6 Spaces of Constant Sectional Curvature.

Orthonormal Frame and Connection Forms. Let (M, g) be an orientable Riemannian m-manifold, and ($U ; u^{1}, \ldots, u^{m}$) a local coordinate neighborhood.

Lemma 6.1. There exists a m-tuple of vector fields $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right\}$ on M which forms a positively-oriented orthonormal basis of $T_{\mathrm{P}} M$ for each $\mathrm{P} \in U$.

Proof. The procedure of the Gram-Schmidt orthogonalization works for the m-tuple of vector fields $\left\{\partial / \partial u^{j}\right\}_{j=1}^{m}$ on U.

We call such a m-tuple $\left\{\boldsymbol{e}_{j}\right\}_{j=1}^{m}$ a positively-oriented orthonormal frame field, or a frame field for short, on U.

Lemma 6.2. Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right\}$ be an orthonormal frame field on $U \subset M$. Then there exist C^{∞}-differential 1 -forms $\omega_{i}^{j}(i, j=$ $1, \ldots, m)$ satisfying
(6.1) $\quad \nabla_{X} \boldsymbol{e}_{i}=\sum_{j=1}^{m} \omega_{i}^{j}(X) \boldsymbol{e}_{i} \quad(i=1, \ldots, m)$,
(6.2) $\quad \omega_{i}^{j}=-\omega_{j}^{i} \quad(i, j=1, \ldots, m)$
for an arbitrary vector field X on U, where ∇ denotes the covariant derivative (4.12).

Proof. We set

$$
\omega_{i}^{j}(X):=g\left(\nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)
$$

23. July, 2019.
for $X \in \mathfrak{X}(U)$. So by (4.15), $\omega_{i}^{j}(f X)=f \omega_{i}^{j}(X)$ holds for $f \in C^{\infty}(U)$. Hence $\omega_{i}^{j}(X)(\mathrm{P})$ depends only on X_{P} because of Lemma 5.3. Then each ω_{i}^{j} defines a 1-form on U. Smoothness of ω_{i}^{j} is obvious. Since $\left\{\boldsymbol{e}_{j}\right\}$ is an orthonormal basis, (6.1) follows.

Moreover, since $g\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=\delta_{i j}$ is constant for each i and j, (4.18) implies

$$
\begin{aligned}
0 & =X g\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=g\left(\nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)+g\left(\boldsymbol{e}_{i}, \nabla_{X} \boldsymbol{e}_{j}\right) \\
& =g\left(\sum_{k=1}^{m} \omega_{i}^{k}(X) \boldsymbol{e}_{k}, \boldsymbol{e}_{j}\right)+g\left(\boldsymbol{e}_{i}, \sum_{k=1}^{m} \omega_{j}^{k}(X) \boldsymbol{e}_{k}\right) \\
& =\sum_{k=1}^{m}\left(\omega_{i}^{k}(X) \delta_{k j}+\omega_{j}^{k}(X) \delta_{i k}\right)=\omega_{i}^{j}(X)+\omega_{j}^{i}(X) .
\end{aligned}
$$

Hence (6.2) follows.
We call $\left\{\omega_{i}^{j}\right\}$ in Lemma 6.2 the connection forms with respect to the frame $\left\{\boldsymbol{e}_{j}\right\}$.

By (6.2),

$$
\boldsymbol{\omega}:=\left(\begin{array}{ccc}
\omega_{1}^{1} & \ldots & \omega_{m}^{1} \tag{6.3}\\
\vdots & \ddots & \vdots \\
\omega_{1}^{m} & \ldots & \omega_{m}^{m}
\end{array}\right) \quad \text { satisfies } \quad \boldsymbol{\omega}+{ }^{t} \boldsymbol{\omega}=O
$$

in other words, $\boldsymbol{\omega}$ is a skew-symmetric matrix-valued 1-form.
Gauge transformations and the Curvature Form. Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right\}$ and $\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right\}$ be two positively-oriented or-
thonormal frames on $U \subset M$. Then there exists a smooth map $G=\left(G_{i j}\right): U \rightarrow \mathrm{SO}(m)$ such that ${ }^{8}$
(6.4) $\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right)=\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) G$

$$
=\left(\sum_{a=1}^{m} G_{1 a} \boldsymbol{f}_{a}, \ldots, \sum_{a=1}^{m} G_{m a} \boldsymbol{f}_{a}\right) .
$$

