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Full Adders 

S A B C    outC A B A B C  

outin:    propagates to P A B C C 

out in:       generation regardless of G A B C C

in:       is killed K A B C
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 out MAJ , ,C AB AC BC A B C   

S A B C P C    

32 tranistors

N and P networks are identical rather than complementary! 

Design I: Mirror CMOS logic 
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kill 

generate 

1-propagate 

0-propagate 

odd 1s 

odd 0s 



Design II: S is factored to reuse Cout 

Uses only 28 transistors. Can be reduced to 24 transistors.  

S has larger delay but it is not on the critical path 

  outS ABC A B C C   
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kill 

generate 1-propagate 

0-propagate 
odd 0s 

odd 1s 
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The transistors connected to Cin are closest to the output of the 
carry (and sum) circuits. (why?) 

Only the transistors of the carry are optimized for speed. (why?) 



Ripple-Carry Addition 

Carry computation is the critical path 

Carry propagation delay is 

reduced by using inverting 

adders where every other 

stage is working on 

complementary data. 
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XOR / XNOR Circuits 

Straight-forward, 
16 transistors 

14 transistors 

Complementary CMOS, 
12 transistors  

More efficient, less contacts, 
smaller layout, commonly 
used in  STD cell Lib. 
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Transmission gate 
design, 10 transistor 

Only 6 transistors, but non 
restoring. 

0 ,   1A Y B A Y B     

Only 4 transistors, 
fast, but doesn’t 
swing rail-to-rail. 

4-way 
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S A B C P C    Full-adder using XOR and MUX 

24 transistors and buffered outputs. 
Cout and S have same delay.  
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Carry-Propagate Addition 

Ripple-Carry Addition 

outin:    propagates to P A B C C 

out in:       generation regardless of G A B C C
Recall: 

Generate and Propagate signals are a key for fast addition  

Carry computation is the critical path in addition 
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Generalize to describe whether the group of bits

 generates or propagates a carry.i k j 

: : : 1: i j i k i k k jG G P G   : : 1: i j i k k jP P P 

:i i i i iG G A B :i i i i iP P A B 

with the base case 

0:0 0:0in     0G C P Define 

S P C Recall:  

1:0i i iS P G  The sum for bit i can be computed by: 
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Addition is reduced into 3-step computation process 

bitwise propagate 
and generate logic 

group propagate 
and generate logic 

sum logic 

Addition acceleration is obtained by smart PG grouping  
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shared bitwise 
propagate-generate 
(PG) logic 

To use fewer stages for carry propagation, higher valency 
comprising more complex gates is possible, e.g. valency-4: 

  : 1:: : 1: 1: 1: 1:i j m ji k i k k l k l l m l mG G P G P G P G       

: 1:: 1: 1:  i j m ji k k l l mP P P P P   i k l m j   

: : : 1: i j i k i k k jG G P G   : : 1: i j i k k jP P P 

A combined pair of smaller groups is called valency-2 
group PG logic. 

i k j 



PG Carry-Ripple Addition 
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   1 1 1i i i i i i i i i i ii i iC A B A B C A B A B C G PC         
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Adder architecture diagram 

out :0 1:0N NN NC G G P G   

PG logic 

sum XOR 

 ripple 1pg AO XORt t N t t   

actual CMOS 

Group generate 
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majority (carry) CMOS logic 

generate 

propagate 

kill 

Carry Chain Adder 

Manchester valeny-4 carry chain adder (dynamic logic) 

pass transistor 
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0 0:0C G

1 1:0 1 1 0C G G PC  

 2 2:0 2 2 1 1 0C G G P G PC   

  3 3:0 3 3 2 2 1 1 0C G G P G P G PC    

C3  is calculated in “one” time unit but we must wait for carry  

to ripple through group to be ready.  

How delay grows with chain length?  quadratic! 

Chain should be broken and buffered. Common length is 3-4. 
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Manchester carry chain adder using valency-4 stages 

Similar to ripple carry adder but uses N/3 stages. 

