
Addition Circuits

Shmuel Wimer

Bar Ilan University, Engineering Faculty

Technion, EE Faculty

Nov 2012 1

Full Adders

S A B C    outC A B A B C  

outin: propagates to P A B C C 

out in: generation regardless of G A B C C

in: is killed K A B C
Nov 2012 2

 out MAJ , ,C AB AC BC A B C   

S A B C P C    

32 tranistors

N and P networks are identical rather than complementary!

Design I: Mirror CMOS logic

Nov 2012 3

kill

generate

1-propagate

0-propagate

odd 1s

odd 0s

Design II: S is factored to reuse Cout

Uses only 28 transistors. Can be reduced to 24 transistors.

S has larger delay but it is not on the critical path

  outS ABC A B C C   

Nov 2012 4

kill

generate 1-propagate

0-propagate
odd 0s

odd 1s

Nov 2012 5

The transistors connected to Cin are closest to the output of the
carry (and sum) circuits. (why?)

Only the transistors of the carry are optimized for speed. (why?)

Ripple-Carry Addition

Carry computation is the critical path

Carry propagation delay is

reduced by using inverting

adders where every other

stage is working on

complementary data.

Nov 2012 6

XOR / XNOR Circuits

Straight-forward,
16 transistors

14 transistors

Complementary CMOS,
12 transistors

More efficient, less contacts,
smaller layout, commonly
used in STD cell Lib.

Nov 2012 7

Transmission gate
design, 10 transistor

Only 6 transistors, but non
restoring.

0 , 1A Y B A Y B     

Only 4 transistors,
fast, but doesn’t
swing rail-to-rail.

4-way

Nov 2012 8

S A B C P C    Full-adder using XOR and MUX

24 transistors and buffered outputs.
Cout and S have same delay.

Nov 2012 9

Carry-Propagate Addition

Ripple-Carry Addition

outin: propagates to P A B C C 

out in: generation regardless of G A B C C
Recall:

Generate and Propagate signals are a key for fast addition

Carry computation is the critical path in addition

Nov 2012 10

Generalize to describe whether the group of bits

 generates or propagates a carry.i k j 

: : : 1: i j i k i k k jG G P G   : : 1: i j i k k jP P P 

:i i i i iG G A B :i i i i iP P A B 

with the base case

0:0 0:0in 0G C P Define

S P C Recall:

1:0i i iS P G  The sum for bit i can be computed by:

Nov 2012 11

Addition is reduced into 3-step computation process

bitwise propagate
and generate logic

group propagate
and generate logic

sum logic

Addition acceleration is obtained by smart PG grouping

Nov 2012 12

Nov 2012 13

shared bitwise
propagate-generate
(PG) logic

To use fewer stages for carry propagation, higher valency
comprising more complex gates is possible, e.g. valency-4:

  : 1:: : 1: 1: 1: 1:i j m ji k i k k l k l l m l mG G P G P G P G       

: 1:: 1: 1: i j m ji k k l l mP P P P P   i k l m j   

: : : 1: i j i k i k k jG G P G   : : 1: i j i k k jP P P 

A combined pair of smaller groups is called valency-2
group PG logic.

i k j 

PG Carry-Ripple Addition

Nov 2012 14

   1 1 1i i i i i i i i i i ii i iC A B A B C A B A B C G PC         

Nov 2012 15

Adder architecture diagram

out :0 1:0N NN NC G G P G   

PG logic

sum XOR

 ripple 1pg AO XORt t N t t   

actual CMOS

Group generate

Nov 2012 16

majority (carry) CMOS logic

generate

propagate

kill

Carry Chain Adder

Manchester valeny-4 carry chain adder (dynamic logic)

pass transistor

Nov 2012 17

0 0:0C G

1 1:0 1 1 0C G G PC  

 2 2:0 2 2 1 1 0C G G P G PC   

  3 3:0 3 3 2 2 1 1 0C G G P G P G PC    

C3 is calculated in “one” time unit but we must wait for carry

to ripple through group to be ready.

