5 Sectional Curvature.

Throughout this section, we let (M, g) an m-dimensional (pseudo) Riemannian manifold, and ∇ the covariant derivative defined in (4.14).

Tensors. A correspondence $S: M \ni \mathrm{P} \mapsto S_{\mathrm{P}}$ of a point P and a multi-linear map $S_{\mathrm{P}}:\left(T_{\mathrm{P}} M\right)^{k} \rightarrow \mathbb{R}$ is called a $(k$-th order covariant) tensor field or a tensor on M. For such a tensor field S trivially induces a map
(5.1) $\quad \hat{S}:(\mathfrak{X}(M))^{p} \ni\left(X_{1}, \ldots, X_{p}\right) \mapsto S\left(X_{1}, \ldots, X_{p}\right) \in \mathcal{F}(M)$
where $\mathfrak{X}(M)$ is the set $\left(C^{\infty}(M)\right.$-module) of C^{∞}-vector fields of M, and $\mathcal{F}(M)$ is the set of real-valued function on M. The tensor field S is said to be smooth of class C^{∞} if $\hat{S} S\left(X_{1}, \ldots, X_{p}\right)$ as in (5.1) is of class C^{∞} for an arbitrary X_{1}, \ldots, X_{p}.

Example 5.1. The (pseudo) Riemannian metric g is a smooth tensor field.

Example 5.2. A smooth 1-form on M is a smooth, first-order covariant tensor field on M.

We denote by
(5.2) $\quad \Gamma\left(\otimes^{p} T^{*} M\right)=\Gamma\left(T^{*} M \otimes \cdots \otimes T^{*} M\right)$
16. July, 2019.
the set of p-th order covariant tensor fields on $M .{ }^{7}$ The set $\Gamma\left(\otimes^{p} T^{*} M\right)$ is a vector space over \mathbb{R}. Moreover, for each $S \in$ $\Gamma\left(\otimes^{p} T^{*} M\right)$ and $f \in C^{\infty}(M), f S:=\left(\mathrm{P} \mapsto f(\mathrm{P}) S_{\mathrm{P}}\right)$ is also an element of $\Gamma\left(\otimes^{p} T^{*} M\right)$. That is, $\Gamma\left(\otimes^{p} T^{*} M\right)$ is a $C^{\infty}(M)$ module.

Lemma 5.3. Let S be a p-th covariant tensor field on M and $\hat{S}: \mathfrak{X}(M)^{p} \rightarrow C^{\infty}(M)$ the map induced by S as in (5.1) Then for an arbitrary $f \in C^{\infty}(M)$, it holds that
(5.3) $\hat{S}\left(X_{1}, \ldots, f X_{j}, \ldots, X_{p}\right)=f \hat{S}\left(X_{1}, \ldots, X_{j}, \ldots, X_{p}\right)$,
where $X_{1}, \ldots, X_{p} \in \mathfrak{X}(M)$.
Proof. For each $\mathrm{P} \in M$,

$$
\begin{aligned}
S\left(X_{1}, \ldots, f\right. & \left.X_{j}, \ldots, X_{p}\right)(\mathrm{P}) \\
& =S_{\mathrm{P}}\left(\left(X_{1}\right)_{\mathrm{P}}, \ldots, f(\mathrm{P})\left(X_{j}\right)_{\mathrm{P}}, \ldots,\left(X_{p}\right)_{\mathrm{P}}\right) \\
& =f(\mathrm{P}) S_{\mathrm{P}}\left(\left(X_{1}\right)_{\mathrm{P}}, \ldots,\left(X_{j}\right)_{\mathrm{P}}, \ldots,\left(X_{p}\right)_{\mathrm{P}}\right) \\
& =(f S)\left(X_{1}, \ldots, X_{p}\right)(\mathrm{P}) .
\end{aligned}
$$

Proposition 5.4. A multi-linear map $\hat{S}:(\mathfrak{X}(M))^{p} \rightarrow C^{\infty}(M)$ is induced from a certain $S \in \Gamma\left(\otimes^{p} T^{*} M\right)$ as in (5.1) if \hat{S} is $C^{\infty}(M)$-multi-linear, that is, (5.3) holds for any $f \in C^{\infty}(M)$ and $X_{1}, \ldots, X_{p} \in \mathfrak{X}(M)$.

