=<

Nov 2012

Addition Circuits

Shmuel Wimer
Bar llan University, Engineering Faculty
Technion, EE Faculty

<3

Table 10.

Full Adders

for full adder

h table
G

P

0

—5

0

0

0

1

0

1

1

i | O 4| O} O = | S|

1

0

S=A®B®C
G = A.B:
P=A®B: C,, propagatesto C,,
K=A-B: C._ iskilled

In

Cout = A‘B+(A€|‘> B)C

C,,: 9eneration regardless of C..

<

A
S=A®@BOC=P®C 85 s
Cou = AB+AC +BC =MAJ(A B,C) 89 5 —Cou
Design I: Mirror CMOS logic
odd 1s
A~I>of A 1-propagate
A— E—-:{ B[
E—c{ d J generate
B CUU
B4>& B C 5_3 kill |
AL B[B[
C ~I>O—E O-propagaté7

32 tranistors

odd Os

N and P networks are identical rather than complementary!

Nov 2012

<

Design Il: S is factored to reuse Cout

S=ABC+(A+B+C)C,,

MINORITY
A - E— -
! 10 L iT ! o) S
C ! 4 : i
! 10 ' 1C |
| C -
: - ““‘E[c[[|S D g
i In i Ir -
% Ir IL :
' | T In
1-propagate | IC |hlgenerata C ! odd 1s
| I In
L | IC i

Uses only 28 transistors. Can be reduced to 24 transistors.
S has larger delay but it is not on the critical path

Nov 2012

=<

The transistors connected to C;,, are closest to the output of the
carry (and sum) circuits. (why?)

Only the transistors of the carry are optimized for speed. (why?)

Nov 2012 5

=

A, B, A; By A, B, A, B

Cﬂut@ Cab c}&?ﬁ C}Jrﬁci” Ripple-Carry Addition
S3

534 532 EST

Carry computation is the critical path

Carry propagation delay is A, B, A; B; A, B, A, B

reduced by using inverting

adders where every other ¢_, | Ci,

stage is working on

complementary data. Sy S3 S> S;

Nov 2012 6

<

o >

Straight-forward,
16 transistors

Al e
A4l B
-] Y
£ A —
— -
B i B —

s

Complementary CMOQOS,
12 transistors

Nov 2012

XOR / XNOR Circuits

14 transistors

Bl B,

A — A—d

—] +—Y

A— A—

— -]

B B—|
4

More efficient, less contacts,
smaller layout, commonly
used in STD cell Lib.

Transmission gate
design, 10 transistor

A

B— B

— — T

A

Only 6 transistors, but non
restoring.

A=0=Y =B, A=1=Y =B

Nov 2012

—Y

Only 4 transistors,
fast, but doesn’t
swing rail-to-rail.

!

V. | Ny
u Full-adder using XORand MUX S=A®B®C=P®C
A

B C A B C

Y
I L
T

24 transistors and buffered outputs.
Cout and S have same delay.

Nov 2012 9

=<

Carry-Propagate Addition 1
CoutA_A_{r/LCn
Ay By Az By Ay B, Ay B SN..1
Cout— >T< >T< ++Ci, Ripple-Carry Addition
SNPENI RN
S, S, S, S,

Carry computation is the critical path in addition

cecall G=A-B: C,, generation regardless of C,_

Generate and Propagate signals are a key for fast addition

Nov 2012 10

!

W Generalize to describe whether the group of bits
| > Kk > | generates or propagates a carry.

Gi.j =Gix + Rk Gk1j Rij =R B
with the base case

Gi:iéGi:Aﬁ'Bi Pi:iéF)i:Ai@Bi
Define Goo =Ci, Py =0

Recal: S=P®C

The sum for bit i can be computed by: Si = P, @Gi—to

Nov 2012 11

{ﬁl

By Az By A 2 Aq Cin
U UK]JUUU ﬂ
& : : :)
: : 5 :
: : : :
: : : :
: : : :
- G3o | Gao i Gio i Goo
C C C C
T s | —C | —C | —G
WA
|
C0u1 Sd S.’! 52 81

Addition is reduced into 3-step computation process

bitwise propagate
and generate logic

group propagate
and generate logic

sum logic

Addition acceleration is obtained by smart PG grouping

Nov 2012

12

=<

O e e
DO_C> i (PG) logic

Gi.j =Gix +Rx* Gkxj Rj=RxFRaj izk>j

98]

A combined pair of smaller groups is called valency-2
group PG logic.

