Graph Matching and Clock Gating

Prepared by Shmuel Wimer
Bar-Ilan Univ., Eng. Faculty

Outline

How data-driven clock gating works
Flip-flops activity and correlation
The optimal fan-out of a gater
Delay implications
The complexity of flip-flop grouping

Motivation

- Clocking consumes 30% to 70% of dynamic power
- Typically, only 3% of the clock pulses are useful, namely, only 3% of the clock switching occurs with data toggling!
- Clock enabling is easier at high design levels but harder in logic and gate level
- Clock enabling is easier in register files and data path, but harder in control
- Designers are conservative, leaving on table a lot of "hidden disabling"

Data-Driven CLK Gating

There is timing overhead!

Timing Implications :

The Optimal Clock Gater Fan-out

There is a tradeoff between hardware overhead and amount of saved clock pulses (power savings).

FFs' activities and their correlations is a key.

Worst case assumption:
All FF are toggling independently of each other.

\boldsymbol{k} : \# flip-flops, \boldsymbol{q} : FF probability for $\mathrm{D}=\mathrm{Q}$

Derivate by $k: \quad q^{k} \ln q\left(c_{\mathrm{FF}}+c_{\mathrm{W}}\right)+c_{\text {latch }} / k^{2}=0$

Optimal k-size Flip-flop Grouping

Given n flip-flops and $m+1$ clock cycles

$$
\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right) \text { is the activity (toggling) of flip-flop }
$$

$\left\|\mathbf{a}_{i} \oplus \mathbf{a}_{j}\right\|$ is the number of redundant clock pulses ocurring by jointly clocking FF_{i} and FF_{j}

FF Pairwise Activity Model

$G(V, E, w)$: FF pairwise activity graph.
$v_{i} \in V$ corresponds to FF_{i}.
$e_{i j}=\left(v_{i}, v_{j}\right) \in E$ is FF pairing.
$\mathbf{a}_{i} \mid \mathbf{a}_{j}$ is joint toggling.
$w\left(e_{i j}\right)=\left\|\mathbf{a}_{i} \oplus \mathbf{a}_{j}\right\|$ is redundant clock pulses, hence a waste.
$E^{\prime} \subset E$: vertex matching

Assume that FF grouping in pairs (k=2).
Total power, normalized to number of clock switching:

$$
\begin{aligned}
& P=2 \sum_{e_{i j} \in E^{\prime}}\left\|\mathbf{a}_{i} \mid \mathbf{a}_{j}\right\|= \\
& \quad \sum_{v_{i} \in V}\left\|\mathbf{a}_{i}\right\|+\sum_{e_{i j} \in E^{\prime}}\left[\left\|\mathbf{a}_{i} \oplus\left(\mathbf{a}_{i} \mid \mathbf{a}_{j}\right)\right\|+\left\|\mathbf{a}_{j} \oplus\left(\mathbf{a}_{i} \mid \mathbf{a}_{j}\right)\right\|\right]=
\end{aligned}
$$

Essential + Waste

$$
\sum_{v_{i} \in V}\left\|\mathbf{a}_{i}\right\|+\sum_{e_{i j} \in E^{\prime}}\left\|\mathbf{a}_{i} \oplus \mathbf{a}_{j}\right\|=\sum_{v_{i} \in V}\left\|\mathbf{a}_{i}\right\|+\sum_{e_{i j} \in E^{\prime}} w\left(e_{i j}\right)
$$

Optimal FFs pairing ($k=2$) is solved in polynomial time by minimal cost perfect graph matching.
$\begin{array}{lllllllllllll}\text { FF1: } & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ \text { FF2: } & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 1\end{array}$
$\begin{array}{lllllllllllll}\text { FF3: } & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ \text { FF4: } & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0\end{array}$
$\begin{array}{lllllllllllll}\text { FF5: } & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ \text { FF6: } & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 1\end{array}$
FF7: 00
FF8: $\begin{array}{lllllllllllll} & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0\end{array}$

What happens when $k>2$?

Is repeated perfect matching optimal ?

No! Here is the optimal 4-size grouping

FF1:	0	0	1	0	0	0	1	0	0	0	0	1
FF2:	0	1	0	0	0	1	1	0	1	1	0	1
FF6:	1	0	1	1	1	0	1	0	1	0	0	1
FF7:	0	1	1	1	0	1	0	0	1	0	0	1

FF3:	1	1	1	0	0	0	0	1	0	1	1	0
FF4:	1	0	1	0	0	0	0	1	1	1	1	0
FF5:	1	0	0	1	1	0	1	0	1	1	0	0
FF8:	0	1	1	1	1	0	0	1	0	0	0	0

Finding optimal k-grouping is NP-hard

