
Parallel and Reconfigurable VLSI Computing (9)

High-Level Synthesis (HLS)
Design: Introduction

Hiroki Nakahara
Tokyo Institute of Technology

Outline

• HLS Introduction
• Walk Through HLS Design

HLS Introduction

FPGA Potential

• Implementing computations in hardware can have
speed/energy advantages over software:
• Lithography simulation: 15x speed-up [Cong & Zhou,

TRETS’09]
• Linear system solver: 2.2x speed-up, 5x more energy

efficient [Zhang, Betz, Rose, TRETS’12]
• Monte Carlo simulation for photodynamic therapy: 80x

faster, 45x more energy efficient [Lo et al., J. Biomed
Optics’09]

• Option pricing: 4.6x faster, 25x more energy efficient [Tse,
Thomas, Luk, TVLSI’12]

4

Two Ways Computations

5

Hardware Design is Difficult

• FPGA “success stories” are pervasive, yet the technology
remains inaccessible to software engineers
• Requires use of hardware description languages: Verilog and

VHDL

• Hardware design skills are rare:
• 10 software engineers for every hardware engineer*

↓
• Make hardware design easier for hardware engineers
• Allow software engineers to design hardware and reap

its energy/performance benefits

6
*Source: US Bureau of Labor Statistics, 2012

High-level synthesis (HLS) with
FPGAs
• Plays a central role, enabling the automatic

synthesis of high-level, untimed or partially timed
specifications (e.g. C or System C) to low-level cycle
accurate RTL specifications
• Target devices includes application-specific

integrated circuits (ASIC) or field-programmable
gate arrays (FPGAs)
• It can be optimized taking into account the

performance, power, and cost requirements

7

High-level Synthesis Flow

8

Input Behavioral Spec. Dataflow Scheduling
Data-path generation

Controller (FSM) Generation
Mapping to resources

(Binding)

Scheduling

• How to assign the computations of a program into
the hardware time steps (clock cycles)?
• Must consider under given target clock period:

• Which operations can be scheduled in the same time
step?

• Which operations are dependent on others?

9

Schedule strategies

• As soon as possible (ASAP)
• As late as possible (ALAP)

10

High-level Synthesis Flow

11

Input Behavioral Spec. Dataflow Scheduling
Data-path generation

Controller (FSM) Generation
Mapping to resources

(Binding)

Binding

• Assign (bind) each operation to a hardware
functional unit
• Example:

• LegUp uses bipartite matching-based binding [Huang
DAC’90] using the Hungarian Method (Polynomial order)

12

AutoESL and Xilinx C-to-FPGA
design flow

13

Performance Feature: Loop
Pipelining

14

Sequential Execution

15

Poop Pipelining

16

#pragma pipeline

High-quality and rapid design
using HLS: Why?
• Embedded processors are in almost every SoC
• Huge silicon capacity requires a higher level of

abstraction
• With the HLS, the code density can be easily reduced by

7x-10x in C/C++
• Behavioral IP reuse improves design productivity
• Verification drives the acceptance of HLS

• It avoids slow and error-prone manually RTL cording
• Trend toward extensive use of accelerators and

heterogeneous SoCs

17

Faster Adoption of HLS Tools with
FPGAs: Why?
• Less pressure for formal verification

• Iterations of the FPGA design can avoid huge
manufacturing costs

• Ideal for platform-based synthesis
• Achieve higher quality of results (QoR)

• More pressure for time-to-market
• Designers may accept increased performance, power, or

cost in order to reduce design time

• Accelerated or reconfigurable computing calls for
C/C++ based compilation/synthesis to FPGAs

18

Overview of HLS Tools

19J. Cong et. al, “A survey and evaluation of FPGA high-level synthesis tools,” IEEE Trans. on CAD, 2015.