Let $\boldsymbol{\omega}=\left(\omega_{i}^{j}\right)$ (resp. $\left.\widetilde{\boldsymbol{\omega}}=\left(\tilde{\omega}_{a}^{b}\right)\right)$ be the connection forms with respect to the orthonormal frame $\left\{\boldsymbol{e}_{j}\right\}$ (resp. $\left\{\boldsymbol{f}_{a}\right\}$). The

Lemma 6.3. Under the situation above, it holds that

$$
\begin{equation*}
\widetilde{\boldsymbol{\omega}}=G^{-1} d G+G^{-1} \boldsymbol{\omega} G . \tag{6.5}
\end{equation*}
$$

Proof. By definition,

$$
\begin{aligned}
\nabla\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) & =\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) \boldsymbol{\omega}, \\
\nabla\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) & =\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) \widetilde{\boldsymbol{\omega}}
\end{aligned}
$$

hold. Hence, by (4.16), it holds that

$$
\begin{aligned}
\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) \widetilde{\boldsymbol{\omega}} & =\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) G \widetilde{\boldsymbol{\omega}} \\
\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) \widetilde{\boldsymbol{\omega}} & =\nabla\left(\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) G\right) \\
& =\left(\nabla\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right)\right) G+\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) d G
\end{aligned}
$$

[^0]\[

$$
\begin{aligned}
& =\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) \boldsymbol{\omega} G+\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) d G \\
& =\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right)(\boldsymbol{\omega} G+d G)
\end{aligned}
$$
\]

where $\nabla \boldsymbol{v}$ means a 1-form $X \mapsto \nabla_{X} \boldsymbol{v}$. Since $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}$ are linearly independent, the conclusion follows.

The formula (6.5) is called the Gauge transformation of the connection forms.

Definition 6.4. The curvature form with respect to the frame field $\left\{\boldsymbol{e}_{j}\right\}$ is a skew-symmetric matrix-valued 2 -form

$$
\begin{equation*}
\boldsymbol{\Omega}:=d \boldsymbol{\omega}+\boldsymbol{\omega} \wedge \boldsymbol{\omega}=\left(d \omega_{i}^{j}+\sum_{k=1}^{m} \omega_{i}^{k} \omega_{k}^{j}\right)_{i, j=1, \ldots, m} \tag{6.6}
\end{equation*}
$$

Lemma 6.5. Under the transformation as in (6.4), the curvature form $\boldsymbol{\Omega}$ and $\widetilde{\boldsymbol{\Omega}}$ with respect to the frame field $\left\{\boldsymbol{e}_{j}\right\}$ and $\left\{\boldsymbol{f}_{a}\right\}$, respectively, satisfy

$$
\widetilde{\Omega}=G^{-1} \Omega G
$$

Proof. Problem 6-1.
Lemma 6.6. The curvature form $\boldsymbol{\Omega}=\left(\Omega_{i}^{j}\right)$ with respect to the frame field $\left\{\boldsymbol{e}_{j}\right\}$ satisfies

$$
\Omega_{i}^{j}(X, Y)=R\left(X, Y, \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right),
$$

where R is the Riemann-Christoffel curvature tensor, and X, Y are vector fields.

