
5 Sectional Curvature.

Throughout this section, we let (M, g) anm-dimensional (pseudo)
Riemannian manifold, and ∇ the covariant derivative defined in
(4.14).

Tensors. A correspondence S : M ∋ P 7→ SP of a point P
and a multi-linear map SP : (TPM)k → R is called a (k-th order
covariant) tensor field or a tensor on M . For such a tensor field
S trivially induces a map

(5.1) Ŝ :
(
X(M)

)p ∋ (X1, . . . , Xp) 7→ S(X1, . . . , Xp) ∈ F(M)

where X(M) is the set (C∞(M)-module) of C∞-vector fields
of M , and F(M) is the set of real-valued function on M . The
tensor field S is said to be smooth of class C∞ if ŜS(X1, . . . , Xp)
as in (5.1) is of class C∞ for an arbitrary X1, . . . , Xp.

Example 5.1. The (pseudo) Riemannian metric g is a smooth
tensor field.

Example 5.2. A smooth 1-form on M is a smooth, first-order
covariant tensor field on M .

We denote by

(5.2) Γ (⊗pT ∗M) = Γ (T ∗M ⊗ · · · ⊗ T ∗M)
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the set of p-th order covariant tensor fields on M . 7 The set
Γ (⊗pT ∗M) is a vector space over R. Moreover, for each S ∈
Γ (⊗pT ∗M) and f ∈ C∞(M), fS := (P 7→ f(P)SP) is also
an element of Γ (⊗pT ∗M). That is, Γ (⊗pT ∗M) is a C∞(M)-
module.

Lemma 5.3. Let S be a p-th covariant tensor field on M and
Ŝ : X(M)p → C∞(M) the map induced by S as in (5.1) Then
for an arbitrary f ∈ C∞(M), it holds that

(5.3) Ŝ(X1, . . . , fXj , . . . , Xp) = fŜ(X1, . . . , Xj , . . . , Xp),

where X1, . . . , Xp ∈ X(M).

Proof. For each P ∈ M ,

S(X1, . . . ,fXj , . . . , Xp)(P)

= SP

(
(X1)P, . . . , f(P)(Xj)P, . . . , (Xp)P

)

= f(P)SP

(
(X1)P, . . . , (Xj)P, . . . , (Xp)P

)

= (fS)(X1, . . . , Xp)(P).

Proposition 5.4. A multi-linear map Ŝ :
(
X(M)

)p → C∞(M)

is induced from a certain S ∈ Γ (⊗pT ∗M) as in (5.1) if Ŝ is
C∞(M)-multi-linear, that is, (5.3) holds for any f ∈ C∞(M)
and X1, . . . , Xp ∈ X(M).

7The symbol “⊗” in (5.2) means the tensor product. For example,
T ∗M ⊗ T ∗M is a tensor product of the cotangent bundles, which is a
certain vector bundle over M . The notion Γ (∗) means the set of sections of
the vector bundle “∗”. Anyway, we do not give a precise meaning of these
notations.
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Proof. Assume that (5.1) holds. We fix P ∈ M and take a local
coordinate system (U ;u1, . . . , um) of M around P. According
to this coordinate system, we set Xj =

∑m
l=1 ξ

l
j(∂/∂u

l) (j =

1, . . . ,m), where ξlj ’s are C∞-functions on U . Then by (5.1),

Ŝ(X1, . . . , Xp) =
∑

ξi11 . . . ξipp Ŝ

(
∂

∂ui1
, . . . ,

∂

∂uip

)

holds, where the sum in the right-hand side is taken over ij =
1, . . . ,m (j = 1, . . . , p). This means the value of the left-hand
side at P is determined by ξilj (P), which depend only on (Xj)P.
Hence, for each v1, . . . ,vp ∈ TPM , we can define

SP(v1, . . . ,vp) := Ŝ(X1, . . . , Xm),

where Xj is an arbitrary vector field on M such that Xj(P) =
vj . Then S : P 7→ SP is the desired one.

If Ŝ is induced from a tensor field S, we say that Ŝ itself is
a tensor field. From now on, we denote Ŝ in (5.1) by S for a
simplicity. Then, for each S ∈ Γ (⊗pT ∗M), the C∞-multi-linear
map

(5.4) S :
(
X(M)

)p −→ C∞(M)

is induced.
Taking a local coordinate system (U ;u1, . . . , um) on M , we

set

(5.5) Si1,...,ip := S

(
∂

∂ui1
, . . .

∂

∂uip

)
(i1, . . . , ip = 1, . . . ,m),
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which are called the components of S with respect to the local
coordinate system (uj). Let {Sa1,...,ap} be the components of S
with respect to another coordinate system (xa). Then it holds
that

(5.6) Sa1,...,ap =
∂ui1

∂xa1 . . .
∂uip

∂xap Si1,...,ip .