How delay grows with chain length? quadratic!

Chain should be broken and buffered. Common length is 3-4.

Nov 2012 18

Manchester carry chain adder using valency-4 stages

Similar to ripple carry adder but uses N/3 stages.

Involves a series propagate transistor per bit.

Faster than AND-OR or majority gate per bit in carry ripple.

Nov 2012 19

Carry Skip Adder

Assume that the propagate computed for a group i:j is 1.

: 1
i

i j k kk j
P A B


  

Consequently, the carry-out of group i:j is the same as the
carry-in and carry computation can be skipped.

bitwise propagate and
generate + group propagate skip MUX skip path

Nov 2012 20

Carry-skip adder Manchester stage (dynamic logic)

skip MUX

i
kk j

P


For group propagate 0 the carry generated within group is taken.

This is a considerable acceleration compared to carry-ripple,
while hardware overhead is small.

Was proposed in 19th century by Charles Babbage and used by
mechanical calculators.

Nov 2012 21

Propagation delay

4-bit carry chain
if each group
generates a carry

carry skip chain

4-bit ripple chain
if carry-in is by
passed to chain

Nov 2012 22

N-bit adder
with k groups
of n bits each
(N=kn).

Delay of a
chain is slower
than skip
propagation
delay (AND,
MUX).

First chain must compute sums and carry within n-1 delay units.

Carry propagates through k-2 stages.

Last chain must compute sums within n-1 delay units.

Nov 2012 23

   carry-skip

first chain last chain
skips

1 2 1 2 4
N N

T n n n
n n

 
         

 

carry-skip opt
2

2
2

dT N N
n

dn n
   

opt
carry-skip 2 2 4T N 

Example: consider 32-bit addition.

opt
carry-skip 2 2 32 4 12, compared to 32 units in

carry-ripple adder.

T   

Question: Can we further accelerate carry propagation?

Answer: Yes we can, block size may vary across adder.

Nov 2012 24

Consider t ripple-carry adder groups A0, A1, … , At-2, At-1. How

should we distribute the N bits in those blocks?

Assume a skip chain of A1, … , At-2. Since skip is far faster than

ripple carry, we wish to minimize the number b of bits in A0

and At-1.

, 1 , , 2 1 , 2 1 , , 1 , b b b t b t b b     

Bits are distribute as follows:

Summing over all blocks:

 
2 1

0

1 1
2

4 2 4 2

t

i

t N t
N b i t b b

t





 
         

 


Nov 2012 25

     carry-skip

first chain skips last chain

2
1 2 1 3

2

N t
T b t b

t
        

opt
carry-skip

opt2
carry-skip

21 2

2 2 3

t NdT N

dt T Nt

 
   

 

opt

opt

#blocks(var) 2
2

#blocks(fixed) 2

t N

N n N
  

number of blocks is increased

opt
carry-skip

opt
carry-skip

(var) 2 3 1

2 2 4 2(fixed)

T N

NT


 



delay is decreased

Nov 2012 26

Groups are of lengths [2, 3, 4, 4, 3] compared to [4, 4, 4, 4].

Saved 2 levels of logic on critical path compared to fixed.

Nov 2012 27

Subtraction

How to compute A-B?

1A B A B   Recall that in 2’s complement

We’d like to combine adder and subtracter in one circuit

Valency-4 PG

Nov 2012 28

Carry-Lookahead Adder

Carry-skip adder ripples the carry through the group, requiring
waiting to determine whether the first group generates a carry.

Carry-lookahead (CLA) computes group generate signals as well
as group propagate signals to avoid waiting for a ripple.

0 0:0C G

1 1:0 1 1 0GC G CP  

 22 2:0 12 1 0C G G PCPG   

  33 3:0 2 2 1 13 0C G GG P P G PC    

Nov 2012 29

Carry-lookahead circuit with half devices compared to AOAO…

Cout is complementary

What happens when all
P=1 and G=0?
Both paths to Vdd and
Vss are closed.

