5 Sectional Curvature.

Throughout this section, we let (M, g) an m-dimensional (pseudo)

Riemannian manifold, and V the covariant derivative defined in
(4.14).

Tensors. A correspondence S : M 5 P +— Sp of a point P
and a multi-linear map Sp: (TpM)* — R is called a (k-th order
covariant) tensor field or a tensor on M. For such a tensor field
S trivially induces a map

(5.1) S: (X(M))" > (X1,...,X,) = S(X4,...,X,) € F(M)
where X(M) is the set (C°°(M)-module) of C*-vector fields
of M, and F(M) is the set of real-valued function on M. The

tensor field S is said to be smooth of class C* if SS(X1,. .., X,)
as in (5.1) is of class C*° for an arbitrary Xi,...,X,.

Example 5.1. The (pseudo) Riemannian metric g is a smooth
tensor field.

Example 5.2. A smooth 1-form on M is a smooth, first-order
covariant tensor field on M.

We denote by

(5.2) r@r*M)y=rrmMme---T*M)
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the set of p-th order covariant tensor fields on M. 7 The set
I' (®PT*M) is a vector space over R. Moreover, for each S €
'(@PT*M) and f € C°(M), fS = (P — f(P)Sp) is also
an element of I'(@PT*M). That is, ['(QPT*M) is a C°(M)-
module.

Lemma 5.3. Let S be a p-th covariant tensor field on M and
S: X(M)P — C°(M) the map induced by S as in (5.1) Then
for an arbitrary f € C°(M), it holds that

(5.3)  S(X1,..., fXj,...,Xp) = fS(X1,.. ., X ., Xp),
where X1, ..., X, € X(M).
Proof. For each P € M,

S(X1, .. f X, X)) (P)
= Sp((X1)p, .-, [(P)(X;)

= F(P)Se((X1)ps - (X)ps ooy (Xp)p)
= (£5)(X1,...,X,)(P). 0

Proposition 5.4. A multi-linear map S (%(M))p — C°(M)
is induced from a certain S € T'(QPT*M) as in (5.1) if S is
C*(M)-multi-linear, that is, (5.3) holds for any f € C*°(M)
and X1, ..., X, € X(M).

"The symbol “®” in (5.2) means the tensor product. For example,
T*M ® T*M is a tensor product of the cotangent bundles, which is a
certain vector bundle over M. The notion I'(x) means the set of sections of
the vector bundle “x¥”. Anyway, we do not give a precise meaning of these

notations.
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Proof. Assume that (5.1) holds. We fix P € M and take a local
coordinate system (U;u!,...,u™) of M around P. According
to this coordinate system, we set X; = >)", £4(9/0u') (j =
1,...,m), where §§-’s are C'°°-functions on U. Then by (5.1),

A~ 11 ’ipA a a
S(Xq,..., Xp) :Zgl & S(@u“"”’@ﬁ?)

holds, where the sum in the right-hand side is taken over i; =
1,...,m (j =1,...,p). This means the value of the left-hand
side at P is determined by &' (P), which depend only on (X;)p.
Hence, for each vy,...,v, € Tp M, we can define

SP(Ivlw'va) = S’(le aXm)v

where X; is an arbitrary vector field on M such that X;(P) =
v;. Then S: P — Sp is the desired one. l

If S is induced from a tensor field S , we say that S itself is
a tensor field. From now on, we denote S in (5.1) by S for a
simplicity. Then, for each S € I'(®PT* M), the C*°-multi-linear
map

(5.4) S: (X(M))" — (M)
is induced.

Taking a local coordinate system (U;u?,...,u™) on M, we
set

0 0 . .
(55) Sil,...,ip =5 <(‘3uil g auip> (le s lp = L... ,m),
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which are called the components of S with respect to the local
coordinate system (u’). Let {Sq,.... q, } be the components of S
with respect to another coordinate system (z%). Then it holds
that

ouh Ou'r

(5.6) Sarvay =

Proposition 5.5. Let S: (X(M))” — C°(M) be a multi-linear

if and only if it satisfy (5.6) for an arbitrary coordinate change
() = (u?).