Proof. Since $\left\{\boldsymbol{e}_{j}\right\}$ is an orthonormal basis, it holds that

$$
g\left(\nabla_{X} \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)=X g\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)-g\left(\boldsymbol{e}_{j}, \nabla_{X} \boldsymbol{e}_{k}\right)=-g\left(\boldsymbol{e}_{j}, \nabla_{X} \boldsymbol{e}_{k}\right)
$$

holds for $j, k=1, \ldots, m$. Then we have

$$
\begin{aligned}
& \Omega_{i}^{j}(X, Y)=d \omega_{i}^{j}(X, Y)+\sum_{k=1}^{m}\left(\omega_{i}^{k}(X) \omega_{k}^{j}(Y)-\omega_{i}^{k}(Y) \omega_{k}^{j}(Y)\right) \\
&= X \omega_{i}^{j}(Y)-Y \omega_{i}^{j}(X)-\omega_{i}^{j}([X, Y]) \\
& \sum_{k=1}^{m}\left(\omega_{i}^{k}(X) \omega_{k}^{j}(Y)-\omega_{i}^{k}(Y) \omega_{k}^{j}(Y)\right) \\
&= X g\left(\nabla_{Y} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)-Y g\left(\nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)-g\left(\nabla_{[X, Y]} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right) \\
&+\sum_{k=1}^{m}\left(g\left(\nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right) g\left(\nabla_{Y} \boldsymbol{e}_{k}, \boldsymbol{e}_{j}\right)-g\left(\nabla_{Y} \boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right) g\left(\nabla_{X} \boldsymbol{e}_{k}, \boldsymbol{e}_{j}\right)\right) \\
&= g\left(\nabla_{X} \nabla_{Y} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)+g\left(\nabla_{Y} \boldsymbol{e}_{i}, \nabla_{X} \boldsymbol{e}_{j}\right) \\
&-g\left(\nabla_{Y} \nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)-g\left(\nabla_{X} \boldsymbol{e}_{i}, \nabla_{Y} \boldsymbol{e}_{j}\right)-g\left(\nabla_{[X, Y]} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right) \\
& \quad-\sum_{k=1}^{m}\left(g\left(\nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right) g\left(\boldsymbol{e}_{k}, \nabla_{Y} \boldsymbol{e}_{j}\right)-g\left(\nabla_{Y} \boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right) g\left(\boldsymbol{e}_{k}, \nabla_{X} \boldsymbol{e}_{j}\right)\right) \\
&= R\left(X, Y, \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right),
\end{aligned}
$$

where we used the relation

$$
\sum_{k=1}^{m} g\left(\boldsymbol{v}, \boldsymbol{e}_{k}\right) g\left(\boldsymbol{w}, \boldsymbol{e}_{k}\right)=g(\boldsymbol{v}, \boldsymbol{w})
$$

Space of Constant Sectional Curvature. The goal of this lecture is to prove the following

Theorem 6.7. Let $U \subset \mathbb{R}^{m}$ be a simply connected domain and let g be a Riemannian metric on U with constant sectional curvature k. Then there exists a local diffeomorphism

$$
f: U \longrightarrow M^{m}(k)
$$

such that the Riemannian metric g coincide with the metric on U induced from $M^{m}(k)$ by f, where

$$
M^{m}(k):= \begin{cases}S^{m}(k) & (\text { when } k>0, \text { cf. Example } 5.16), \\ \mathbb{R}^{m} & (\text { when } k=0, \text { the Euclidean } m \text {-space }), \\ H^{m}(k) & (\text { when } k<0, \text { cf. Example } 5.17)\end{cases}
$$

Remark 6.8. The theorem can be generalized for simply connected Riemannian manifolds (M, g) of constant sectional curvature. Moreover, one can show that f is injective. Hence, we can say that a simply connected Riemannian m-manifold (M, g) can be identified as a subset of $M^{m}(k)$. In particular, if (M, g) is complete, it coincides with $M^{m}(k)$.