[^0] notations.

Proof. Assume that (5.1) holds. We fix $\mathrm{P} \in M$ and take a local coordinate system $\left(U ; u^{1}, \ldots, u^{m}\right)$ of M around P. According to this coordinate system, we set $X_{j}=\sum_{l=1}^{m} \xi_{j}^{l}\left(\partial / \partial u^{l}\right)(j=$ $1, \ldots, m$), where ξ_{j}^{l} 's are C^{∞}-functions on U. Then by (5.1),

$$
\hat{S}\left(X_{1}, \ldots, X_{p}\right)=\sum \xi_{1}^{i_{1}} \ldots \xi_{p}^{i_{p}} \hat{S}\left(\frac{\partial}{\partial u^{i_{1}}}, \ldots, \frac{\partial}{\partial u^{i_{p}}}\right)
$$

holds, where the sum in the right-hand side is taken over $i_{j}=$ $1, \ldots, m(j=1, \ldots, p)$. This means the value of the left-hand side at P is determined by $\xi_{j}^{i_{l}}(\mathrm{P})$, which depend only on $\left(X_{j}\right)_{\mathrm{P}}$. Hence, for each $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p} \in T_{\mathrm{P}} M$, we can define

$$
S_{\mathrm{P}}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}\right):=\hat{S}\left(X_{1}, \ldots, X_{m}\right)
$$

where X_{j} is an arbitrary vector field on M such that $X_{j}(\mathrm{P})=$ \boldsymbol{v}_{j}. Then $S: \mathrm{P} \mapsto S_{\mathrm{P}}$ is the desired one.

If \hat{S} is induced from a tensor field S, we say that \hat{S} itself is a tensor field. From now on, we denote \hat{S} in (5.1) by S for a simplicity. Then, for each $S \in \Gamma\left(\otimes^{p} T^{*} M\right)$, the C^{∞}-multi-linear map

$$
\begin{equation*}
S:(\mathfrak{X}(M))^{p} \longrightarrow C^{\infty}(M) \tag{5.4}
\end{equation*}
$$

is induced.
Taking a local coordinate system $\left(U ; u^{1}, \ldots, u^{m}\right)$ on M, we set
(5.5) $S_{i_{1}, \ldots, i_{p}}:=S\left(\frac{\partial}{\partial u^{i_{1}}}, \ldots \frac{\partial}{\partial u^{i_{p}}}\right) \quad\left(i_{1}, \ldots, i_{p}=1, \ldots, m\right)$,
which are called the components of S with respect to the local coordinate system $\left(u^{j}\right)$. Let $\left\{S_{a_{1}, \ldots, a_{p}}\right\}$ be the components of S with respect to another coordinate system $\left(x^{a}\right)$. Then it holds that

$$
\begin{equation*}
S_{a_{1}, \ldots, a_{p}}=\frac{\partial u^{i_{1}}}{\partial x^{a^{1}}} \ldots \frac{\partial u^{i_{p}}}{\partial x^{a^{p}}} S_{i_{1}, \ldots, i_{p}} \tag{5.6}
\end{equation*}
$$

Proposition 5.5. Let $S:(\mathcal{X}(M))^{p} \rightarrow C^{\infty}(M)$ be a multi-linear map, and set $S_{i_{1}, \ldots, i_{p}}$ by (5.5). Then S is a tensor field on M if and only if it satisfy (5.6) for an arbitrary coordinate change $\left(x^{a}\right) \mapsto\left(u^{j}\right)$.

Proof. Problem 5-1.
The Curvature Tensor. Let ∇ be the covariant derivative on (M, g), as defined in (4.14), which is considered as

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \longmapsto \nabla_{X} Y \in \mathfrak{X}(M) .
$$

Remark 5.6. The tri-linear map

$$
D:(\mathfrak{X}(M))^{3} \ni X, Y, Z \mapsto g\left(\nabla_{X} Y, Z\right) \in C^{\infty}(M)
$$

is not a tensor field. In fact, (4.16) means that $D(X, f Y, Z)$ and $f D(X, Y, Z)$ may not coincide. But for a fixed $Y \in \mathfrak{X}(M)$,

$$
D Y: \mathfrak{X}(M) \times \mathfrak{X}(M)(X, Z) \mapsto g\left(\nabla_{X} Y, Z\right) \in C^{\infty}(M)
$$

is a tensor because of (4.15).