To use fewer stages for carry propagation, higher valency
comprising more complex gates is possible, e.g. valency-4:

F:j = Bk Bz *Azm® Pz i>k>I>m> j
Gi.j =Gix + Ry (Gk—l'l + P2t (Grotm + Ptm*Gm-1;))

Nov 2012 13

=

Ci = AB;

Nov 2012

4,
PG Carry-Ripple Addition

+(Ai + B-)C-_l = AB

Az By A

+(A®B;)Ci1 =G +RCi 4

Bi‘ A‘I B1 CII‘I

14

=<

| PG logic

Cout =GN0 =6n + PyOn1o

tripple :tpg "'(N _1)tAO +tXOR

actual CMOS
ﬁ—'tﬂ G, sum XOR
Gy

Nov 2012

4,
Adder architecture diagram

Bit Position

-

(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 S)

Y

|1ﬂ:5 14:013:012:011:010:0 9.0 80 7:0 60 50 40 30 20 10 00

15

Carry Chain Adder

=<

majority (carry) CMOS logic pass transistor
— —3 -_c_] P
/H_ Bl B[. kil 1 R4
e O AHL Ca—L Cou
FOpaga ou o
prop g\ e A : *;‘G
A B[B[generate
v

Manchester valeny-4 carry chain adder (dynamic logic)

P, P, “ P,
o[T, L ol & L ¢l T, L e c;
CS(GE}:D}
Co(Go) G| v G, <7 3_‘

ColGod Ci(Gr9 Cp(Gyo

Nov 2012 16

<!

V
Co =Gpyp
C1 =061 =G+ RCy R

)
C, =Gy =G, + P, (G +PRCy) [V/ g QJ
|

| | I

C3=C30=G3+P3(Gy + P, (G1+RCo)) 30 20 10 00

C3 is calculated in “one” time unit but we must wait for carry
to ripple through group to be ready.

How delay grows with chain length? quadratic!

Chain should be broken and buffered. Common length is 3-4.

Nov 2012 17

Manchester carry chain adder using valency-4 stages

=

(15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

Vaa)

—

ae!

jazs!

15:0 14:0 13:0 12:0 11:0 10:0 9:0 8:0 7:0 6.0 50 4:0 3:0 2:0 1:0 0.0

—

Similar to ripple carry adder but uses N/3 stages.
Involves a series propagate transistor per bit.
Faster than AND-OR or majority gate per bit in carry ripple.

Nov 2012 18

Carry Skip Adder

=<

Assume that the propagate computed for a group i;jis 1.
i
Fj :szj Ac@ B =1

Consequently, the carry-out of group i:j is the same as the
carry-in and carry computation can be skipped.

bitwise propagate and
skip path skip MUX generate + group propagate

A1eha Bie:1a A129 Biag Ag:s %ﬁg’/////, As:4 Ba:y

Nov 2012 19

For group propagate O the carry generated within group is taken.

=<

This is a considerable acceleration compared to carry-ripple,
while hardware overhead is small.

Was proposed in 19 century by Charles Babbage and used by
mechanical calculators.

Carry-skip adder Manchester stage (dynamic logic)

i

¢_4Er2‘ skip MUX

L | DN
4 Skjy/

Nov 2012 20

=

Propagation delay

4-bit carry chain
if each group
generates a carry

6 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0)

carry skip chain -

"/

C
4-bit ripple chain
if carry-in is by

passed to Chain 16:0 15:0 14:0 13:0 12:0 11:0 10:0 9.0 80 7.0 6:0 50 4.0 3.0 220 1.0 0:0

Nov 2012 21

l o

u; (16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
N-bit adder H{ Hf H{
with k groups | o | 0|

L

of n bitseach 71 | o | o |
(N=kn).
Delay of a V44
chain is slower 4 1 | o
than skip v [
propagation
delay (AND,
MUX).

First chain must compute sums and carry within n-1 delay units.

16:0 15:0 14:0 13:012:0 11:010:0 90 80 70 6:0 50 40 30 220 1:0 00

Carry propagates through k-2 stages.
Last chain must compute sums within n-1 delay units.

Nov 2012 22

<!

N N
iMﬁarry-skip - (n_l) +(F_2j+ (n_l) :2n+7_4
first chain ——~—— last chain
skips
ATcarry-skip N 0 N
_ pt _ opt _ _
= =2 —n—2 —=nr =) Tcarry_skip =2V2N -4
Example: consider 32-bit addition.
T OPt = 24/2+32 —4 =12, compared to 32 units in

carry-skip
carry-ripple adder.

