4 The Curvature Tensor.

Change of Coordinate Systems. Throughout this section, we let (M, g) be a (pseudo) Riemannian m-manifold and take a local coordinate system $\left(U ; u^{1}, \ldots, u^{m}\right)$ on a neighborhood of $\mathrm{P} \in U$. Choose another coordinate system $\left(V ; x^{1}, \ldots, x^{m}\right)$ on a neighborhood V of P . Then the coordinate change

$$
\text { (4.1) } \quad \begin{aligned}
\boldsymbol{x}= & \left(x^{1}, \ldots, x^{m}\right) \\
& \mapsto \boldsymbol{u}(\boldsymbol{x})=\left(u^{1}\left(x^{1}, \ldots, x^{m}\right), \ldots, u^{m}\left(x^{1}, \ldots, x^{m}\right)\right)
\end{aligned}
$$

is defined as a C^{∞}-map between certain domains in \mathbb{R}^{m}. Since the transformation (4.1) is a diffeomorphism, the inverse

$$
\text { (4.2) } \quad \begin{aligned}
\boldsymbol{u}= & \left(u^{1}, \ldots, u^{m}\right) \\
& \mapsto \boldsymbol{x}(\boldsymbol{u})=\left(x^{1}\left(u^{1}, \ldots, u^{m}\right), \ldots, x^{m}\left(u^{1}, \ldots, u^{m}\right)\right)
\end{aligned}
$$

is also C^{∞}. Thus, the Jacobian matrix

$$
J:=\left(\begin{array}{ccc}
\frac{\partial u^{1}}{\partial x^{1}} & \cdots & \frac{\partial u^{1}}{\partial x^{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial u^{m}}{\partial x^{1}} & \cdots & \frac{\partial u^{m}}{\partial x^{m}}
\end{array}\right)=\left(\frac{\partial u^{i}}{\partial x^{a}}\right)_{i, a=1, \ldots, m}
$$

[^0]is invertible on each point of the domain of $\boldsymbol{u}(\boldsymbol{x})$, and the Jacobian matrix of the inverse map $\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{u})$ is obtained as
\[

\left($$
\begin{array}{ccc}
\frac{\partial x^{1}}{\partial u^{1}} & \cdots & \frac{\partial x^{1}}{\partial u^{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial x^{m}}{\partial u^{1}} & \cdots & \frac{\partial x^{m}}{\partial u^{m}}
\end{array}
$$\right)=\left(\frac{\partial x^{a}}{\partial u^{i}}\right)_{a, i=1, ···, m}=J^{-1}
\]

where the inverse matrix of the right-hand side is evaluated at $\boldsymbol{u}(\boldsymbol{x})$, that is,
(4.3) $\quad \sum_{i=1}^{m} \frac{\partial x^{a}}{\partial u^{i}} \frac{\partial u^{i}}{\partial x^{b}}=\delta_{b}^{a}, \quad$ and $\quad \sum_{a=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial x^{a}}{\partial u^{j}}=\delta_{j}^{i}$
hold, where δ denotes Kronecker's delta.
Components of Vector fields and Differential forms. Let X be a vector field on M. Then it can be expressed on coordinate neighborhoods $(U ; \boldsymbol{u})$ and $(V ; \boldsymbol{x})$ as

$$
X=\sum_{i=1}^{m} X^{i} \frac{\partial}{\partial u^{i}}=\sum_{a=1}^{m} \widetilde{X}^{a} \frac{\partial}{\partial x^{a}} .
$$

Since

$$
\begin{equation*}
\frac{\partial}{\partial u^{i}}=\sum_{a=1}^{m} \frac{\partial x^{a}}{\partial u^{i}} \frac{\partial}{\partial x^{a}} \quad \text { and } \quad \frac{\partial}{\partial x^{a}}=\sum_{i=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial}{\partial u^{i}} \tag{4.4}
\end{equation*}
$$

we have the following transformation formula for the components of X :

$$
\begin{equation*}
\widetilde{X}^{a}=\sum_{i=1}^{m} \frac{\partial x^{a}}{\partial u^{i}} X^{i}, \quad X^{i}=\sum_{a=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \widetilde{X}^{a} . \tag{4.5}
\end{equation*}
$$

Thus,
Lemma 4.1. The components $\left(g_{i j}\right)$ and $\left(\tilde{g}_{a b}\right)$ of the (pseudo) Riemannian metric g with respect to the coordinates $\left(u^{1}, \ldots, u^{m}\right)$ and $\left(x^{1}, \ldots, x^{m}\right)$, respectively, are related as

$$
\begin{equation*}
\tilde{g}_{a b}=\sum_{i, j=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} g_{i j} . \tag{4.6}
\end{equation*}
$$

Moreover, the inverse matrices $\left(g^{i j}\right)$ and $\left(\tilde{g}^{a b}\right)$ of $\left(g_{i j}\right)$ and $\left(\tilde{g}_{a b}\right)$, respectively, satisfy

$$
g^{i j}=\sum_{a, b=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} \tilde{g}^{a b} .
$$

Proof. By (4.4), we have

$$
\begin{aligned}
\tilde{g}_{a b}:=g\left(\frac{\partial}{\partial x^{a}}, \frac{\partial}{\partial x^{b}}\right) & =\sum_{i, j=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} g\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}\right) \\
& =\sum_{i, j=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} g_{i j}
\end{aligned}
$$

proving the first assertion. The second assertion follows from (4.3).