As seen in the proof in Proposition 4.10, the 4-linear map $R:(\mathfrak{X}(M))^{4} \rightarrow C^{\infty}(M)$ defined by
(5.7) $R(X, Y, Z, W):=g\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, W\right)$,
where $[X, Y]$ denotes the Lie bracket of the vector fields, is a tensor field, which we call the curvature tensor, or the RiemannChristoffel curvature tensor of (M, g).

Proposition 5.7. The curvature tensor R has the following symmetricity:
(1) $R(Y, X, Z, W)=-R(X, Y, Z, W)$.
(2) $R(X, Y, W, Z)=-R(X, Y, Z, W)$.
(3) $R(X, Y, W, Z)=R(W, Z, X, Y)$.
(4) $R(X, Y, Z, W)+R(Y, Z, X, W)+R(Z, X, Y, W)=0$,
where X, Y, Z and W are vector fields.
Proof. The equality (1) follows from the property of the Lie bracket $[Y, X]=-[X, Y]$. The equality (4) can be proved by the property (4.17) and the Jacobi identity

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

for the Lie bracket. The property (2) can be shown by applying (4.18) and (4.17) (Problem 5-2). The property (3) follows from
(4), (1) and (2). In fact, summing up

$$
\begin{array}{r}
R(X, Y, Z, W)+R(Y, Z, X, W)+R(Z, X, Y, W)=0 \\
R(Y, Z, W, X)+R(Z, W, Y, X)+R(W, Y, Z, X)=0 \\
R(Z, W, X, Y)+R(W, X, Z, Y)+R(X, Z, W, Y)=0 \\
R(W, X, Y, Z)+R(X, Y, W, Z)+R(Y, W, X, Z)=0
\end{array}
$$

(3) follows.

Proposition 5.8. Assume two tensors R_{1} and $R_{2} \in \Gamma\left(\otimes^{4} T^{*} M\right)$ satisfy the symmetricity as in Proposition 5.7. If

$$
R_{1}(X, Y, Y, X)=R_{2}(X, Y, Y, X)
$$

holds for all $X, Y \in \mathfrak{X}(M)$, then $R_{1}=R_{2}$
Proof. Expanding

$$
\begin{aligned}
& R_{1}(X+s Z, Y+t W, Y+t W, X+s Z) \\
& \quad=R_{2}(X+s Z, Y+t W, Y+t W, X+s Z)
\end{aligned}
$$

we have the conclusion from the coefficients of st.

Sectional Curvature

Lemma 5.9. Let R be the curvature tensor of a (pseudo) Riemannian manifold (M, g). Then, for each $\mathrm{P} \in M$,

$$
\frac{R(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{w}, \boldsymbol{v})}{g(\boldsymbol{v}, \boldsymbol{v}) g(\boldsymbol{w}, \boldsymbol{w})-g(\boldsymbol{v}, \boldsymbol{w})^{2}} \quad\left(\boldsymbol{v}, \boldsymbol{w} \in T_{\mathrm{P}} M\right)
$$

depends only on the 2 -dimensional subspace of $T_{\mathrm{P}} M$ spanned by $\{\boldsymbol{v}, \boldsymbol{w}\}$ whenever

$$
\begin{equation*}
g(\boldsymbol{v}, \boldsymbol{v}) g(\boldsymbol{w}, \boldsymbol{w})-g(\boldsymbol{v}, \boldsymbol{w})^{2} \neq 0 \tag{5.8}
\end{equation*}
$$

