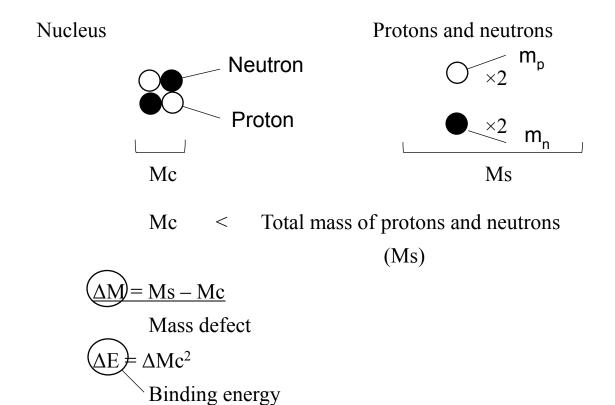

2019 Basic Nuclear Engineering 1 Lecture note (1)

- Nuclear Energy –

Toru Obara

Tokyo Institute of Technology

 \rightarrow energy release


Nuclear energy (Nuclear reactor, Sun)

Change of nuclear binding

 \rightarrow change of mass

 \rightarrow energy release

·Mass defect and binding energy

•Binding energy per nuclear

(Figure) Fig of Binding energy

Composition (or fusion) of light nuclei

 \rightarrow Energy release (Fusion reactor, Sun)

Splitting (or fission) of heavy nuclei © 2019 Toru Obara

 \rightarrow Energy release (Nuclear reactor)

1.2 Radioactivity

The process that nucleus changes the number of protons and neutrons spontaneously

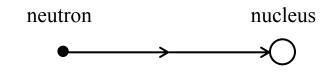
• α -decay: An alpha-particle (two protons + two neutrons) is emitted

Atomic number -2, Mass number -4

• β -decay: A neutron in the nucleus is transformed into a proton.

An electron is emitted. (β -ray)

Atomic number +1, Mass number unchanged


The decay process \rightarrow Mass defect

 \rightarrow Energy release

Kinetic energy of the α - particle or the electron

Energy of photon (γ -ray)

- 1.3 Nuclear reaction with neutrons
 - Nuclear reactions

© 2019 Toru Obara

- •Capture
- Scattering
- Fission
- Nuclear cross section

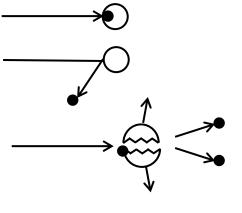
Index of probability of nuclear reaction

unit b (barn) = 10^{-24} cm²

- Capture cross section σ_c
- Scattering cross section σ_s

•Fission cross section σ_f

(unit of energy $1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$)


• Nuclear cross sections of 235 U and 238 U (Fig of cross sections)

²³⁵U 0.7% in natural uranium

²³⁸U 99.3% in natural uranium

• Fission cross section σ_f

²³⁵U ···· large in <u>low neutron energy</u> (<1eV) slow speed 4

about 1b if E > 1MeV (high energy = high neutron speed)

 238 U····almost 0 in low energy

about 1b if E > 1 MeV

 $\boldsymbol{\cdot}$ Capture cross section $\sigma_{\rm c}$

 238 U····many large peaks between 5eV ~ 500eV (Resonance peaks)