
Multiplication and Shift Circuits 

Dec 2012 

Shmuel Wimer 

Bar Ilan University, Engineering Faculty 

Technion, EE Faculty 

 

1 



1 2 1 0

1 2 1 0

2 1 2 2 1 0

Multiplicand      

Multiplier           

Product ( )

k k

k k

k k

a a a a a

x x x x x

p a x p p p p

 

 

 

Shift/Add Unsigned Multiplication Algorithms 

Shift partial products 
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How to obtain p=ax+y?  Initialize p(0)  to  y2k 

x0a2k will be multiplied by 2-k after k iterations. a is pre 
multiplied by 2k  to offset the effect of right shifts. 

a is aligned to the left (MSB) k bits of a 2k-bit . 

After k iteration the recurrence yields p(k)=ax+p(0)2-k=ax 

In right shift multiplication the partial products xja, 0<=j<=k-1, 
are recursively accumulated from top to bottom. 

        1 012 2    with   0 and 
j j kk

jp p x a p p p
     

shift right 

add 
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multiply by 2-1 by right-shift  
add partial product aligned to left 

multiply by 2-1 by right-shift  
add partial product aligned to left 

add partial product aligned to left 
initialize 
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In left shift multiplication the partial products xk-1-ja, 0<=j<=k-1, 
are recursively accumulated from bottom  to top. 

       1 0
12   with   0 and 

j j k
k jp p x a p p p


    

shift left 

add 

After k iteration the recurrence yields p(k)=ax+p(0)2k=ax 

How to obtain p=ax+y?  Initialize p(0)  to  y2-k 
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multiply by 2 by left-shift  
add partial product aligned to right 

multiply by 2 by left-shift  

add partial product aligned to right 

multiply by 2 by left-shift  

add partial product aligned to right 

initialize 
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Serial multiplication by add and shift entails k 
additions and k shifts 

Right shift is favored since the addition of partial 
product takes place at the MSB k-bit part of the 2k 
word. In left shift it takes place at the LSB k-bit part 
and carry can propagate to MSB part. 

Left shift algorithm requires therefore 2k bit adder, 
while for right shift k bit suffice. 
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Hardware of right-shift multipliers (without control) 

Shift registers 

Next bit of multiplier 

Control requires 
counter 

Addition of a partial product 
requires two clock cycles. One 
for add and one for a shift.  

Adder’s carry out 
must be stored 
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Reducing addition of partial product to one cycle 

2k-bit 
Shift register 

Next bit of 
multiplier 

At each clock cycle adder’s carry-out is written to MSB and 
LSB is used for multiplication (via a MUX)  
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Hardware of left-shift multipliers (without control) 

Next bit of 
multiplier 

Shift registers 

Register sharing of multiplier 
and MSB of cumulative 
partial product  is possible. 

Adder is 2k bits 
rather than k bits 
in right-shift. 
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Multiplication of Signed Numbers 

• Sign-magnitude representation requires only XOR-
ing of the operands’ sign bits. 

• In 1’s-complement, a negative operand is 
complemented and unsigned multiplication takes 
place. The result is complemented by XOR-ing of 
operands’ sign bits. 

• For 2’s-complement, right-shift multiplication is 
proper for negative multiplicand and positive 
multiplier. 
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Positive multiplier 

Negative multiplicand 

Negative sign 
extensions 

Right-shift multiplication  
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Negative multiplicand and multiplier 

Negative multiplier 

Negative multiplicand 

Negative sign 
extensions 
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Handle correctly by 
subtracting xk-1a rather 
than adding 

Hardware complements 
multiplicand and adds 1 
via carry-in  



Hardware implementation (control logic not shown)  

Bypassed MUX for 
positive multiplier 

Subtracting xk-1a 
by negation plus 1 

Left-shift requires 
more logic due to sign 
extension, and is also 
slower (2k bit adder).  
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Parallel Multiplication Algorithms 
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Dot diagram is convenient  to illustrate large array multiplication. 
m

u
ltip

lier 

0x

15x

16 



Dec 2012 

The most obvious of 
adding k N-bit numbers 
is by cascading k-1 CPAs. 
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The most obvious of adding k N-bit 
numbers is by cascading k-1 CPAs. 