Proof. Set

$$
(\boldsymbol{x}, \boldsymbol{y})=(\boldsymbol{v}, \boldsymbol{w}) A
$$

where $A \in \mathrm{GL}(2, \mathbb{R})$. Then

$$
\begin{aligned}
R(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y}, \boldsymbol{x}) & =\operatorname{det} A R(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{w}, \boldsymbol{v}) \\
g(\boldsymbol{x}, \boldsymbol{x}) g(\boldsymbol{y}, \boldsymbol{y})-g(\boldsymbol{x}, \boldsymbol{y})^{2} & =\operatorname{det} A\left(g(\boldsymbol{v}, \boldsymbol{v}) g(\boldsymbol{w}, \boldsymbol{w})-g(\boldsymbol{v}, \boldsymbol{w})^{2}\right)
\end{aligned}
$$

Hence the conclusion follows.
Remark 5.10. When g is positive definite (i.e., (M, g) is a Riemannian manifold), (5.8) holds if and only if \boldsymbol{v} and \boldsymbol{w} are linearly independent. On the other hand, when g is indefinite, the left-hand side of (5.8) may vanish even if \boldsymbol{v} and \boldsymbol{w} are linearly independent. In this case, (5.8) holds if and only if $\operatorname{Span}\{\boldsymbol{v}, \boldsymbol{w}\}$ is a non-degenerate subspace of $T_{\mathrm{P}} M$.

Definition 5.11. For a 2-dimensional non-degenerate subspace $\Pi_{\mathrm{P}} \subset T_{\mathrm{P}} M$, we set

$$
K\left(\Pi_{\mathrm{P}}\right):=\frac{R(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{w}, \boldsymbol{v})}{\left.g(\boldsymbol{v}, \boldsymbol{v}) g(\boldsymbol{w}, \boldsymbol{w})-g(\boldsymbol{v}, \boldsymbol{w})^{2}\right)},
$$

where $\{\boldsymbol{v}, \boldsymbol{w}\}$ is a basis of Π_{P}. We call it the sectional curvature at Π_{P}.

Remark 5.12. The set of 2-dimensional subspaces on an n-dimensional vector space V can be endowed with the structure of a compact $(2 n-3)$-dimensional manifold, denoted by $\operatorname{Gr}_{2}(V)$, which is called the 2-Grassmanian manifold over V. So, when (M, g) is a Riemannian, the sectional curvature can be considered as a smooth map

$$
K: \operatorname{Gr}_{2}(T M):=\bigcup_{\mathrm{P} \in M} \operatorname{Gr}_{2}\left(T_{\mathrm{P}} M\right) \rightarrow \mathbb{R}
$$

Example 5.13. Let (M, g) be a 2-dimensional Riemannian manifold. Since $\operatorname{Gr}_{2}\left(T_{\mathrm{P}} M\right)$ consists of one point, the sectional curvature K can be regarded as a function defined on M itself. In this case, the sectional curvature is written as

$$
\begin{aligned}
K= & \frac{E\left(E_{v} G_{v}-2 F_{u} G_{v}+G_{u}^{2}\right)}{4\left(E G-F^{2}\right)^{2}} \\
& +\frac{F\left(E_{u} G_{v}-E_{v} G_{u}-2 E_{v} F_{v}-2 F_{u} G_{u}+4 F_{u} F_{v}\right)}{4\left(E G-F^{2}\right)^{2}} \\
& +\frac{G\left(E_{u} G_{u}-2 E_{u} F_{v}+E_{v}^{2}\right)}{4\left(E G-F^{2}\right)^{2}}-\frac{E_{v v}-2 F_{u v}+G_{u u}}{2\left(E G-F^{2}\right)},
\end{aligned}
$$

where $\left(u^{1}, u^{2}\right)=(u, v)$ is a local coordinate system and

$$
E=g_{11}, \quad F=g_{12}=g_{21}, \quad G=g_{22}
$$

Constant Sectional Curvature. A Riemannian manifold (M, g) is said to be a space of constant sectional curvature if K is constant everywhere.

Proposition 5.14. A (pseudo) Riemannian manifold (M, g) has constant sectional curvature k if and only if its curvature tensor R satisfies
(5.9) $\quad R(X, Y, Z, W)=k(g(X, T) g(Y, Z)-g(X, Z) g(Y, T))$.

Proof. If R satisfy (5.9), $K=k$ is constant obviously. Conversely, assume $K=k$ is constant. Then (5.9) holds for $Z=Y$, $W=X$. Since the right-hand side has the symmetric property as in Proposition 5.7, Proposition 5.8 yields (5.9).