Productivity

20

RTL Expert vs. HLS Expert

21
J. Cong et. al, “High-level synthesis for FPGAs: From prototyping to deployment,” IEEE Trans. on CAD, 2011.

Walk Through HLS Design

Vivado HLS Design Flow
• Design C/C++ code for your target specification in advance

↓
• Create a new project
• Refactoring for HLS suitable C/C++

• High-level synthesis
• RTL-C Co-verification (Optional)
• IP generation

↓
• Integrate HW on Vivado block diagram design
• Design SW on XSDK

• Run on your FPGA board

Design a Specification by C/C++
• See, Github for lecture 9: float_mult.c

Create a New Project

• Windows: Start > All Programs > Xilinx Design Tools
> Vivado 2017.4 > Vivado HLS > Vivado HLS
• Linux (Ubuntu):
#source /opt/Xilinx/Vivado/2017.4/settings64.sh
#vivado_hls &

On the Vivado HLS Welcome Page

• In the Welcome Page, select "Create New Project"
to open the Project wizard.

On Project Configuration Page
• a. Enter the project name as "lec_9"
• b. Enter the project Location as "C:¥FPGA¥HLS"

(Windows), "/home/(usrname)/FPGA/HLS" (Ubuntu)
• c. Click Next

On an Add/Remove Files Dialog
• Enter the following information to specify the C design files:

• a. Click Add Files.
• b. Select "float_mult.c" and click Open.
• c. Use Browse button to specify "float_mult" as the top-

level function.
• d. Click Next.

Add/Remove C-based Testbench Files
• Click the Add Files button to include both test bench files

"float_mult.c"
• Then, Click Next.
• Both C simulation and RTL co-simulation execute in

subdirectories of the solution.

Solution Configuration
• Accept the default solution name (solution1), clock period

(10 ns), and clock uncertainty (defaults to 12.5% of the clock
period, when left blank/undefined)

• Click the part selection button to open the part selection
window

Cont'd
• Carefully Select Your FPGA on the Zybo!!

• From the list of available devices

• Click "OK", and click "Finish"

Vivado HLS GUI

Refactoring your C/C++ Code
• See, Github: hls_float_mult.c
• Define an union variable
• Insert pragmas

Validate the C/C++ Code
• 4. Click the Run C Simulation button, or use menu Project >

Run C Simulation, to compile and execute the C design.

• 5. In the C Simulation dialog box, click OK.
• The Console pane confirms the simulation executed successfully.

High-Level Synthesis
• Click the Run C Synthesis toolbar button or use the

menu Solution > Run C Synthesis > Active Solution
• When synthesis completes, the report file opens

automatically
• Because the synthesis report is open in the Information

pane, the Outline tab in the Auxiliary pane automatically
updates to reflect the report information.

Performance Estimation
• Check "Performance Estimates" in the Outline tab

• In the Performance Estimates pane, you can see that the clock period is
set to 10 ns. Vivado HLS targets a clock period of Clock Target minus
Clock Uncertainty (10.00-1.25 = 8.75 ns in this example).
• The clock uncertainty ensures there is some timing margin available

for the (at this stage) unknown net delays due to place-and-routing

• The estimated clock period (worst-case delay) is 6.70 ns, which meets the
8.75 ns timing requirement

Utilization Estimation
• The resource utilization numbers are estimates

because RTL synthesis might be able to perform
additional optimizations, and these figures might
change after RTL synthesis.

Interface Report
• The Interface section shows the ports and I/O

protocols created by interface synthesis

IP Creation
• The final step in the High-Level Synthesis flow is to

package the design as an IP block for use with
other tools in the Vivado Design Suite

• 1. Click the Export RTL toolbar button or use the
menu Solution > Export RTL

• 2. Ensure the Format Selection drop-down menu
shows IP Catalog

• 3. Click OK. The IP packager creates a package for
the Vivado IP Catalog

• 4. Expand Solution1 in the Explorer

• 5. Expand the impl folder created by the Export
RTL command

• 6. Expand the ip folder and find the IP packaged as
a zip file, ready for adding to the Vivado IP Catalog
(See, right)

Import to IP Catalog
• Create a new project on Vivado, then create a block design