Proof. Problem 5-1. O

The Curvature Tensor. Let V be the covariant derivative
on (M, g), as defined in (4.14), which is considered as

V:X(M)xX(M)>(X,)Y)— VxY € X(M).
Remark 5.6. The tri-linear map
D: (X(M))’ 3 X,Y,Z = g(VxY,Z) € C™(M)

is not a tensor field. In fact, (4.16) means that D(X, fY, Z) and
fD(X,Y, Z) may not coincide. But for a fixed Y € X(M),

DY : X(M) x X(M)(X, Z) = g(VxY, Z) € C>®(M)

is a tensor because of (4.15).
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As seen in the proof in Proposition 4.10, the 4-linear map
R: (X(M))" = (M) defined by

(5.7) R(X,Y,Z,W) := g(VxVyZ - VyVxZ - VixyZ, W),

where [X,Y] denotes the Lie bracket of the vector fields, is a
tensor field, which we call the curvature tensor, or the Riemann-
Christoffel curvature tensor of (M, g).

Proposition 5.7. The curvature tensor R has the following
symmetricity:

(1) R(Y, X, 2,W) = —R(X,Y, 2, ).

(3) R(X,Y,W,Z) = R(W,Z, X.,Y).

(4) R(X,Y,Z,W)+ R(Y, Z,X,W) + R(Z, X,Y,W) = 0,
where X, Y, Z and W are vector fields.
Proof. The equality (1) follows from the property of the Lie
bracket [Y, X] = —[X,Y]. The equality (4) can be proved by
the property (4.17) and the Jacobi identity

(X.Y1.2) + [1¥, 2. X] + [12.X],¥] = 0

for the Lie bracket. The property (2) can be shown by applying
(4.18) and (4.17) (Problem 5-2). The property (3) follows from
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(4), (1) and (2). In fact, summing up

R(X,Y,Z,W)+ R(Y, Z,X,W

Y+ R(Z,X,Y,W
RY,Z,W,X)+ R(Z,W,Y, X) +
)+
+

RW,Y,Z, X
R(X,Z,W,Y
RY,W,X,Z

’

R(Z,W,X,Y)+RW,X,Z,Y
R(W,X,Y,Z) + R(X,Y,W, Z)

7

)=
),
) =
) =0,

(3) follows. O

Proposition 5.8. Assume two tensors Ry and Ry € I'(@*T* M)
satisfy the symmetricity as in Proposition 5.7. If

Rl(XaKKX) :RQ(vaaKX>
holds for all X, Y € X(M), then Ry = Ry

Proof. Expanding

Ri(X +sZ,)Y +tW,)Y +tW, X + sZ)
= Ro(X +5Z,Y +tW,)Y +tW, X + s2),

we have the conclusion from the coefficients of st. O

Sectional Curvature.

Lemma 5.9. Let R be the curvature tensor of a (pseudo) Rie-
mannian manifold (M, g). Then, for each P € M,

R(v,w,w,v)
g('U, U)g(wa w) - g(”? w)2

(v,weTpM)
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depends only on the 2-dimensional subspace of Tp M spanned by
{v,w} whenever

(5.8) 9(v, v)g(w, w) — g(v,w)* # 0.
Proof. Set

(z,y) = (v,w)A,
where A € GL(2,R). Then

R(z,y,y,x) = det AR(v, w, w,v),
g9(x,®)g(y,y) — g(x,y)* = det A(g(v,v)g(w, w) — g(v,w)?).

Hence the conclusion follows. O

Remark 5.10. When g is positive definite (i.e., (M, g) is a Rie-
mannian manifold), (5.8) holds if and only if v and w are lin-
early independent. On the other hand, when g is indefinite, the
left-hand side of (5.8) may vanish even if v and w are linearly
independent. In this case, (5.8) holds if and only if Span{v, w}
is a non-degenerate subspace of Tp M.