Proposition 5.5. Let S :
(
X(M)

)p → C∞(M) be a multi-linear
map, and set Si1,...,ip by (5.5). Then S is a tensor field on M
if and only if it satisfy (5.6) for an arbitrary coordinate change
(xa) 7→ (uj).

Proof. Problem 5-1.

The Curvature Tensor. Let ∇ be the covariant derivative
on (M, g), as defined in (4.14), which is considered as

∇ : X(M)× X(M) ∋ (X,Y ) 7−→ ∇XY ∈ X(M).

Remark 5.6. The tri-linear map

D :
(
X(M)

)3 ∋ X,Y, Z 7→ g(∇XY, Z) ∈ C∞(M)

is not a tensor field. In fact, (4.16) means that D(X, fY, Z) and
fD(X,Y, Z) may not coincide. But for a fixed Y ∈ X(M),

DY : X(M)× X(M)(X,Z) 7→ g(∇XY, Z) ∈ C∞(M)

is a tensor because of (4.15).



53 (20190716) MTH.B406; Sect. 5

As seen in the proof in Proposition 4.10, the 4-linear map

R :
(
X(M)

)4 → C∞(M) defined by

(5.7) R(X,Y, Z,W ) := g
(
∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z,W

)
,

where [X,Y ] denotes the Lie bracket of the vector fields, is a
tensor field, which we call the curvature tensor, or the Riemann-
Christoffel curvature tensor of (M, g).

Proposition 5.7. The curvature tensor R has the following
symmetricity:

(1) R(Y,X,Z,W ) = −R(X,Y, Z,W ).

(2) R(X,Y,W,Z) = −R(X,Y, Z,W ).

(3) R(X,Y,W,Z) = R(W,Z,X, Y ).

(4) R(X,Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W ) = 0,

where X, Y , Z and W are vector fields.

Proof. The equality (1) follows from the property of the Lie
bracket [Y,X] = −[X,Y ]. The equality (4) can be proved by
the property (4.17) and the Jacobi identity

[
[X,Y ], Z

]
+

[
[Y, Z], X

]
+
[
[Z,X], Y

]
= 0

for the Lie bracket. The property (2) can be shown by applying
(4.18) and (4.17) (Problem 5-2). The property (3) follows from
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(4), (1) and (2). In fact, summing up

R(X,Y, Z,W ) +R(Y, Z,X,W ) +R(Z,X, Y,W ) = 0,

R(Y, Z,W,X) +R(Z,W, Y,X) +R(W,Y,Z,X) = 0,

R(Z,W,X, Y ) +R(W,X,Z, Y ) +R(X,Z,W, Y ) = 0,

R(W,X, Y, Z) +R(X,Y,W,Z) +R(Y,W,X,Z) = 0,

(3) follows.

Proposition 5.8. Assume two tensors R1 and R2 ∈ Γ (⊗4T ∗M)
satisfy the symmetricity as in Proposition 5.7. If

R1(X,Y, Y,X) = R2(X,Y, Y,X)

holds for all X, Y ∈ X(M), then R1 = R2

Proof. Expanding

R1(X + sZ, Y + tW, Y + tW,X + sZ)

= R2(X + sZ, Y + tW, Y + tW,X + sZ),

we have the conclusion from the coefficients of st.

Sectional Curvature.

Lemma 5.9. Let R be the curvature tensor of a (pseudo) Rie-
mannian manifold (M, g). Then, for each P ∈ M ,

R(v,w,w,v)

g(v,v)g(w,w)− g(v,w)2
(v,w ∈ TPM)
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depends only on the 2-dimensional subspace of TPM spanned by
{v,w} whenever

(5.8) g(v,v)g(w,w)− g(v,w)2 ̸= 0.

Proof. Set

(x,y) = (v,w)A,

where A ∈ GL(2,R). Then

R(x,y,y,x) = detAR(v,w,w,v),

g(x,x)g(y,y)− g(x,y)2 = detA
(
g(v,v)g(w,w)− g(v,w)2).

Hence the conclusion follows.

Remark 5.10. When g is positive definite (i.e., (M, g) is a Rie-
mannian manifold), (5.8) holds if and only if v and w are lin-
early independent. On the other hand, when g is indefinite, the
left-hand side of (5.8) may vanish even if v and w are linearly
independent. In this case, (5.8) holds if and only if Span{v,w}
is a non-degenerate subspace of TPM .