This is slow and area consuming, 
taking O(kN) time and area (not 
really). 

It is producing an output s of weight 1 and 
an output c of weight 2.  

Observation: 

A Full-adder has three inputs x, y and z.  

The inputs are symmetric with respect to s and c.  
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The sum X+Y+Z can therefore 
be obtained by first summing 
xi+yi+zi in parallel, producing 
C and S. 

Then summing S and left shifted 
C by CPA. This is called Carry-
Save Adder (CSA). 

Carry-Save Adder 
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Summation of k numbers requires stacking k-2 CSAs and a 
single CPA. 

The resulting delay is O(k+n) rather than O(kn) if CPAs 
were used (not exactly…). 

CSA was invented by von Neumann early digital computer 
(1946). 
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Unsigned Array Multiplication 

B 

Cin 

Critical path has N CASs and M-bit CPAs, yielding O(N+M) delay.    

The N LSBs are obtained directly from the sum outputs of CSAs.  

The M MSBs are obtained by CPA.  

It can be squashed in layout to occupy a rectangle.  
21 
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2’s Complement Array Multiplication 

Same CSA array multiplication can be used.  
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To handle the negative part, 2’s complement will be used.  

Recall that 2’s complement equals 1’s complement plus 1. 

1’s complement is obtained by bit complement. 
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Physical layout 

0 4 0 3 0 2 0 1 0 0         x y x y x y x y x y

1 4 1 3 1 2 1 1 1 0           x y x y x y x y x y

2 4 2 3 2 2 2 1 2 0         x y x y x y x y x y

3 4 3 3 3 2 3 1 3 0          x y x y x y x y x y

4 4 4 3 4 2 4 1 4 0         x y x y x y x y x y

5 5x y 5 5 5 5 54 3 2 1 0      x y x y x y x y x y

1 5 0x y
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Notice how all 1s  were 
summed  and propagated 
leftward. 
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Acceleration of Serial Multiplication 

Observation: 2j + 2j-1 + … + 2i+1 + 2i = 2j+1 - 2i 

Consequently, additions occurring by a string of 1s in the 
multiplier can be replaced by an addition and a subtraction. 

Bits xi-1 and xi of the multiplier are encoded in yi as follows: 
(xi,xi-1) = (00) => yi = 0 ;  No string of 1s  in sight 

(xi,xi-1) = (01) => yi = 1 ;  End of string of 1s 

(xi,xi-1) = (10) => yi = -1 ;  Beginning of string of 1s  

(xi,xi-1) = (11) => yi = 0 ;  Continuation of string of 1s 

1  0  0  1  1   1  0  1   1  0   1   0   1   1   1  0  0 

artifact Example: radix-2 encoding of a 16-bit word 

x 
-1  0  1  0  0  -1  1  0  -1  1  -1  1   0   0  -1  0 y 
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Problem: Assume that the unsigned value of X is intended.  

Booth encoding results in -215 rather than +215. 

Solution: Add 216 by extending y with 1 MSB.  

(1) 
1  0  0  1   1   1   0  1   1  0   1   0   1   1   1   0  0 x 

-1  0  1  0   0  -1   1  0  -1  1  -1  1   0   0  -1  0 y 

Above is a proper interpretation for signed multiplication. 
A MSB string 111…111 of 1s will be encoded into a string 
of 000…00-1, resulting in appropriate subtraction.  
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2’s Comp. addition (negative) 

2’s Comp. addition (positive) 
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Booth Encoding 

Proposed by Booth in 1951 to accelerate serial multiplication 
(series of shift and add).  

00111110P Y X Y    requires 5 shifts and additions. 

 

   

5 4 3 2 1

6 1

00111110 2 2 2 2 2

2 2 01000000 00000010

Y Y

Y Y

  

     

   

requires 1 add, 1 subtract (add 2’s complement) and 2 shifts.  