P and G signals connect
and disconnect path to
Vdd / Vss

Cin then takes care

Nov 2012 30

group PG AND-OR

N-bit adder with
k groups of n bits
each (N=kn).

Nov 2012 31

Propagation delay

CLAT 
 PG n

t   AO 1t k    1n  PGt  XORt

No better than variable-length carry skip, but requires more
HW due to PG generation per group.

Nov 2012 32

Commercial MSI 4-bit CLA adder

bit PG

2-level
logic CLA

sum

Nov 2012 33

Carry-Select Adder

The critical paths in carry-skip and carry-lookahead involves
carry calculation into each n-bit group and then using it for the
sums within the group.

It is possible to pre compute the outputs for both 0/1 carry
inputs and then select accordingly.

If C4=0, top adder applies
for C8.

If C4=1 bottom adder
applies for C8. Notice that
cout(cin=1) >= cout(cin=0).

Nov 2012 34

1st group computes
carry out

Compute for
both carries

Select
accordingly

selectT  PGt 

Simultaneous PG for all bits

AOt n 

n-bits of first group adder

 2k   MUXt

Propagation delay

Nov 2012 35

Carry-select adder is fast but the amount of circuits is about

twice compared to others. This is both power and area penalty.

The PG and XOR circuits are similar

in 0 and 1 adders, independent ,

hence MUX can be used to select

the proper input of XOR.

This is called carry-increment adder.

Carry-Increment Adder

Nov 2012
36

incrementT  PGt 
XORt AO 1t n    1k  

Acceleration is possible by variable group size

PG AO XORincrement 2T t Nt t  

Nov 2012 37

Tree Adders

In wide adders the delay of the carry passing through stages
becomes dominant.

The delay can be reduced by looking ahead across lookahead
blocks.

The square root delay can be improved to logarithmic delay
by constructing multilevel lookahead structures.

There are many ways to build lookahead trees, offering
tradeoffs between number of circuits, fan-out and amount of
interconnects. Those are translated into area and power.

Such adders are known as lookahead adders, logarithmic
adders or parallel-prefix adders.

Nov 2012 38

Brent-Kung tree

Compute prefixes for 2-bit groups. Then prefixes for 4-bit groups.

Then 8-bit and 16-bit groups. Prefixes fan back down to compute

carry-in to each bit. 2(log2N) - 1 levels (area), fan-out 2.

Nov 2012 39

Sklansky tree

Intermediate prefixes can be computed along with those of
large groups.

Delay reduced to log2N. Fan out is doubled at each row.
Transistor sizing and buffering is required (area, power).

Nov 2012 40

Kogge-Stone tree

Achieves log2N stages. Fan out is 2.

Wire length grows is quadratic with N. It significantly
increases area, buffers, power.

Nov 2012 41

Han-Carlson tree

Use Kogge-Stone on odd bits, cutting hardware by factor 2.

Use one more stage to ripple into even bits.

Nov 2012 42

Comparison of Adder Architectures

Architecture Logic Levels Max
Fan-out

Wiring
Tracks

Cells

Ripple-Carry 1 1

Carry-Skip (n=4) 2 1

Carry-Increment (n=4) 4 1

Carry-Increment (var.) 1

Brent-Kung 2 1

Sklansky 1

Kogge-Stone 2

Han-Carlson 2

2N

22log 1N 

2log N

2log N

2log 1N 

2N

2 1N 

2N

4N

4 5N 

4 2N 

1N  1N 

1.25N

2N

2N

20.5 logN N

2logN N

20.5 logN N

2N

PG and XOR logic is not counted.

Ripple-carry should be used when they meet timing
constraints (small area and power).

For 64 bits and up tree adders are distinctly faster.

Nov 2012 43

Logic synthesizers automatically map the “+” operator
into appropriate adder to meet timing constraints while
minimizing area and power (aka design ware).

Carry Probabilities

Carry generation probability: 1 4

Carry kill probability: 1 4

Carry propagation probability: 1 2

 

Given carry generated at bit

The probability that it

- will propagate up to and including bit 1

- and stops at bit is:

i

j

j j i





    1
2 1 2 2

j i j i    
 

What is the average length of a carry in addition?