Question: Can we further accelerate carry propagation?

Answer: Yes we can, block size may vary across adder.

Nov 2012 23

=<

Consider t ripple-carry adder groups Ao, As, ..., At2, At-1. How
should we distribute the N bits in those blocks?
Assume a skip chain of Ay, ..., A+2. Since skip is far faster than

ripple carry, we wish to minimize the number b of bits in Ao

and At-1.

Bits are distribute as follows:

b, b+1, ... ,b+t/2-1, b+t/2-1, ... ,b+1, b

Summing over all blocks:

N = ZZV“ b+1i) (b+£—£j — bzﬁ—£+1

Nov 2012 24

Nt)

S

first chain skips last chain
(opt
OTcarry-skip 1 2N Ny toPt = 2/N
T o 12 opt
at 2t \Tcarr)ry—skip =2JN -3

delay is decreased

opt
Tca?ry—skip (var) 2N -3 1

TOPL (fixed) 2v2N -4 /2

carry-skip

number of blocks is increased

#blocks(var) t°®' 2JN
#blocks(fixed) N/n°Pt /2N

Nov 2012 .

=2

V
V. N
u Groups are of lengths [2, 3, 4, 4, 3] compared to [4, 4, 4, 4]. <]

(1615141312111098?6543210)

%

4
7 |

|

16:0 15:0 14:0 13:0 12:0 11:010:0 9:0 80 7.0 6:0 50 4:0 3:0 2.0 1:0 00

Saved 2 levels of logic on critical path compared to fixed.

Nov 2012 26

=<

Subtraction

How to compute A-B?
Recall that in 2’s complement A—_B=A+B+1

We'd like to combine adder and subtracter in one circuit

A B
N..1 BN..1 An_ 1By 1

tc

\ Y /L1 \ V __ Sub/Add
+
SN...1 :A—B SN...1 :A: B

Nov 2012 27

Carry-Lookahead Adder

=<

Carry-skip adder ripples the carry through the group, requiring
waiting to determine whether the first group generates a carry.

Carry-lookahead (CLA) computes group generate signals as well
as group propagate signals to avoid waiting for a ripple.

CO — GO:O AGC/_,
C1 =60 =61 + PGy \JC/——;
C, =Gyg =G, +P, (G +RCy) QC

C3 = G3ZO = Gg + P3 (Gz + P2 (Gl + RI.CO))

Valency-4 PG

Nov 2012 28

ﬁ

Vb
Cout is complementary by
q[j EID +— G3
» G
P and G signals connect qu ° i
and disconnect path to < P ! °
Vdd/ Vss q[; J_p—- Go
R | o
What happens when all L
P=1 and G=07? Py . =:| -
Both paths to Vdd and P, | : 1
Vss are closed. pl | . T
P ']
Cin then takes care 3* e 1k

AND-OR
At6:13 B1g:13 A12:9 Bi2g ‘L Ags Bgs A4:1¢ Ba:1

CDU‘ G16113 C1 G12:g CB GB;S 04 G4:1
P16:13 —P12:9 HPs:s 1Pa:1
I I I 1 1 V 1 1 1

=<

(16151413121110987654321o)

N-bit adder with / /— / [{

k groups of n bits u

each (N=kn). L - i E:(_Ij EZ(E

[

16:0 15:0 14:0 13:0 12:0 11:010:0 9:0 80 7:0 6:0 50 4.0 3:0 220 1:.0 0:0

Ny
=

Nov 2012 30

Propagation delay

<

(161514131211109876543210)

nnRaBnES

it il ufl
i | | o

nf | | o

|

16:0 15!:014:013:012:011:010:0 9.0 80 7.0 6.0 50 40 3.0 2.0 1.0 0:0

Tora =t + tog(n) +tao | (K=1)+ (N=1) |+ txor

No better than variable-length carry skip, but requires more
HW due to PG generation per group.

Nov 2012 31

Ny
uv Commercial MSI 4-bit CLA adder

o
o
08
1
g
A
g
£
€8

(2}
[T
-7
(3]
[F4]
(w1}
{51}
(z1)

Vg% % Y L.J \‘/ / 5L, bit PG
U Lj$ %70 Uj) Y UMJ L Y 2-level
1 logic CLA

Nov 2012 32

Carry-Select Adder

The critical paths in carry-skip and carry-lookahead involves

carry calculation into each n-bit group and then using it for the
sums within the group.