   

 

5 4 3 1 6 3 100111010 2 2 2 2 2 2 2

01000000 00001000 00000010

Y Y Y

Y

      
 

   

   

Multiplication can be considerably accelerated by turning 
sequences of 1s into leading and trailing 1s. 
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011001 100111

Y X

P  

Instead of multiplying Y and adding bit-by-bit of X we look at 
groups of 2 bits, hence working in radix-4. 

32 1

011001 100111

Y X

 

Radix-4 multiplication will reduce to half the number of partial 
products, with 2-bit left shift at each one. The partial products 
are {0, Y, 2Y, 3Y}. 

In radix-4 each partial product has 4 times the weight of its 
predecessor one. 

3Y is a problem since it cannot be obtained by a shift but rather 
requires addition 3Y=2Y+Y . 

Radix-4 algorithm implements 3Y= 4Y –Y and 2Y= 4Y –2Y.  
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Weight of LSB in current pair is twice the MSB in previous.   

Weight of MSB in current pair is 4 times the MSB in previous.  

011001 100111

Y X

P  

0  0  0  0  1  1  0  0  1  0

Sign ext. X=1. PP=2Y. 4Y is carried 
from previous, which is 1 
in current. 

X=2. PP=–2Y. 4Y will be 
discovered in next step. 

Sign ext. 

1   1  0  0  1  1  1  0

0   1  1  0  0  1X=0. PP=Y. No need for 
sign. Always Y or 0. 

0  0  1  1   1   1  0  0  1   1   1  1
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LSB 

MSB 

1   1   1  1  1  1  1  0  0  1  1  1

Sign ext. 
X=3. PP=–Y. 4Y will be 
discovered in next step. 

Y’s 2’s comp. 
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Partial Product (PP) Selection Table 

Multiplier Selection Explanations 

000 +0 

001 Multiplicand MSB=1 in previous pair 

010 Multiplicand LSB=1 in current pair 

011 2 x Multiplicand 1 from prev., 1 from current 

100 -2 x Multiplicand compensated by +1 in next 

101 -Multiplicand +1 from prev., -2 from current 

110 -Multiplicand compensated by +1 in next 

111 -0 +1 from prev., -1 from current 

PP table defines the appropriate encoding of multiplicand: 0, 
Y, - Y, 2Y or -2Y.  
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Inputs Partial 

Products 

Booth Selects 

X2i+1 X2i X2i-1 PP i SINGLE i DOUBLE i NEG i 

0 0 0 0 0 0 0 

0 0 1 Y 1 0 0 

0 1 0 Y 1 0 0 

0 1 1 2Y 0 1 0 

1 0 0 -2Y 0 1 1 

1 0 1 -Y 1 0 1 

1 1 0 -Y 1 0 1 

1 1 1 -0(=0) 0 0 1 

Radix-4 modified Booth encoding values 
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Radix-4 Booth encoder and selector 

Encodes 0, Y, or 2Y according to 
3 successive bits of multiplier. 

Multiplicand Y is 0-extended to M+1 bits. 
If the NEG is asserted Y is negated and 
extra 1 is added in the next row. 
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Radix-4 Booth-encoded partial products with sign extension 
for unsigned multiplication 

Though unsigned, Booth Alg. 
generates negative PPs. 

Negative PPs are handled in 2’s complement 
by sign extension and addition of the sign bit. 

To squash into rectangular floor plan the sign bit triangle 
should better be out. 
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Suppose that all partial products are negative. 

Summation of the 
1s results in 
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If a particular PP is positive, the negation can be reverted 
by adding 1 to the LSB of the original 1s string.  

resulting in this 
configuration 
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Booth Encoder 

Dec 2012 

Critical path involves: 

N/2 CSAs and final CPA. 

Booth encoder,  select line driver, 

Booth selector, 

Selector resides in every bit of the array, consuming significant 
area. Good area/power/performance tradeoff is to downsize it 
as much as possible. (why?) 

negation 

1-bit shift 
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Booth Encoding Signed Multiplier 

PP0 
PP1 
PP2 
PP3 
PP4 
PP5 
PP6 
PP7 

x16 
x17 

Multiplier needs not 2-bit extension (x16, x17) since it 
is already sign extended (x15) . Then x15=x16=x17 and 
encoding is 0. 