Corollary 4.2. The Christoffel symbols $\Gamma_{i j}^{k}$ as in (3.8) with respect to the coordinate system $\left(u^{1}, \ldots, u^{m}\right)$ and the Christoffel symbols $\widetilde{\Gamma}_{a b}^{c}$ with respect to $\left(x^{1}, \ldots, x^{m}\right)$ are related as

$$
\widetilde{\Gamma}_{a b}^{c}=\sum_{k=1}^{m} \frac{\partial x^{c}}{\partial u^{k}}\left[\frac{\partial^{2} u^{k}}{\partial x^{a} \partial x^{b}}+\sum_{i, j=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} \Gamma_{i j}^{k}\right] .
$$

Proof. The definition (3.8) and Lemma 4.1 yields the conclusion through a direct computation.

The following corollary is essentially a rephrasing of Theorem 3.13. Namely the proof of the corollary gives an alternative proof of Theorem 3.13.
Corollary 4.3. Let (M, g) be an m-dimensional (p seudo) Riemannian manifold. Then, for each P , there exists a coordinate neighborhood $\left(U ; u^{1}, \ldots, u^{m}\right)$ of P such that the components $\left(g_{i j}\right)$ of the metric g satisfy $g_{i j}= \pm \delta_{i j}$ if and only if the Christoffel symbols $\widetilde{\Gamma}_{a b}^{c}$ of any coordinate system $\left(x^{1}, \ldots, x^{m}\right)$ satisfy (3.12).
Proof. Let $\left(V ; x^{1}, \ldots, x^{m}\right)$ be a coordinate system at P , and denote the Christoffel symbol with respect to $\left(x^{a}\right)$ by $\widetilde{\Gamma}_{a b}^{c}$. Consider a system of partial differential equations

$$
\begin{equation*}
\frac{\partial \mathcal{F}}{\partial x^{a}}=\mathcal{F} \Omega_{a} \tag{4.7}
\end{equation*}
$$

where Ω_{a} 's are matrices defined by (3.13) for $\left\{\widetilde{\Gamma}_{a b}^{c}\right\}$ and $\mathcal{F}=$ $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right)$. Then the integrability condition of (4.7) is equivalent to (3.12) for the Christoffel symbols $\left\{\widetilde{\Gamma}_{a b}^{c}\right\}$ satisfies (3.12).

That is, if $\left\{\widetilde{\Gamma}_{a b}^{c}\right\}$ satisfies (3.12), there exists a solution \mathcal{F} (4.7) with the initial value $\mathcal{F}(\mathrm{P})=F_{0}$. In addition, if F_{0} is a regular matrix, \mathcal{F} is valued in $\operatorname{GL}(m, \mathbb{R})$.

Moreover, noticing $\widetilde{\Gamma}_{a b}^{c}=\widetilde{\Gamma}_{b a}^{c}$, there exists a vector-valued function $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x})$ such that

$$
d \boldsymbol{u}=\sum_{a=1}^{m} \boldsymbol{v}_{a} d x^{a}
$$

because the right-hand side is a closed one form. Since \mathcal{F} is the Jacobian matrix of $\boldsymbol{x} \mapsto \boldsymbol{u}$, which is valued in $\operatorname{GL}(m, \mathbb{R})$, $\boldsymbol{u}=\left(u^{1}, \ldots, u^{m}\right)$ is a new coordinate system around P .

By Corollary 4.2, the Christoffel symbols with respect to $\left(u^{1}, \ldots, u^{m}\right)$ vanishes identically. This means that $g_{i j}$'s are constants because of (3.11). Since $\left(g_{i j}\right)$ is a constant matrix, a linear transformation of the coordinate system yields the conclusion.

The Curvature Tensor. Set
(4.8)

$$
R_{i j k l}:=\sum_{q=1}^{m} g_{q l}\left(\frac{\partial \Gamma_{k i}^{q}}{\partial u^{j}}-\frac{\partial \Gamma_{k j}^{q}}{\partial u^{i}}+\sum_{p=1}^{m}\left(\Gamma_{i k}^{p} \Gamma_{p j}^{q}-\Gamma_{k j}^{p} \Gamma_{p i}^{q}\right)\right)
$$

for $i, j, k, l=1, \ldots, m$, where $\Gamma_{i j}^{k}$,s are the Christoffel symbols. Obviously, it holds that

Lemma 4.4. The (pseudo) Riemannian manifold (M, g) is flat if and only if, for each point $\mathrm{P} \in M$, there exists a coordinate
system (u^{j}) around P such that $R_{i j k l}(i, j, k, l=1, \ldots, m)$ vanish identically.

