
Parallel and Reconfigurable VLSI Computing (11)

Practical HLS Design

Hiroki Nakahara
Tokyo Institute of Technology

References:
[1] Micheal Fingeroff, "High-Level Synthesis Blue Book," Xlibris, 2010.
[2] Ryan Kastner, Janarbek Matai, Stephen Neuendorffer, "Parallel
Programming for FPGAs," arXiv:1805.03648, 2018.
https://arxiv.org/abs/1805.03648

Outline

• Discreate Fourier Transform (DFT) Design
• Principal of DFT
• Optimization for a matrix-vector multiplication
• Optimizations for a DFT design

Principal of DFT

Fourier Series

• Provides an alternative way to look at a real valued, continuous, periodic
signal where the signal runs over one period from -π to π

• The seminal result from Jean Baptiste Joseph Fourier states that any
continuous, periodic signal over a period of 2π can be represented by a
sum of cosines and sines with a period of 2π

where the Fourier coefficients a0, a1, ... and b1, b2, ... are computed as

Direct current (DC) term

Periodic Presentation

• Assume a function is periodic on [-L,L] rather than [-π,π], then we have

and

• Solving for t' and substituting t' into original DFT equation, then

Continuous Time Fourier
Transform
• Extends in time from minus infinity to plus infinity

• There is no implied repetition in time, therefore the frequency domain is
a continuous function

• The frequency domain also goes from minus infinity to infinity, with no
implied repetition, so the time domain is also continuous

• We can use Euler's formula ejnt = cos(nt) + j sin(nt) to give a more concise
formulation

Discrete Time Fourier Transform
• The only difference from above is we now sample in time the non-

repeating time domain function

• This one change causes the frequency domain to repeat. But notice that
the frequency domain is a continuous function (Because the time domain
is not repeating)

• DTFT is that of a discreate time sequence

Discrete Fourier Transform (DFT)
• We limit the time domain over a finite duration (similar to the Fourier

Series Expansion), which I argue is identical (mathematically and
intuitively) to repeating in time

• The DFT (for k=0, ..., N-1) is samples, evenly spaced in frequency, of the
DTFT

DFT (N=8) Example

• Matrix-vector multiplication

X[0] exp(-j(0!ω0)!0) exp(-j(0!ω0)!1) ⋯ exp(-j(0!ω0)!7)
X[1] exp(-j(1!ω0)!0) exp(-j(1!ω0)!1) ⋯ exp(-j(1!ω0)!7)

=

X[7] exp(-j(7!ω0)!0) exp(-j(7!ω0)!1) ⋯ exp(-j(7!ω0)!7)

x[0]
x[1]

x[7]

...

Matrix-vector Multiplication Code

Optimization of Matrix-
Vector Multiplication

Sequential Computation of
Matrix-vector Multiplication
• Each element is computed and stored into the BRAM

• Vivado HLS synthesizes with no pragma (Note, a multiplication consumes
3 cycles in the lecture)

Parallelism by Loop Unrolling
• Archived by #pragma HLS unroll

Sequential Execution from the
Unrolled Inner Product
• Latency of 6 cycles for each iteration and requires 8

multipliers and 7 adders

Loop Pipelining
• All of the statements in the second iteration happen only when all of the

statements from the first iteration are complete

• Schedule for three iterations of a pipelined version of the MAC for loop

Loop Initiation Interval (II)

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

Read
c[]

Read
shiftreg[]

* +

#pragma HLS pipeline II=1 #pragma HLS pipeline II=2
3 Muls+2 Adds

2 Muls + Add

• The number of clock cycles until the next iteration of the loop can start
• Note that, this may not always be possible due to resource/timing

constraints and/or dependencies in the code

Pipelined Implementation from
the Unrolled Inner Loop
• Use #pragma HLS pipeline II=3 to the unrolled loop
• It reduces the interval of a loop to be reduced, however does

not affect the latency

Pipelined Implementation from
the Pipelined Multipliers
• Pipelining is possible at different levels of hierarchy, including

the operator level, loop level, and function level
• Example: #pragma HLS pipeline II=3 is applied to the

pipelined multipliers

Storage Trade-offs

• In ideal case, arras (data and coefficient) are accessible at
anytime

• In practice, the placement of the data plays a crucial role in
the performance and resource usage

• In most processor systems, since the memory architecture is
fixed, we can only adapt the program to attempt to best
make use of the available memory hierarchy
• Taking care to minimize register spills and cache misses

• In an FPGA design, we can also explore and leverage different
memory structures and try to find the memory structure
• Off-chip memory (DRAM), BRAM, and register

Storages on/off FPGA-based System
• Data access times for DRAMs are typically too long
• Primary choices for on-chip storage (BRAM or FFs)

• BRAMs offer higher capacity (Mbits), and limited to two different
ports

• FFs allow for multiple reads at different addresses in a single clock,
but typically limited to around 100 KB

Array Partition
• If throughput is the number one concern, all of the data would be

stored in FFs
• #pragma HLS array_partition variable=XX complete
• However, as the size of arrays grows large, it is not feasible

• Using a single composite (large) BRAM means that we can only
access two ports at a time
• Prevents higher performance HW

• For instance, most designs require large arrays to be strategically
divided into smaller BRAMs
• #pragma HLS arrary_partition variable=XX factor=X cyclic/block

Matrix-vector Multiplication with
Array Partitioning (complete)

Matrix-vector Multiplication
Architecture with Array
Partitioning (Complete)
• The pipelining registers have been elided

Matrix-vector Multiplication Architecture
at II=3 with Array Partitioning
• On the left, the arrays have been partitioned more than

necessary, resulting in multiplexers
• On the right, the arrays are partitioned with factor=3

• In this case, multiplexing has been reduced, but the j
loop index becomes a part of the address computations

Question: (block?cyclic?)

Optimizations of DFT
Design

Baseline C++ Code
• See, Github:

https://github.com/HirokiNakahara/FPGA_lecture/blob/master/Lec11_Pr
ac_HLS_design/dft.cpp

Straightforward HLS Realization
• See, an HLS function DFT() in

https://github.com/HirokiNakahara/FPGA_lecture/blob/master/Lec11_Prac_HLS_
design/dft_hls.cpp

• Re-write constant memory size
• Bounded loop repetition
• Assigned loop labels (DFT_LOOP, DFT_MAC, WB)

These sentences
become bottleneck

Table Loop-Up for Trigonometric
Functions
• See, an HLS function DFT_trigo_tbl() in

https://github.com/HirokiNakahara/FPGA_lecture/blob/master/Lec11_Prac_HLS_
design/dft_hls.cpp

• Computation bottlenecks are removed

Comparison
Original Table Look-Up

Applied Pipeline Architecture
• See, an HLS function DFT_pipe() in

https://github.com/HirokiNakahara/FPGA_lecture/blob/master/Lec11_Prac_HLS_
design/dft_hls.cpp
• Achieved II=1
• Fortunately, array partition (dim=2) is automatically done
• Carefully read Vivado HLS Console!!

Bitwidth Optimization

• Apply a half-precision (16 bit) floating point
• Include <hls_half.h>
• To reduce the HW resource

Overall Performance and HW Resources
Original After Optimizations

Conclusion

• Introduce a DFT
• Comparison of various optimizations
• Applied to optimizations

• Achieved more faster and smaller architecture

Exercise

1. (Mandatory) Compared with an Unrolling version of DFT
design with respect to performance and resources

2. (Optional) Implement the DFT design on your ZYBO board

Send a report by a PDF file to OCW-i

Deadline is 30th, July, 2019 JST PM 13:20
(At the beginning of the final lecture)

