

Graph Matching and Clock Gating

Prepared by Shmuel Wimer Bar-Ilan Univ., Eng. Faculty

Outline

How data-driven clock gating works

Flip-flops activity and correlation

The optimal fan-out of a gater

Delay implications

The complexity of flip-flop grouping

Motivation

- Clocking consumes 30% to 70% of dynamic power
- Typically, only 3% of the clock pulses are useful, namely, only 3% of the clock switching occurs with data toggling!
- Clock enabling is easier at high design levels but harder in logic and gate level
- Clock enabling is easier in register files and data path, but harder in control
- Designers are conservative, leaving on table a lot of "hidden disabling"

Data-Driven CLK Gating

There is timing overhead!

Timing Implications (3)

The Optimal Clock Gater Fan-out

There is a tradeoff between hardware overhead and amount of saved clock pulses (power savings).

FFs' activities and their correlations is a key.

Worst case assumption:

All FF are toggling independently of each other.

k: # flip-flops, **q**: FF probability for D=Q

Net saving at amortized over
$$k$$
 a leaf flip-flop FFs
$$\downarrow \qquad \qquad \downarrow \\ c_{\text{net_saving}} \geq q^k \left(c_{\text{FF}} + c_{\text{w}}\right) - \left[c_{\text{latch}}/k + (1-q)(c_{\text{w}} + c_{\text{OR}})\right]$$
 Gater's disabling probability Switching probability of FF enabling

Derivate by *k*:
$$q^k \ln q(c_{\rm FF} + c_{\rm W}) + c_{\rm latch}/k^2 = 0$$

Graph Matching and Clock Gating

Optimal k-size Flip-flop Grouping

Given n flip-flops and m+1 clock cycles

$$\mathbf{a} = (a_1, \dots, a_m)$$
 is the activity (toggling) of flip-flop

 $\|\mathbf{a}_i \oplus \mathbf{a}_j\|$ is the number of redundant clock pulses ocurring by jointly clocking FF_i and FF_j

FF Pairwise Activity Model

G(V, E, w): FF pairwise activity graph.

 $v_i \in V$ corresponds to FF_i .

$$e_{ij} = (v_i, v_j) \in E$$
 is FF pairing.

 $\mathbf{a}_i \mid \mathbf{a}_j$ is joint toggling.

$$w(e_{ij}) = \|\mathbf{a}_i \oplus \mathbf{a}_j\|$$
 is redundant clock pulses, hence a waste.

 $E' \subset E$: vertex matching

Assume that FF grouping in pairs (k=2).

Total power, normalized to number of clock switching:

$$P = 2\sum_{e_{ij} \in E'} \left\| \mathbf{a}_i \mid \mathbf{a}_j \right\| =$$

$$\sum\nolimits_{v_i \in V} \left\| \mathbf{a}_i \right\| + \sum\nolimits_{e_{ij} \in E'} \left[\left\| \mathbf{a}_i \oplus \left(\mathbf{a}_i \mid \mathbf{a}_j \right) \right\| + \left\| \mathbf{a}_j \oplus \left(\mathbf{a}_i \mid \mathbf{a}_j \right) \right\| \right] =$$

Essential + Waste

$$\sum\nolimits_{v_i \in V} \left\| \mathbf{a}_i \right\| + \sum\nolimits_{e_{ij} \in E'} \left\| \mathbf{a}_i \oplus \mathbf{a}_j \right\| = \sum\nolimits_{v_i \in V} \left\| \mathbf{a}_i \right\| + \sum\nolimits_{e_{ij} \in E'} w \left(e_{ij} \right)$$

Optimal FFs pairing (k = 2) is solved in polynomial time by minimal cost perfect graph matching.

FF1: FF2:						
FF3: FF4:						
FF5: FF6:						
FF7: FF8:		1 1				

What happens when k>2?

Is repeated perfect matching optimal?

No! Here is the optimal 4-size grouping

FF1:	0	0	1	0	0	0	1	0	0	0	0	1
FF2:	0	1	0	0	0	1	1	0	1	1	0	1
FF6:	1	0	1	1	1	0	1	0	1	0	0	1
FF7:	0	1	1	1	0	1	0	0	1	0	0	1
FF3:	1	1	1	0	0	0	0	1	0	1	1	0
FF4:	1	0	1	0	0	0	0	1	1	1	1	0
FF5:	1	0	0	1	1	0	1	0	1	1	0	0
FF8:	0	1	1	1	1	0	0	1	0	0	0	0

Finding optimal *k*-grouping is NP-hard