Nov 2012 44

For a -bit adder, the expected length of a carry generated

at bit is:

k

i

 
1

by induction 2 2 2 2
p l p

l
l p 


  

       

   

         

stops does not stop

1 1

1

1 1

1

1 1 1

2 2

2 2

2 1 2 2 2 2

k j i k i

j i

k i k il

l

k i k i k i

j i k i

l k i

k i k i

     

 

    



        

  

  

       





Consequently, for long adders () the avarage length

of carry propagation is nearly 2.

i k

Nov 2012 45

The short length of average carry propagation indicates

that the average worst-case may also be short.

A usual design of a k-bit adder is targeting the worst-

case where the carry is propagating along the entire

bits, regardless of adder architecture.

Burks, Goldstine and von Neumann [1946] noticed that

the average worst-case carry propagation length is

log2k.

Nov 2012 46

 Let be the probability that the longest carry

chain in a -bit adder is or more.

k h

k h



   

The probability that the longest carry chain is exactly

is therefore 1 .k k

h

h h  

(b) The 1 LSBs have no such a carry chain, but the

 MSBs do have.

k h

The longest carry chain is in two exclusive ways:h

(a) The 1 LSBs have a carry chain .k h 

Nov 2012 47

         1
1 1 1

case (b)

case (a) not case (a) carry generated
and propagated
along bits

1
1 2 2 .

2

hh
k k k k

h

h h h h   
 

          

Thus, we have

       1
1Therefore, 2 . Assuming 0 for ,

h
k k ih h h i h  

 
   

           1 1
1

telescopic sum

1 2 2 .
k

h h
k i i

i h

h h h k h k  
   





       

           

   

1

1

The expected length of the longest carry chain

1 1 2 2 2 3

 0 .

k

k k k k k k

h
k

k k

h

h h h

k k h



      

 





                

     




Nov 2012 48

     

   

2

2

2 2

2

log 1

1 1 log

log 1 log1
21 log

 1 2 log 1 2 .

k k k

k k kh h h k

k k kh

h h k

h h h

k k k

   
  

    

        
   

  

      

  

 

2 2Let log log , 0 1.k k       

   

 

2

2

log

log
2

2 2

1
Noting that 2 , and 2 1 , we get

log 1 2

 log 1 2 log .

k

k

k

k k

k k















 

  

     

   

Nov 2012 49

Carry-Completion Detection

Worst-case carry propagation of length k almost never
materializes.

A carry-completion detection adder performs addition
in average O(log2k) time.

A carry 0 is also explicitly represented and allowed to
propagate between stages. The carry into stage i is
represented by the two-rail code:

 

 

 

 

0,0 Carry not yet known

, 0,1 Carry known to be 1

1,0 Carry known to be 0

i ib c




 



Nov 2012 50

Nov 2012 51

 

   

0,0 carry unknown,

0,1 carry known to be 1, 1,0 carry known to be 0.

Two 1s generate a carry of 1 propagating towards MSB.

Two 0s generate a carry of 0 propagating towards MSB.

Initially, all carries are (0,0), namely, unknown.

Nov 2012 52

in inThe carry (,) is injected into the LSB.c c

When every carry assumes one of the values (0,1) or
(1,0) carry propagation is complete.

The local "done" signals = are ANDed to form

the global signal, indicating carry propagation

completion.

i i id b c

alldone



Excluding initialization and carry-completion detection
times, the latency of k-bit carry-completion adder
ranges from 1 to 2k+1 gate delays, with 2log2k+1
average gate delays.

Nov 2012 53

Behrooz Parhami, Computer Arithmetic, Oxford,
2010, page 100:

"Because the latency of the carry-completion adder is data-
dependent, the design of Fig. 5.9 is suitable for use in
asynchronous systems. Most modern computers, however,
use synchronous logic and thus cannot take advantage of the
high average speed of a carry-completion adder."