Proof of Theorem 6.7 (for the case $k=0$): This is an alternative proof of Theorem 3.13 in Section 3. Take an orthonormal frame field $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right\}$ on U, and let $\boldsymbol{\omega}$ be the connection form with respect to the basis. Fix a base point $\mathrm{P}_{0} \in U$, and consider the system of differential equations
(6.7) $\quad \frac{\partial \mathcal{F}}{\partial u^{j}}=\mathcal{F} \boldsymbol{\omega}_{j}, \quad \mathcal{F}\left(\mathrm{P}_{0}\right)=\mathrm{id} \quad(j=1, \ldots, m)$,
where

$$
\begin{equation*}
\boldsymbol{\omega}_{j}:=\boldsymbol{\omega}\left(\frac{\partial}{\partial u^{j}}\right) . \tag{6.8}
\end{equation*}
$$

By Lemma 6.6, the assumption $k=0$ implies

$$
\begin{aligned}
O & =\left(R\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}, \boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)\right)_{k, l=1, \ldots, m} \\
& =(d \boldsymbol{\omega}+\boldsymbol{\omega} \wedge \boldsymbol{\omega})\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}\right)=\frac{\partial \boldsymbol{\omega}_{j}}{\partial u^{i}}-\frac{\partial \boldsymbol{\omega}_{i}}{\partial u^{j}}+\boldsymbol{\omega}_{i} \boldsymbol{\omega}_{j}-\boldsymbol{\omega}_{j} \boldsymbol{\omega}_{i} .
\end{aligned}
$$

Hence by Theorem 2.5, there exists a unique solution \mathcal{F} of (6.7). Moreover, since $\boldsymbol{\omega}_{j}$ is skew-symmetric because of (6.3), the solution gives a smooth map $\mathcal{F}: U \rightarrow \mathrm{SO}(m)$. Decompose \mathcal{F} into the column vectors as $\mathcal{F}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$. Since \mathcal{F} is an orthogonal matrix, $\left\{\boldsymbol{x}_{j}(\mathrm{P})\right\}$ is an orthonormal basis at each P .

Define an \mathbb{R}^{m}-valued 1-form

$$
\varphi:=\sum_{i=1}^{m}\left(\sum_{k=1}^{m} g_{i}^{k} \boldsymbol{x}_{k}\right) d u^{i}, \quad g_{i}^{k}=g\left(\frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right)
$$

where $\left\{\boldsymbol{e}_{j}\right\}$ is the orthonormal frame on U we took in the beginning of the proof. Then φ is a closed on U. In fact, by (4.18) and (4.17), we have

$$
\begin{aligned}
& \frac{\partial}{\partial u^{j}}\left(\sum_{k=1}^{m} g_{i}^{k} \boldsymbol{x}_{k}\right)=\sum_{k=1}^{m}\left(\frac{\partial}{\partial u^{j}} g\left(\frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right)+g_{i}^{k} \boldsymbol{x}_{k}\right) \\
& =\sum_{k=1}^{m}\left[\left(g\left(\nabla \frac{\partial}{\partial u^{j}} \frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right)+g\left(\frac{\partial}{\partial u^{i}}, \nabla \frac{\partial}{\partial u^{j}} \boldsymbol{e}_{k}\right)\right) \boldsymbol{x}_{k}+g_{i}^{k} \frac{\partial \boldsymbol{x}_{k}}{\partial u^{j}}\right] \\
& =\sum_{k=1}^{m} g\left(\nabla_{\frac{\partial}{\partial u^{j}}} \frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right) \boldsymbol{x}_{k}+\sum_{k=1}^{m} g\left(\frac{\partial}{\partial u^{i}}, \sum_{l=1}^{m} \omega_{k}^{l}\left(\frac{\partial}{\partial u^{j}}\right) \boldsymbol{e}_{l}\right) \boldsymbol{x}_{k}
\end{aligned}
$$

$$
\begin{aligned}
&+\sum_{k, l=1}^{m} g_{i}^{k} \omega_{k}^{l}\left(\frac{\partial}{\partial u^{j}}\right) \boldsymbol{x}_{l} \\
&= \sum_{k=1}^{m}\left[g\left(\nabla_{\frac{\partial}{\partial u^{j}}} \frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right)+\sum_{l=1}^{m}\left(\omega_{k}^{l}+\omega_{l}^{k}\right)\left(\frac{\partial}{\partial u^{j}}\right) g_{i}^{l}+\right] \boldsymbol{x}_{k} \\
&= \sum_{k=1}^{m}\left[g\left(\nabla_{\frac{\partial}{\partial u^{j}}} \frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right)\right] \boldsymbol{x}_{k} \\
& \frac{\partial}{\partial u^{i}}\left(\sum_{k=1}^{m} g_{j}^{k} \boldsymbol{x}_{k}\right)=\sum_{k=1}^{m}\left[g\left(\nabla_{\frac{\partial}{\partial u^{i}}} \frac{\partial}{\partial u^{j}}, \boldsymbol{e}_{k}\right)\right] \boldsymbol{x}_{k}
\end{aligned}
$$