• Project name as "hls_walk_through_1"
• RTL project, no add sources, constraints, and specify your Zybo

board
• Make sure the constraint file "Zybo-Z7-Master.xdc" is loaded

• Click an "IP Settings..." on a diagram, then open a project
settings window

Right click on a "Diagram"

Add a Path to IP Repositories
• Add a path to Repository manager for the IP generated on Vivado HLS

• In the tutorial, the IP path is "C:/FPGA/HLS/lec_9/solution1/impl/ip"
• Make sure your "Float_mult" is loaded

System Generation

• On Block Design, instance a "ZYNQ7 Processing System"

• Then, also instance a your IP core "float_mult"

• Next, concatenate with them (Processor System Reset and AXI
Interconnect are inserted automatically)

Generate Bitstream
To re-use HDL design flow, do following steps:
1. Right-click on "design_1", and select "Generate Output

Products...", then "Generate"
2. Again, Right-click on "design_1", and select "Create HDL

Wrapper...", then "OK"

Synthesis Hardware and Export

• Click "Generate Bitstream", then "Yes"
and "OK"
• After finish bitstream generation, then

"Cancel"
• In "Menu", select "File" and "Export",

then "Export Hardware"
• Check "Include bitstream", then "OK"

Developing SW
• Launch SDK on Vivado

• From the SDK File menu, select New >
Application Project.

a. In the New Project dialog enter the
project name "zynq_float_mult"
b. Click Next.
c. Select the "Hello World" template.
d. Click Finish

Execute "Hello World" SW

• Power up the Zybo board and test the Hello World
application
• Ensure the board has all the connections to allow

you to download the bitstream on the FPGA device
• Click Xilinx > Program FPGA (or toolbar icon)

Cont'd

• Click on SDK Terminal and click on add button to add a port to the
terminal

a. Click the Connect icon (See, bottom)
b. Select Connection Type > Serial.
c. Select the COM port to which the USB UART cable is connected
d. Change the Baud Rate to 115200
e. Click OK to exit the Terminal Settings dialog box.

Terminal Settings Dialog
• Right-click the application project "zynq_float_mult" in the Explorer panel

a. Click Run As > Launch on Hardware.

• Switch to the Terminal tab and confirm that "Hello World" was received
• Or, you can use TeraTermianl (Windows) GtkTerm (Ubuntu)

Modify SW to Communicate with
Your IP Core
• The "float_mult" function has "a" and "b" as inputs

and "c" as an output
• Following processing exists in the API generated by

Vivado HLS
• Set value to a
• Set value to b
• Read the value of c

• In order to control the hardware, there is an API
that performs the following processing
• Start operation
• Terminate of calculation

APIs for a Generated IP Core

• The IP core API is stored in the following directory (in this
example)

design_1_wrapper_hw_platform_0/drivers/float_top_v1_0/
src

• In the directory, the following files are stored
• xfloat_top_hw.h
• xfloat_top_linux.c
• xfloat_top_sinit.c
• xfloat_top.c
• xfloat_top.h

• The detail of the defined API is described in "ug902-vivado-
high-level-synthesis.pdf"

SW Code for an ARM Processor on Zybo

• See, Github: sw_code.c

Execution Results

Summary

• HLS brings value to the FPGA design:
• Make hardware design easier for hardware engineers
• Allow software engineers to design hardware and reap

energy/performance benefits

• Benefits: Productivity, lower non-recurring
engineering costs, maintainability, faster time to
market
• Execute a tutorial through a floating point precision

multiplication

53

Exercise

• (Mandatory) Describe the advantage and the
disadvantage for the high-level synthesis based design
comparing with the RTL based design
• (Mandatory) Execute a tutorial for a floating point

precision multiplication on your Zybo board
• (Optional) Compare with non "#pragma HLS pipeline"

version, and report differences of pipelined one
Send a report to OCW-i
Deadline is 23rd, July, 2019 JST PM 13:20
(At the beginning of the lecture)

54