Involves a series propagate transistor per bit.  

Faster than AND-OR or majority gate per bit in carry ripple.  
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Carry Skip Adder 

Assume that the propagate computed for a group i:j is  1.   

: 1
i

i j k kk j
P A B


  

Consequently, the carry-out of group i:j is the same as the 
carry-in and carry computation can be skipped.    

bitwise propagate and 
generate + group propagate skip MUX skip path 
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Carry-skip adder Manchester stage  (dynamic logic) 

skip MUX 

i
kk j

P


For group propagate 0 the carry generated within group is taken. 

This is a considerable acceleration compared to carry-ripple, 
while hardware overhead is small. 

Was proposed in 19th century by Charles Babbage and used by 
mechanical calculators. 
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Propagation delay 

4-bit carry chain 
if each group 
generates a carry 

carry skip chain 

4-bit ripple chain 
if carry-in is by 
passed to chain 
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N-bit adder 
with k groups 
of n bits each 
(N=kn). 

Delay of a 
chain is slower 
than skip 
propagation 
delay (AND, 
MUX). 

First chain must compute sums and carry within n-1 delay units. 

Carry propagates through k-2 stages. 

Last chain must compute sums within n-1 delay units. 



Nov 2012 23 

   carry-skip

first chain last chain
skips

1 2 1 2 4
N N

T n n n
n n

 
         

 

carry-skip opt
2

2
2

dT N N
n

dn n
   

opt
carry-skip 2 2 4T N 

Example: consider 32-bit addition.  

opt
carry-skip 2 2 32 4 12,  compared to 32 units in

carry-ripple adder.

T   

Question: Can we further accelerate carry propagation?  

Answer: Yes we can, block size may vary across adder.   
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Consider t ripple-carry adder groups A0, A1, … , At-2, At-1. How 

should we distribute the N bits in those blocks? 

Assume a skip chain of A1, … , At-2. Since skip is far faster than 

ripple carry, we wish to minimize the number b of bits in A0 

and At-1. 

,  1 ,   , 2 1 ,  2 1 ,   , 1 ,  b b b t b t b b     

Bits are distribute as follows: 

Summing over all blocks: 

 
2 1

0

1 1
2    

4 2 4 2

t

i

t N t
N b i t b b

t





 
         

 

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     carry-skip

first chain skips last chain

2
1 2 1 3

2

N t
T b t b

t
        

opt
carry-skip

opt2
carry-skip

21 2
    

2 2 3

t NdT N

dt T Nt

 
   

 

opt

opt

#blocks(var) 2
2

#blocks(fixed) 2

t N

N n N
  

number of blocks is increased 

opt
carry-skip

opt
carry-skip

(var) 2 3 1

2 2 4 2(fixed)

T N

NT


 



delay is decreased 
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Groups are of lengths [2, 3, 4, 4, 3] compared to [4, 4, 4, 4].  

Saved 2 levels of logic on critical path compared to fixed.  
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Subtraction 

How to compute A-B? 

1A B A B   Recall that in 2’s complement 

We’d like to combine adder and subtracter in one circuit 



Valency-4 PG 
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Carry-Lookahead Adder 

Carry-skip adder ripples the carry through the group, requiring 
waiting to determine whether the first group generates a carry. 

Carry-lookahead (CLA) computes group generate signals as well 
as group propagate signals to avoid waiting for a ripple. 

0 0:0C G

1 1:0 1 1 0GC G CP  

 22 2:0 12 1 0C G G PCPG   

  33 3:0 2 2 1 13 0C G GG P P G PC    



Nov 2012 29 

Carry-lookahead circuit with half devices compared to AOAO… 

Cout is complementary  

What happens when all 
P=1 and G=0?  
Both paths to Vdd and  
Vss are closed. 