Hence by (4.17), we have

$$
\frac{\partial}{\partial u^{j}}\left(\sum_{k=1}^{m} g_{i}^{k} \boldsymbol{x}_{k}\right)=\frac{\partial}{\partial u^{i}}\left(\sum_{k=1}^{m} g_{j}^{k} \boldsymbol{x}_{k}\right)
$$

that is, $d \varphi=0$. Hence by Poincaré's lemma, there exists $f: U \rightarrow \mathbb{R}^{m}$ satisfying $d f=\varphi$. This f is desired one. To show this, it is sufficient to show
(6.9)

$$
d f\left(\boldsymbol{e}_{j}\right)=\boldsymbol{x}_{j}, \quad(j=1, \ldots, m)
$$

In fact, if (6.9) holds,

$$
g\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=\delta_{i j}=\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j},=\right\rangle\left\langle d f\left(\boldsymbol{e}_{i}\right), d f\left(\boldsymbol{e}_{j}\right),,\right\rangle
$$

and then the induced metric coincides with g. We show (6.9):
$d f\left(\boldsymbol{e}_{j}\right)=\varphi\left(\boldsymbol{e}_{j}\right)=\sum_{i=1}^{m}\left(\sum_{k=1}^{m} g_{i}^{k} \boldsymbol{x}_{k}\right) d u^{i}\left(\boldsymbol{e}_{j}\right)$

$$
\begin{aligned}
& =\sum_{i, k=1}^{m} g\left(\frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right) d u^{i}\left(\boldsymbol{e}_{j}\right) \boldsymbol{x}_{k} \\
& =\sum_{k=1}^{m} g\left(\sum_{i=1}^{m} d u^{i}\left(\boldsymbol{e}_{j}\right) \frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right) \boldsymbol{x}_{k}=\sum_{k=1}^{m} g\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right) \boldsymbol{x}_{k}=\boldsymbol{x}_{j} .
\end{aligned}
$$

Here, we used the formula

$$
\sum_{i=1}^{m} d u^{i}(\boldsymbol{v}) \frac{\partial}{\partial u^{i}}=\boldsymbol{v}
$$

Proof of Theorem 6.7 (for the case $k>0$): Since $k>0$, there exists a real number c such that $k=c^{2}$. Taking the orthonormal frame field $\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right)$ on U, we set
(6.10)

$$
\hat{\boldsymbol{\omega}}_{j}:=\left(\begin{array}{cc}
0 & -c^{t} \boldsymbol{g}_{j} \\
c \boldsymbol{g}_{j} & \boldsymbol{\omega}_{j}
\end{array}\right)
$$

for each $j=1, \ldots, m$, which is an $(n+1) \times(n+1)$-skew symmetric matrix-valued function, here

$$
\boldsymbol{g}_{j}:=\binom{g_{j}^{1}}{\vdots g_{j}^{m}}=\left(\begin{array}{c}
g\left(\partial / \partial u^{j}, \boldsymbol{e}_{1}\right) \tag{6.11}\\
\vdots \\
g\left(\partial / \partial u^{j}, \boldsymbol{e}_{m}\right)
\end{array}\right)
$$

and $\boldsymbol{\omega}_{j}$ is as in (6.8). By the assumption, (5.9) holds. Hence one can show easily that

