Offset

Logical Right 0 AN-1 AN-2:0 k

Logical Left AN-1:1 A0 0

Arithmetic Right AN-1 AN-1 AN-2:0 k

Arithmetic Left AN-1:1 A0 0

Rotate Right AN-2:0 AN-1 AN-2:0 k

Rotate Left AN-1:1 A0 AN-1:1

k

k

k

49

Dec 2012 50

