2019 Basic Nuclear Engineering I Lecture note (3)

- Nuclear fission chain reaction-

Toru Obara

Tokyo Institute of Technology

3.1 Concept of nuclear fission chain reaction (continued)

The reason

Nat. U ²³⁵U...0.7% Energy ²³⁸U...99.3% 2MeV slowing down of neutrons 5~ neutrons are captured 500eV below neutrons are captured

 ③ Large fission cross section of ²³⁵U

② Large neutron capture

cross section of ²³⁸U

(1) Fission neutrons

By making neutron capture (2) small, and nuclear fission (3) large, it may be possible to continue fission chain reaction.

0.1 eV

(Concept of thermal reactor)

The measures for it

- 1. Use of moderator
- 2. Heterogeneous structure of uranium and moderator
- 3. Enrichment of uranium

3.2 Moderator

```
Thermal neutron ... Energy < 1eV
equilibrium with thermal motion of nuclei in
material
```

Thermal reactor ... Fission chain reaction by using thermal neutrons

Moderator Fission neutron (fast neutron) slowing down by the collision with nuclei Thermal neutron

· Properties needed in moderator

1. Small mass number

 \rightarrow The neutron energy is decreased a lot by a collision. (speed low)

2. Large scattering cross section

 \rightarrow The probability of scattering can be large.

3. Small capture cross section

 \rightarrow The loss of neutrons can be small.

•Examples of good moderator	\sqcap Heavy water (D ₂ O)
	Graphite (C)

- Beryllium (Be)

Light water is not so good. Capture cross section is a little large.

3.3 Hetrogeneous structure of Uranium and Moderator

Without mixing uranium and moderator,

setting the uranium and moderator with a structure

 \rightarrow The neutron capture probability by ²³⁸U can be reduced remarkably.

•Heavy water moderator or Graphite moderator

+

•(Very well designed) heterogeneous structure of uranium and moderator

 \Rightarrow It is possible to cause fission reaction chain by using natural uranium.

• The world's first nuclear reactor (1942) Chicago Pile-1 (CP-1)

The pieces of natural uranium were set in graphite block.

The size of pile: 6m cubic (very large)

3.4 Enrichment of uranium

Fuel	Ratio of ²³⁵ U	Possible nuclear reactor
Natural uranium	0.7%	Nuclear reactor with heavy water or graphite as the moderator
3% enriched uranium	3%	Nuclear reactor with light water as the moderator (Current popular power reactor)
10% enriched uranium	10%	Nuclear reactor without the moderator (Fast reactor) The fission chain reaction is possible without moderator. It can be achieved with mixture of ²³⁹ Pu and ²³⁸ U as well.