=<

It is possible to pre compute the outputs for both 0/1 carry
inputs and then select accordingly.

Ags Bags
If Ca=0, top adder applies
for Cs. ' Y /LO
| -
C8 V C4
If Ca=1 bottom adder "_\ + /L1 B

applies for Cs. Notice that =
Cout(Cin=1) >= Cout(Cin=O). T
SSfi

Nov 2012 33

<t

U Select Compute for 1st group computm

accordingly both carries carry out
A16:13 B16:13 A12:sllB12:9 Ags Ba:s 1 Bay
V| fo [fo
—
Cout Ci2

St6:13 Stz
Propagation delay
Teerect = toa + tao [N+(K — 2)] +tyux
Simultaneous PG for all bits

n-bits of first group adder

Nov 2012 34

=<

Carry-Increment Adder

Carry-select adder is fast but the amount of circuits is about

twice compared to others. This is both power and area penalty.

The PG and XOR circuits are similar
in 0 and 1 adders, independent ,
hence MUX can be used to select

the proper input of XOR.

This is called carry-increment adder.

Nov 2012

4 bit GP

£

4 bit C

“0

v

tal

1

4 bit C

1

f —

»
AN Il

XOR

f

51219

LW s et
~v AT

35

U @
u (15 14 13 12 11 10 9 8 7 6 5 4 3 2 1.0)

Black Cell
14:12 10:8 6:4

Gix i:j 15:12./_ 11:8‘_ 7-{ ‘_
i | e 7

AL

15:0 14:0 13:0 12:0 11:0 10:0 9.0 80 7:0 60 50 4.0 3:0 2.0 1.0 0:0

Tincrement = Tog + a0 I:(n _1) +(k _1):| +1lxor

Acceleration is possible by variable group size

Tincrement = 1:PG TV 2N tAO + tXOR

36
Nov 2012

=<

Tree Adders

In wide adders the delay of the carry passing through stages
becomes dominant.

The delay can be reduced by looking ahead across lookahead
blocks.

The square root delay can be improved to logarithmic delay
by constructing multilevel lookahead structures.

There are many ways to build lookahead trees, offering
tradeoffs between number of circuits, fan-out and amount of
interconnects. Those are translated into area and power.

Such adders are known as lookahead adders, logarithmic
adders or parallel-prefix adders.

Brent-Kung tree

=<

Compute prefixes for 2-bit groups. Then prefixes for 4-bit groups.

Then 8-bit and 16-bit groups. Prefixes fan back down to compute
carry-in to each bit. 2(/og2N) - 1 levels (area), fan-out 2.

Nov 2012 38

Sklansky tree

=<

Intermediate prefixes can be computed along with those of
large groups.

Delay reduced to log2N. Fan out is doubled at each row.
Transistor sizing and buffering is required (area, power).

Nov 2012 39

Kogge-Stone tree

<

15:14 1211]11:10

15:12

15:8 14:7 12:5| 11:4| 10:3

s

15:0 14.0 13:.0 12.0 11:0 1000 9.0 80 7.0 6.0 5.0 4:70 330 20 1.0 0:0

Achieves log2N stages. Fan out is 2.

Wire length grows is quadratic with N. It significantly
increases area, buffers, power.

Nov 2012 40

Ny
uv Han-Carlson tree

|
\
\

15:.0 14.0 13:.0 12:.0 11:.0 100 90 80 70 60 50 40 30 20 10 00

Use Kogge-Stone on odd bits, cutting hardware by factor 2.

Use one more stage to ripple into even bits.

Nov 2012 41

=<

Comparison of Adder Architectures

Architecture Logic Levels Max # Wiring # Cells
Fan-out Tracks
Ripple-Carry N-1 1 1 N -1
Carry-Skip (n=4) N/4+5 2 1 1.25N
Carry-Increment (n=4) N/4+2 4 1 2N
Carry-Increment (var.) /2N 2N 1 2N
Brent-Kung 2log, N-1 2 1 2N
Sklansky log, N N/2+1 1 0.5N log, N
Kogge-Stone log, N 2 N/2 N log, N
Han-Carlson log, N+1 2 N/4 0.5N log, N

PG and XOR logic is not counted.

Ripple-carry should be used when they meet timing
constraints (small area and power).

For 64 bits and up tree adders are distinctly faster.

<

Logic synthesizers automatically map the “+” operator

into appropriate adder to meet timing constraints while
minimizing area and power (aka design ware).