Definition 5.11. For a 2-dimensional non-degenerate subspace
ΠP ⊂ TPM , we set

K(ΠP) :=
R(v,w,w,v)

g(v,v)g(w,w)− g(v,w)2)
,

where {v,w} is a basis of ΠP. We call it the sectional curvature
at ΠP.
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Remark 5.12. The set of 2-dimensional subspaces on an n-dimensional
vector space V can be endowed with the structure of a compact
(2n − 3)-dimensional manifold, denoted by Gr2(V ), which is
called the 2-Grassmanian manifold over V . So, when (M, g) is
a Riemannian, the sectional curvature can be considered as a
smooth map

K : Gr2(TM) :=
∪

P∈M

Gr2(TPM) → R.

Example 5.13. Let (M, g) be a 2-dimensional Riemannian
manifold. Since Gr2(TPM) consists of one point, the sectional
curvature K can be regarded as a function defined on M itself.
In this case, the sectional curvature is written as

K =
E(EvGv − 2FuGv +G2

u)

4(EG− F 2)2

+
F (EuGv − EvGu − 2EvFv − 2FuGu + 4FuFv)

4(EG− F 2)2

+
G(EuGu − 2EuFv + E2

v)

4(EG− F 2)2
− Evv − 2Fuv +Guu

2(EG− F 2)
,

where (u1, u2) = (u, v) is a local coordinate system and

E = g11, F = g12 = g21, G = g22.

Constant Sectional Curvature. A Riemannian manifold
(M, g) is said to be a space of constant sectional curvature if
K is constant everywhere.
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Proposition 5.14. A (pseudo) Riemannian manifold (M, g)
has constant sectional curvature k if and only if its curvature
tensor R satisfies

(5.9) R(X,Y, Z,W ) = k(g(X,T )g(Y, Z)− g(X,Z)g(Y, T )).

Proof. If R satisfy (5.9), K = k is constant obviously. Con-
versely, assume K = k is constant. Then (5.9) holds for Z = Y ,
W = X. Since the right-hand side has the symmetric property
as in Proposition 5.7, Proposition 5.8 yields (5.9).

Example 5.15. The curvature tensor of the Euclidean space Rn

vanishes identically, because R vanishes identically. The covari-
ant derivative of Rn is identified with the directional derivative
D. This means that

DXDY Z −DY DXZ −D[X,Y ]Z = O

holds for vector fields X, Y and Z.

Example 5.16. Let k < 0 and

Sn(k) :=

{
x ∈ Rn+1 ; ⟨x,x⟩ = 1

k

}
.

As seen in Example 3.3, this is an n-dimensional submanifold
of Rn+1, and then is a Riemannian manifold with the induced
metric from Rn+1.

We compute the sectional curvature Sn(k): The unit normal
vector of Sn(k) at x is n := x/

√
k. Then, regarding vector field
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on Sn(k) as a vector field of Rn+1 along Sn(k), we have by
Proposition 4.8

∇Y Z = [DY Z]
T
= DY Z − 1√

k
⟨DY Z,x⟩x

= DY Z − 1√
k
Y ⟨Z,x⟩x+

1√
k
⟨Z,DY x⟩x

= DY Z − 1√
k
Y ⟨Z,x⟩x+

1√
k
⟨Z, Y ⟩x

= DY Z +
1√
k
⟨Z, Y ⟩x,

where we used the relation DY x = Y . Using this relation, we
can show that the curvature tensor R satisfy

R(X,Y, Z,W )

=
⟨
DXDY Z −DY DXZ −D[X,Y ]Z,W

⟩

+ k
(
g(X,W )g(Y, Z)− g(X,Z)g(Y, T )

)
.

Hence by Proposition 5.14, we obtain that the sectional curva-
ture of Sn(k) is k.

Example 5.17. Let k is a positive constant and

Hn(−k) :=

{
x ∈ Rn+1

1 ; ⟨x,x⟩ = −1

k
, x0 > 0

}
,

where x = (x0, . . . , xn). Then Hn(−k) is a space-like hyper-
surface in the Lorentz-Minkowski space Rn+1

1 , as seen in Exam-
ple 3.5, called the hyperbolic space. Since Hn(−k) is a space-like
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hypersurface, the induced metric gives a Riemannian metric,
and then Hn(−k) is a Riemannian manifold.

By the completely same method as in the previous example,
one can show that Hn(−k) has constant sectional curvature −k.
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Exercises

5-1 Prove Proposition 5.5.

5-2 Show (3) in Proposition 5.7.

5-3 Compute the sectional curvature of a Riemannian 2-manifold
(M, g) with

g11 = g22 =
4

(1 + k(u2 + v2))2
, g12 = g21 = 0,

where (u, v) = (u1, u2) is a local coordinate system.