Definition 5.11. For a 2-dimensional non-degenerate subspace
IIp C Tp M, we set

R(v,w,w,v)
g(v, 'v)g(w, w) - g(v, w)Q) ’

K(Hp) =

where {v,w} is a basis of IIp. We call it the sectional curvature
at HP.
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Remark 5.12. The set of 2-dimensional subspaces on an n-dimensional

vector space V' can be endowed with the structure of a compact
(2n — 3)-dimensional manifold, denoted by Grz(V'), which is
called the 2-Grassmanian manifold over V. So, when (M, g) is
a Riemannian, the sectional curvature can be considered as a
smooth map

K: Gry(TM) := | J Gro(Tp M) — R.
PeM

Example 5.13. Let (M,g) be a 2-dimensional Riemannian
manifold. Since Grz(TpM) consists of one point, the sectional
curvature K can be regarded as a function defined on M itself.
In this case, the sectional curvature is written as

_ 2
P E(E,G, —2F,G, + G?)

4(EG — F?)?
F(E.G, — E,G, —2E,F, — 2F,G,, + 4F,F,)
+ A(EG — F2)2
| G(B.Gy —2E.F, + E}) By —2Fu + Guu
4(EG — F?)? 2(EG — F?)

where (u',u?) = (u,v) is a local coordinate system and

E = g11, F = g12 = go1, G = goo.

Constant Sectional Curvature. A Riemannian manifold
(M, g) is said to be a space of constant sectional curvature if
K is constant everywhere.
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Proposition 5.14. A (pseudo) Riemannian manifold (M, g)
has constant sectional curvature k if and only if its curvature
tensor R satisfies

(59) R(Xv Y7 Za W) = k(g(Xv T)g(Y7 Z) - g(Xa Z)g(K T))

Proof. If R satisfy (5.9), K = k is constant obviously. Con-
versely, assume K = k is constant. Then (5.9) holds for Z =Y,
W = X. Since the right-hand side has the symmetric property
as in Proposition 5.7, Proposition 5.8 yields (5.9). O

Example 5.15. The curvature tensor of the Euclidean space R™
vanishes identically, because R vanishes identically. The covari-
ant derivative of R™ is identified with the directional derivative
D. This means that

DxDyZ — DyDxZ — Dixy1Z = O
holds for vector fields X, Y and Z.
Example 5.16. Let £ < 0 and

S™ (k) = {:c € R (,2) ;} .

As seen in Example 3.3, this is an n-dimensional submanifold
of R™*! and then is a Riemannian manifold with the induced
metric from R"T1.

We compute the sectional curvature S™(k): The unit normal
vector of S”(k) at « is m := x/v/k. Then, regarding vector field
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on S"(k) as a vector field of R"*! along S™(k), we have by
Proposition 4.8

VyZ =[DyZ" =DyZ — % (Dy Z,x) x
1

1
ﬁY (Z,x)x + 7 (Z,Dyz)x

1 1
=DyZ - —=Y{Z x)xr+ —
vAmpremet g

1
=DyZ+—(Z,Y)x,

Vk

where we used the relation Dyax = Y. Using this relation, we
can show that the curvature tensor R satisfy

=Dy 7 —

(Z,YYx

R(X.Y,Z,W)
— (DxDyZ — DyDxZ — Dix ) Z, W)
+E(9(X,W)g(Y, Z) — g(X, Z)g(Y, T)).

Hence by Proposition 5.14, we obtain that the sectional curva-
ture of S™(k) is k.

Example 5.17. Let k is a positive constant and

1
H" (k) := {:c eRMM . (x,x) = —%,mo > 0} ,
where £ = (z%,...,2"). Then H"(—k) is a space-like hyper-
surface in the Lorentz-Minkowski space R?H, as seen in Exam-
ple 3.5, called the hyperbolic space. Since H™(—k) is a space-like
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hypersurface, the induced metric gives a Riemannian metric,
and then H™(—k) is a Riemannian manifold.

By the completely same method as in the previous example,
one can show that H™(—k) has constant sectional curvature —k.
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Ezxercises
5-1 Prove Proposition 5.5.
5-2  Show (3) in Proposition 5.7.

5-3 Compute the sectional curvature of a Riemannian 2-manifold
(M, g) with

4
g11 = g22 = 0+ k(2 + 09))2’ g12 = g21 =0,

where (u,v) = (u!,u?) is a local coordinate system.