P and G signals connect 
and disconnect path to 
Vdd / Vss 

Cin then takes care 
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group PG AND-OR 

N-bit adder with 
k groups of n bits 
each (N=kn). 
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Propagation delay 

CLAT 
 PG n

t   AO 1t k    1n  PGt  XORt

No better than variable-length carry skip, but requires more 
HW due to PG generation per group. 
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Commercial MSI 4-bit CLA adder 

bit PG 

2-level 
logic CLA 

sum 
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Carry-Select Adder 

The critical paths in carry-skip and carry-lookahead involves 
carry calculation into each n-bit group and then using it for the 
sums within the group.  

It is possible to pre compute the outputs for both 0/1 carry 
inputs and then select accordingly.  

If C4=0, top adder applies 
for C8. 

If C4=1 bottom adder 
applies for C8. Notice that  
cout(cin=1) >= cout(cin=0).  
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1st group computes 
carry out 

Compute for 
both carries 

Select 
accordingly  

selectT  PGt 

Simultaneous PG for all bits  

AOt n 

n-bits of first group adder 

 2k   MUXt

Propagation delay 
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Carry-select adder is fast but the amount of circuits is about 

twice compared to others. This is both power and area penalty. 

The PG and XOR circuits are similar 

in 0 and 1 adders, independent , 

hence MUX can be used to select 

the proper input of XOR. 

This is called carry-increment adder. 

Carry-Increment Adder 
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36 

incrementT  PGt 
XORt AO 1t n    1k  

Acceleration is possible by variable group size  

PG AO XORincrement 2T t Nt t  
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Tree Adders 

In wide adders the delay of the carry passing through stages 
becomes dominant. 

The delay can be reduced by looking ahead across lookahead 
blocks. 

The square root delay can be improved to logarithmic delay  
by constructing multilevel lookahead structures. 

There are many ways to build lookahead trees, offering 
tradeoffs between number of circuits, fan-out and amount of 
interconnects. Those are translated into area and power. 

Such adders are known as lookahead adders, logarithmic 
adders or parallel-prefix adders.  
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Brent-Kung tree 

Compute prefixes for 2-bit groups. Then prefixes for 4-bit groups. 

Then 8-bit and 16-bit groups. Prefixes fan back down to compute 

carry-in to each bit. 2(log2N) - 1 levels (area), fan-out 2. 
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Sklansky tree 

Intermediate prefixes can be computed along with those of 
large groups. 

Delay reduced to log2N. Fan out is doubled at each row. 
Transistor sizing and buffering is required (area, power). 
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Kogge-Stone tree 

Achieves log2N stages. Fan out is 2. 

Wire length grows is quadratic with N. It significantly  
increases area, buffers, power.  
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Han-Carlson tree 

Use Kogge-Stone on odd bits, cutting hardware by factor 2. 

Use one more stage to ripple into even bits. 
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Comparison of Adder Architectures 

Architecture Logic Levels Max 
Fan-out 

# Wiring 
Tracks 

# Cells 

Ripple-Carry 1 1 

Carry-Skip (n=4) 2 1 

Carry-Increment (n=4) 4 1 

Carry-Increment (var.) 1 

Brent-Kung 2 1 

Sklansky 1 

Kogge-Stone 2 

Han-Carlson 2 

2N

22log 1N 

2log N

2log N

2log 1N 

2N

2 1N 

2N

4N

4 5N 

4 2N 

1N  1N 

1.25N

2N

2N

20.5 logN N

2logN N

20.5 logN N

2N

PG and XOR logic is not counted. 

Ripple-carry should be used when they meet timing 
constraints (small area and power). 

For 64 bits and up tree adders are distinctly faster. 
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Logic synthesizers automatically map the “+” operator 
into appropriate adder to meet timing constraints while 
minimizing area and power (aka design ware).  