Example 5.15. The curvature tensor of the Euclidean space \mathbb{R}^{n} vanishes identically, because R vanishes identically. The covariant derivative of \mathbb{R}^{n} is identified with the directional derivative D. This means that

$$
D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z=O
$$

holds for vector fields X, Y and Z.
Example 5.16. Let $k<0$ and

$$
S^{n}(k):=\left\{\boldsymbol{x} \in \mathbb{R}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\frac{1}{k}\right\}
$$

As seen in Example 3.3, this is an n-dimensional submanifold of \mathbb{R}^{n+1}, and then is a Riemannian manifold with the induced metric from \mathbb{R}^{n+1}.

We compute the sectional curvature $S^{n}(k)$: The unit normal vector of $S^{n}(k)$ at \boldsymbol{x} is $\boldsymbol{n}:=\boldsymbol{x} / \sqrt{k}$. Then, regarding vector field
on $S^{n}(k)$ as a vector field of \mathbb{R}^{n+1} along $S^{n}(k)$, we have by Proposition 4.8

$$
\begin{aligned}
\nabla_{Y} Z & =\left[D_{Y} Z\right]^{\mathrm{T}}=D_{Y} Z-\frac{1}{\sqrt{k}}\left\langle D_{Y} Z, \boldsymbol{x}\right\rangle \boldsymbol{x} \\
& =D_{Y} Z-\frac{1}{\sqrt{k}} Y\langle Z, \boldsymbol{x}\rangle \boldsymbol{x}+\frac{1}{\sqrt{k}}\left\langle Z, D_{Y} \boldsymbol{x}\right\rangle \boldsymbol{x} \\
& =D_{Y} Z-\frac{1}{\sqrt{k}} Y\langle Z, \boldsymbol{x}\rangle \boldsymbol{x}+\frac{1}{\sqrt{k}}\langle Z, Y\rangle \boldsymbol{x} \\
& =D_{Y} Z+\frac{1}{\sqrt{k}}\langle Z, Y\rangle \boldsymbol{x}
\end{aligned}
$$

where we used the relation $D_{Y} \boldsymbol{x}=Y$. Using this relation, we can show that the curvature tensor R satisfy

$$
\begin{aligned}
& R(X, Y, Z, W) \\
& \qquad \begin{array}{l}
\left\langle D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z, W\right\rangle \\
\quad+k(g(X, W) g(Y, Z)-g(X, Z) g(Y, T))
\end{array}
\end{aligned}
$$

Hence by Proposition 5.14, we obtain that the sectional curvature of $S^{n}(k)$ is k.

Example 5.17. Let k is a positive constant and

$$
H^{n}(-k):=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-\frac{1}{k}, x^{0}>0\right\}
$$

where $\boldsymbol{x}=\left(x^{0}, \ldots, x^{n}\right)$. Then $H^{n}(-k)$ is a space-like hypersurface in the Lorentz-Minkowski space \mathbb{R}_{1}^{n+1}, as seen in Example 3.5, called the hyperbolic space. Since $H^{n}(-k)$ is a space-like
hypersurface, the induced metric gives a Riemannian metric, and then $H^{n}(-k)$ is a Riemannian manifold.

By the completely same method as in the previous example one can show that $H^{n}(-k)$ has constant sectional curvature $-k$

Exercises
5-1 Prove Proposition 5.5.
5-2 Show (3) in Proposition 5.7.
5-3 Compute the sectional curvature of a Riemannian 2-manifold (M, g) with

$$
g_{11}=g_{22}=\frac{4}{\left(1+k\left(u^{2}+v^{2}\right)\right)^{2}}, \quad g_{12}=g_{21}=0
$$

where $(u, v)=\left(u^{1}, u^{2}\right)$ is a local coordinate system.

[^0]: ${ }^{7}$ The symbol " \otimes " in (5.2) means the tensor product. For example, $T^{*} M \otimes T^{*} M$ is a tensor product of the cotangent bundles, which is a certain vector bundle over M. The notion $\Gamma(*)$ means the set of sections of the vector bundle "*". Anyway, we do not give a precise meaning of these