Nov 2012

-

Prefix Tree
Z

/ Carr; Lookahead

/ Carry Select ¢ 32-bit

o | . m 64-bit
" Ripple Carry

L<><>/ .1 L .]

20 40 60 80 100
Delay (FO4)

43

=<

Carry Probabilities

What is the average length of a carry in addition?
Carry generation probability: 1/4

Carry kill probability: 1/4

Carry propagation probability: 1/2

Given carry generated at bit |

The probability that it
- will propagate up to and including bit j -1

-and stops at bitj (j >1i) is:

o ((709) g5 _ (i

=<

For a k-bit adder, the expected length of a carry generated
at bit 1 Is:

stops does not stop

le_llﬂkj—l)Z (j_i5+ik—|)2 (k)

2 (k)2

= 2—(k—i+1)27) (ki) 2 kT g (k)

by induction " 127 =2—(p+2)2°°

Consequently, for long adders (I < k) the avarage length
of carry propagation is nearly 2.

Nov 2012

45

=<

The short length of average carry propagation indicates

that the average worst-case may also be short.

A usual design of a k-bit adder is targeting the worst-
case where the carry is propagating along the entire

bits, regardless of adder architecture.

Burks, Goldstine and von Neumann [1946] noticed that

the average worst-case carry propagation length is

log,k.

=<

Let 7, (h) be the probability that the longest carry
chain in a k-bit adder is h or more.

The probability that the longest carry chain is exactly h
is therefore 7, (h)—n, (h+1).

The longest carry chain is > h in two exclusive ways:

(a) The k —1 LSBs have a carry chain > h.

(b) The k —1 LSBs have no such a carry chain, but the h
MSBs do have.

Ay
M Thus, we have case (b)
1 - —(h+
77k(h)=77k_1(h)+[1—77k_1(h)]>< EXZ " <p(h)+2)

case () not case (a) carry generated

and propagated
along h bits

Therefore, 7, (h)—7,,(h)< 2" Assuming 7, (h)=0fori<h,

telescopic sum

(h)]<(k-h+1)27 " <k2 (")

|:77| — 1], 1
The expected length A of the longest carry chain
A= Zh[nk h+1:|:[77k 1)—m (2]+2[77k(2)—77k(3)]

48

+--+k| 77 (k) —ojzhz:nk(h)

Nov 2012

=K

2= ()= LRk, (h)+ZE=LIog2kJnk (h)
ST LT K2 < (Llog k|- k2)

Let | log, k |=log, k—&, 0<e<1.

Noting that 27'°9:¥ =%, and 2¢ <1+¢, we get

2 <(| log, k |~1)+ k2 11°%:K¢)
(log, k —&—1)+2° <log, k.

Nov 2012 49

=<

[|
Carry-Completion Detection

Worst-case carry propagation of length k almost never
materializes.

A carry-completion detection adder performs addition
in average O(log,k) time.

A carry O is also explicitly represented and allowed to
propagate between stages. The carry into stage i is
represented by the two-rail code:

(0,0) Carry not yet known
(b;,¢)=1(0,1) Carry known to be 1
(1,0) Carry known to be 0

4

(0,0) carry unknown,

(0,1) carry known to be 1, (1,0) carry known to be 0.

O . D 2 by =cip

Ck o= COU(C!+1

Cp=Cin

XiYi

dis 1 bi=1: No carry
J—@ ci=1: Carry
a‘lld_on—eC;_} From other bit positions

Nov 2012 -

<

Two 1s generate a carry of 1 propagating towards MSB.
Two Os generate a carry of O propagating towards MSB.

Initially, all carries are (0,0), namely, unknown.

The carry (C;,,C;,,) IS Injected into the LSB.

When every carry assumes one of the values (0,1) or
(1,0) carry propagation is complete.

The local "done" signals d; =b; v ¢; are ANDed to form
the global alldone signal, indicating carry propagation
completion.

!

Excluding initialization and carry-completion detection
times, the latency of k-bit carry-completion adder
ranges from 1 to 2k+1 gate delays, with 2log,k+1
average gate delays.

Behrooz Parhami, Computer Arithmetic, Oxford,
2010, page 100:

"Because the latency of the carry-completion adder is data-
dependent, the design of Fig. 5.9 is suitable for use in
asynchronous systems. Most modern computers, however,
use synchronous logic and thus cannot take advantage of the
high average speed of a carry-completion adder."