$$
\frac{\partial \hat{\boldsymbol{\omega}}_{j}}{\partial u^{i}}-\frac{\partial \hat{\boldsymbol{\omega}}_{i}}{\partial u^{j}}+\hat{\boldsymbol{\omega}}_{i} \hat{\boldsymbol{\omega}}_{j}-\hat{\boldsymbol{\omega}}_{j} \hat{\boldsymbol{\omega}}_{i}=O
$$

for each $i, j=1, \ldots, m$. Hence there exists a smooth map

$$
\mathcal{F}=\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right): U \rightarrow \mathrm{SO}(m+1)
$$

satisfying

$$
\frac{\partial \mathcal{F}}{\partial u^{j}}=\mathcal{F} \hat{\boldsymbol{\omega}}_{j} \quad(j=1, \ldots, m)
$$

with $\mathcal{F}\left(\mathrm{P}_{0}\right)=\mathrm{id}$. Then

$$
f:=\frac{1}{c} \boldsymbol{x}_{0}
$$

is the desired map. In fact,

$$
d f\left(\boldsymbol{e}_{j}\right)=\boldsymbol{x}_{j} \quad(j=1, \ldots, m)
$$

holds.

Proof of Theorem 6.7 (for the case $k<0$): Since $k<0$, there exists a real number c such that $k=-c^{2}$. Taking the orthonormal frame field $\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right)$ on U, we set

$$
\hat{\boldsymbol{\omega}}_{j}:=\left(\begin{array}{cc}
0 & c^{t} \boldsymbol{g}_{j} \tag{6.12}\\
c \boldsymbol{g}_{j} & \boldsymbol{\omega}_{j}
\end{array}\right)
$$

for each $j=1, \ldots, m$, which is an $(n+1) \times(n+1)$-matrix-valued function, here

$$
\boldsymbol{g}_{j}:=\binom{g_{j}^{1}}{\vdots g_{j}^{m}}=\left(\begin{array}{c}
g\left(\partial / \partial u^{j}, \boldsymbol{e}_{1}\right) \tag{6.13}\\
\vdots \\
g\left(\partial / \partial u^{j}, \boldsymbol{e}_{m}\right)
\end{array}\right)
$$

and $\boldsymbol{\omega}_{j}$ is as in (6.8). Since

$$
Y \boldsymbol{\omega}_{j}-{ }^{t} \omega_{j} Y=0 \quad(j=1, \ldots, m)
$$

holds, where $Y:=\operatorname{diag}(-1,1, \ldots, 1)$. This implies that there
exists

$$
\mathcal{F}: U \rightarrow \mathrm{SO}(m+1,1)
$$

where

$$
\mathrm{SO}(m+1,1)=
$$

$$
\left\{a=\left(a_{i j}\right)_{i, j=0, \ldots, m} \in \mathrm{M}_{n}(\mathbb{R}) ;{ }^{t} a Y a=Y, \operatorname{det} a=1, a_{00}>0 .\right\}
$$

Then there exists $\mathcal{F}: U \rightarrow \mathrm{SO}(m+1)$ satisfying

$$
\frac{\partial \mathcal{F}}{\partial u^{j}}=\mathcal{F} \hat{\boldsymbol{\omega}}_{j} \quad(j=1, \ldots, m)
$$

with $\mathcal{F}\left(\mathrm{P}_{0}\right)=$ id. Then

$$
f:=\frac{1}{c} \boldsymbol{x}_{0}
$$

is the desired map.

Exercises
6-1 Prove Lemma 6.5.
6-2 Prove Theorem 6.7

[^0]: ${ }^{8}$ As defined in Section $1, \mathrm{SO}(m)=\left\{A \in \mathrm{M}_{m}(\mathbb{R}) ;{ }^{t} A A=A^{t} A=\right.$ id, $\operatorname{det} A=1\}$ denotes the special orthogonal group. A map $G: U \rightarrow \mathrm{SO}(m)$ is said to be smooth (of class C^{∞}) if it is of class C^{∞} as a map into $\mathrm{M}_{m}(\mathbb{R})$, the set of $m \times m$-real matrices, which is identified with $\mathbb{R}^{n^{2}}$.

