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Principal of DFT



Fourier Series

• Provides an alternative way to look at a real valued, continuous, periodic 
signal where the signal runs over one period from -π to π

• The seminal result from Jean Baptiste Joseph Fourier states that any 
continuous, periodic signal over a period of 2π can be represented by a 
sum of cosines and sines with a period of 2π

where the Fourier coefficients a0, a1, ... and b1, b2, ... are computed as 

Direct current (DC) term



Periodic Presentation

• Assume a function is periodic on [-L,L] rather than [-π,π], then we have

and

• Solving for t' and substituting t' into original DFT equation, then  



Continuous Time Fourier 
Transform
• Extends in time from minus infinity to plus infinity 

• There is no implied repetition in time, therefore the frequency domain is 
a continuous function

• The frequency domain also goes from minus infinity to infinity, with no 
implied repetition, so the time domain is also continuous

• We can use Euler's formula ejnt = cos(nt) + j sin(nt) to give a more concise 
formulation



Discrete Time Fourier Transform
• The only difference from above is we now sample in time the non-

repeating time domain function

• This one change causes the frequency domain to repeat. But notice that 
the frequency domain is a continuous function (Because the time domain 
is not repeating)

• DTFT is that of a discreate time sequence



Discrete Fourier Transform (DFT)
• We limit the time domain over a finite duration (similar to the Fourier 

Series Expansion), which I argue is identical (mathematically and 
intuitively) to repeating in time

• The DFT (for k=0, ..., N-1) is samples, evenly spaced in frequency, of the 
DTFT



DFT (N=8) Example

• Matrix-vector multiplication

X[0]          exp(-j(0!ω0)!0) exp(-j(0!ω0)!1) ⋯ exp(-j(0!ω0)!7)
X[1]          exp(-j(1!ω0)!0) exp(-j(1!ω0)!1) ⋯ exp(-j(1!ω0)!7)

=  

X[7]          exp(-j(7!ω0)!0) exp(-j(7!ω0)!1) ⋯ exp(-j(7!ω0)!7)

x[0]
x[1]

x[7]

... ... ...



Matrix-vector Multiplication Code



Optimization of Matrix-
Vector Multiplication



Sequential Computation of 
Matrix-vector Multiplication
• Each element is computed and stored into the BRAM

• Vivado HLS synthesizes with no pragma (Note, a multiplication consumes 
3 cycles in the lecture)



Parallelism by Loop Unrolling
• Archived by #pragma HLS unroll



Sequential Execution from the 
Unrolled Inner Product
• Latency of 6 cycles for each iteration and requires 8 

multipliers and 7 adders



Loop Pipelining
• All of the statements in the second iteration happen only when all of the 

statements from the first iteration are complete

• Schedule for three iterations of a pipelined version of the MAC for loop



Loop Initiation Interval (II)
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#pragma HLS pipeline II=1 #pragma HLS pipeline II=2
3 Muls+2 Adds

2 Muls + Add

• The number of clock cycles until the next iteration of the loop can start
• Note that, this may not always be possible due to resource/timing 

constraints and/or dependencies in the code



Pipelined Implementation from 
the Unrolled Inner Loop
• Use #pragma HLS pipeline II=3 to the unrolled loop
• It reduces the interval of a loop to be reduced, however does 

not affect the latency



Pipelined Implementation from 
the Pipelined Multipliers
• Pipelining is possible at different levels of hierarchy, including 

the operator level, loop level, and function level
• Example: #pragma HLS pipeline II=3 is applied to the 

pipelined multipliers



Storage Trade-offs

• In ideal case, arras (data and coefficient) are accessible at 
anytime

• In practice, the placement of the data plays a crucial role in 
the performance and resource usage

• In most processor systems, since the memory architecture is 
fixed, we can only adapt the program to attempt to best 
make use of the available memory hierarchy
• Taking care to minimize register spills and cache misses

• In an FPGA design, we can also explore and leverage different 
memory structures and try to find the memory structure
• Off-chip memory (DRAM), BRAM, and register



Storages on/off FPGA-based System
• Data access times for DRAMs are typically too long
• Primary choices for on-chip storage (BRAM or FFs)

• BRAMs offer higher capacity (Mbits), and limited to two different 
ports

• FFs allow for multiple reads at different addresses in a single clock, 
but typically limited to around 100 KB



Array Partition
• If throughput is the number one concern, all of the data would be 

stored in FFs
• #pragma HLS array_partition variable=XX complete
• However, as the size of arrays grows large, it is not feasible

• Using a single composite (large) BRAM means that we can only 
access two ports at a time
• Prevents higher performance HW

• For instance, most designs require large arrays to be strategically 
divided into smaller BRAMs
• #pragma HLS arrary_partition variable=XX factor=X cyclic/block



Matrix-vector Multiplication with 
Array Partitioning (complete)



Matrix-vector Multiplication 
Architecture with Array 
Partitioning (Complete)
• The pipelining registers have been elided



Matrix-vector Multiplication Architecture 
at II=3 with Array Partitioning
• On the left, the arrays have been partitioned more than 

necessary, resulting in multiplexers
• On the right, the arrays are partitioned with factor=3

• In this case, multiplexing has been reduced, but the j 
loop index becomes a part of the address computations

Question: (block?cyclic?)



Optimizations of DFT 
Design



Baseline C++ Code
• See, Github: 

https://github.com/HirokiNakahara/FPGA_lecture/blob/master/Lec11_Pr
ac_HLS_design/dft.cpp



Straightforward HLS Realization
• See, an HLS function DFT() in  

https://github.com/HirokiNakahara/FPGA_lecture/blob/master/Lec11_Prac_HLS_
design/dft_hls.cpp

• Re-write constant memory size
• Bounded loop repetition
• Assigned loop labels (DFT_LOOP, DFT_MAC, WB)

These sentences
become bottleneck



Table Loop-Up for Trigonometric 
Functions
• See, an HLS function DFT_trigo_tbl() in  

https://github.com/HirokiNakahara/FPGA_lecture/blob/master/Lec11_Prac_HLS_
design/dft_hls.cpp

• Computation bottlenecks are removed



Comparison
Original Table Look-Up



Applied Pipeline Architecture
• See, an HLS function DFT_pipe() in  

https://github.com/HirokiNakahara/FPGA_lecture/blob/master/Lec11_Prac_HLS_
design/dft_hls.cpp
• Achieved II=1
• Fortunately, array partition (dim=2) is automatically done
• Carefully read Vivado HLS Console!!



Bitwidth Optimization

• Apply a half-precision (16 bit) floating point 
• Include <hls_half.h>
• To reduce the HW resource



Overall Performance and HW Resources
Original After Optimizations



Conclusion

• Introduce a DFT
• Comparison of various optimizations
• Applied to optimizations

• Achieved more faster and smaller architecture



Exercise

1. (Mandatory) Compared with an Unrolling version of DFT 
design with respect to performance and resources

2. (Optional) Implement the DFT design on your ZYBO board

Send a report by a PDF file to OCW-i

Deadline is 30th, July, 2019 JST PM 13:20
(At the beginning of the final lecture)