Carry Probabilities 

Carry generation probability:   1 4

Carry kill probability:              1 4

Carry propagation probability: 1 2

 

Given carry generated at bit 

The probability that it

- will propagate up to and including bit  1

- and stops at bit   is:

i

j

j j i





    1
2 1 2 2

j i j i    
 

What is the average length of a carry in addition?
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For a -bit adder, the expected length of a carry generated

at bit  is:

k

i

 
1

by induction 2 2 2 2
p l p

l
l p 


  

       

   

         

stops does not stop

1 1

1

1 1

1

1 1 1

2 2

2 2

2 1 2 2 2 2

k j i k i

j i

k i k il

l

k i k i k i

j i k i

l k i

k i k i

     

 

    



        

  

  

       





Consequently, for long adders ( ) the avarage length

of carry propagation is nearly 2.

i k
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The short length of average carry propagation indicates 

that the average worst-case may also be short. 

A usual design of a k-bit adder is targeting the worst-

case where the carry is propagating along the entire 

bits, regardless of adder architecture. 

Burks, Goldstine and von Neumann [1946] noticed that 

the average worst-case carry propagation length is 

log2k. 
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 Let  be the probability that the longest carry

chain in a -bit adder is  or more.

k h

k h



   

The probability that the longest carry chain is exactly 

is therefore 1 .k k

h

h h  

(b) The 1 LSBs have no such a carry chain,  but the 

      MSBs do have.

k h

The longest carry chain is   in two exclusive ways:h

(a) The 1 LSBs have a carry chain  .k h 
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         1
1 1 1

case (b)

case (a) not case (a) carry generated
and propagated
along  bits

1
1 2 2  .

2

hh
k k k k

h

h h h h   
 

          

Thus, we have

       1
1Therefore, 2 . Assuming 0 for ,

h
k k ih h h i h  

 
   

           1 1
1

telescopic sum

1 2 2  .
k

h h
k i i

i h

h h h k h k  
   





       

           

   

1

1

The expected length  of the longest carry chain

1 1 2 2 2 3

   0  .

k

k k k k k k

h
k

k k

h

h h h

k k h



      

 





                

     




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     

   

2

2

2 2

2

log 1

1 1 log

log 1 log1
21 log

  1 2 log 1 2 .

k k k

k k kh h h k

k k kh

h h k

h h h

k k k

   
  

    

        
   

  

      

  

 

2 2Let log log ,  0 1.k k       

   

 

2

2

log

log
2

2 2

1
Noting that 2 ,  and  2 1 ,  we get

log 1 2

      log 1 2 log .

k

k

k

k k

k k















 

  

     

   
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Carry-Completion Detection 

Worst-case carry propagation of length k almost never 
materializes. 

A carry-completion detection adder performs addition 
in average O(log2k) time. 

A carry 0 is also explicitly represented and allowed to 
propagate between stages. The carry into stage i is 
represented by the two-rail code: 

 

 

 

 

0,0  Carry not yet known

, 0,1  Carry known to be 1

1,0  Carry known to be 0

i ib c




 


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 

   

0,0  carry unknown,

0,1  carry known to be 1, 1,0  carry known to be 0.



Two 1s generate a carry of 1 propagating towards MSB. 

Two 0s generate a carry of 0 propagating towards MSB. 

Initially, all carries are (0,0), namely, unknown. 
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in inThe carry ( , ) is injected into the LSB.c c

When every carry assumes one of the values (0,1) or 
(1,0) carry propagation is complete. 

The local "done" signals =  are ANDed to form

the global  signal, indicating carry propagation

completion.

i i id b c

alldone





Excluding initialization and carry-completion detection 
times, the latency of k-bit carry-completion adder 
ranges from 1 to 2k+1 gate delays, with 2log2k+1 
average gate delays. 
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Behrooz Parhami, Computer Arithmetic, Oxford, 
2010, page 100: 
 
"Because the latency of the carry-completion adder is data-
dependent, the design of Fig. 5.9 is suitable for use in 
asynchronous systems. Most modern computers, however, 
use synchronous logic and thus cannot take advantage of the  
high average speed of a carry-completion adder." 