PP8 is therefore not required. 
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Wallace Tree Multiplication 

Consider the following 9-bit 
unsigned multiplication 

Multiplication time complexity is O(n), There are n-2 sequential 
CSAs additions.  

Wallace tree accelerates CSAs time complexity to O(logn) by 
different organization of CSAs sums. 

Every dot of the array represents 
a partial product. 

Partial products are vertically 
summed by half and full adders 
(CSA).  
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Reduction in each group is done by one of the following cases: 

In each column of partial products, every three adjacent rows 
construct a group.  

Applying a full adder (CSA) to the 3-bit 
groups 

Applying a half adder to the 2-
bit groups 

Passing any 1-bit group 
to the next stage 
without change 
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Sum of half adder 
stays in column,  
carry sent to next 
column. 

Sum of full adder 
stays in column,  
carry sent to next 
column. 

Passing any 1-bit group to the 
next stage without change 

41 
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All the full-adder (CSA) and half-adder additions in a stage are 
performed simultaneously.  

Every stage has its own adders.  

Data is progressing through O(log3/2n) stages (proven below).  

The final two rows are summed by CPA. 

Other groups organizations called Modified Wallace and 
Dadda reductions, yielding slight area improvement (number 
of circuits), are possible. Asymptotically all are similar. 
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Time and Area Complexity 

At each stage of the computation each group of 3 bits is reduced 
to 2 bits, with at most 2 bits left over. 

The depth of Wallace 
tree D(n) satisfies 

 

 

0 if  2

1   if  3

1 2 3 if  4

n

D n n

D n n

 


 
    

This is a recursive equation solved to                                   .    logD n n 

The final addition is implemented by CPA.   

44 

Carry-lookahead adder takes                   , so using CLA for final 
addition yields                    overall time complexity.  log n

 log n
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The number of adders C(n) is              .   2n

The number of bits in a row is between n and 2n. There are 
n rows so 2/3n2 full and half adders are required in the first 
stage.  

The number of rows is reducing by factor 2/3 from stage to 
stage, hence the total sums to               as well.     2n
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Shifters 

Logical shifter: Shifts the number to left or right and fills the 
empty spots with 0s. Specified by << or >> in Verilog. 

1011 LSR 1 = 0101; 1011 LSL 1 = 0110 

Arithmetic shifter: Similar to logical, but on right shift fills 
empty spots with sign bit. Specified by <<< or >>> in Verilog. 

1011 ASR 1 = 1101; 1011 ASL 1 = 0110 

Barrel shifter (rotator): Rotates numbers cyclically. 

1011 ROR 1 = 1101; 1011 ROL 1 = 0111 
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Conceptually, rotation of N -bit word involves array of N N-

input MUXes to select each of the outputs from each of the 

possible input positions. This is called array shifter. 

Array shifter requires a decoder to produce 1-of-N shift. 

MUXes of more than 8 inputs have excessive parasitic 

capacitance, so it is faster to construct shifters from logvN 

v-input MUXes. This is called logarithmic shifter. 

47 

Left rotate by k bits is equivalent to right rotate by N-k bits. 

Computing N-k requires subtracter in the critical path.  
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Left shift can therefore be done by first pre shifting right 

by 1 and then right shifting by the complement. 

Logical and arithmetic shifts are similar to rotate except 

that the bits at one end or the other are replaced by 0 or 

sign bit.  

48 

We take advantage of 2’s complement and the fact that 

rotation is cyclic modulo N                                              . 1 1N k N k k     
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Funnel Shifter 

Creates a 2N-1 bit input word 

Z from A and kill variables. It 

then selects N-bit field from Z 

according to shift amount.   

Shift Style Z2N-2:N ZN-1 ZN-2:0 Offset 

Logical Right 0 AN-1 AN-2:0 k 

Logical Left AN-1:1 A0 0 

Arithmetic Right AN-1 AN-1 AN-2:0 k 

Arithmetic Left AN-1:1 A0 0 

Rotate Right AN-2:0 AN-1 AN-2:0 k 

Rotate Left AN-1:1 A0 AN-1:1 

k

k

k
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