Here, the condition "there exists a coordinate system" in Lemma 4.4 can be replaced by "for any coordinate systems", because of the following lemma:

Lemma 4.5. Let $\left(x^{1}, \ldots, x^{m}\right)$ be another coordinate system, and define $\widetilde{R}_{a b c d}$ by (4.8) replacing Γ with $\widetilde{\Gamma}, u$ with x. Then

$$
\begin{equation*}
\widetilde{R}_{a b c d}=\sum_{i, j, k, l=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} \frac{\partial u^{k}}{\partial x^{c}} \frac{\partial u^{l}}{\partial x^{d}} R_{i j k l} \tag{4.9}
\end{equation*}
$$

holds for each $a, b, c, d=1, \ldots, m$.
Proof. By tedious but simple computation, the conclusion follows.

The relation (4.9) looks similar to (4.6), where the metric g is a notion which is independent of choice of coordinates. In fact, by (4.5) and (4.3), we have

Corollary 4.6. Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ and $\boldsymbol{w} \in T_{\mathrm{P}} M$ and write them by

$$
\begin{array}{llrl}
\boldsymbol{x} & =\sum_{i=1}^{m} x^{i}\left(\frac{\partial}{\partial u^{i}}\right)_{\mathrm{P}}, & \boldsymbol{y} & =\sum_{j=1}^{m} y^{j}\left(\frac{\partial}{\partial u^{j}}\right)_{\mathrm{P}} \\
\boldsymbol{z}=\sum_{k=1}^{m} z^{k}\left(\frac{\partial}{\partial u^{k}}\right)_{\mathrm{P}}, & \boldsymbol{w}=\sum_{l=1}^{m} w^{l}\left(\frac{\partial}{\partial u^{l}}\right)_{\mathrm{P}} .
\end{array}
$$

Then

$$
\begin{equation*}
R(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{w}):=\sum_{i, j, k, l=1}^{m} x^{i} y^{j} z^{k} w^{l} R_{i j k l} \tag{4.10}
\end{equation*}
$$

does not depend on choice of coordinates.
Thus, we can define a 4-linear map

$$
R: T_{\mathrm{P}} M \times T_{\mathrm{P}} M \times T_{\mathrm{P}} M \times T_{\mathrm{P}} M \longrightarrow \mathbb{R}
$$

and

$$
R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow C^{\infty}(M)
$$

where $C^{\infty}(M)$ is the commutative ring consists of C^{∞}-functions on M, and $\mathfrak{X}(M)$ is the $C^{\infty}(M)$-module consists of smooth vector fields on M. In fact, for X, Y, Z, W, we define

$$
R(X, Y, Z, W): M \ni \mathrm{P} \mapsto R\left(X_{\mathrm{P}}, Y_{\mathrm{P}}, Z_{\mathrm{P}}, W_{\mathrm{P}}\right) \in \mathbb{R}
$$

Then R is $C^{\infty}(M)$-linear in each entry, namely, for X, Y, Z ,$W \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$,

$$
\text { (4.11) } \begin{aligned}
R(f X, Y, Z, W) & =R(X, f Y, Z, W)
\end{aligned}=R(X, Y, f Z, W) ~ 子 ~(X, Y, Z, f W)=f R(X, Y, Z, W)
$$

holds. We call this R the curvature tensor of (M, g). Theorem 3.13 can be restated as following "coordinate free" form.
Corollary 4.7. The Riemannian manifold is flat if and only if its curvature tensor vanishes identically.

Covariant Derivatives. To define the curvature tensor in the coordinate-free form, we introduce the notion of covariant derivatives of vector fields.

For a vector field Y and tangent vector $\boldsymbol{v} \in T_{\mathrm{P}} M$, we define

$$
\begin{equation*}
\nabla_{\boldsymbol{v}} Y:=\sum_{j=1}^{m}\left[\sum_{k=1}^{m} v^{k}\left(\frac{\partial Y^{j}}{\partial u^{k}}+\sum_{l=1}^{m} \Gamma_{l k}^{j} Y^{l}\right)\right]\left(\frac{\partial}{\partial u^{j}}\right)_{\mathrm{P}} \tag{4.12}
\end{equation*}
$$

where $Y=\sum_{i=1}^{m} Y^{i}\left(\partial / \partial u^{i}\right)$ and $\boldsymbol{v}=\sum_{i=1}^{m} v^{i}\left(\partial / \partial u^{i}\right)_{\mathrm{P}}$, and $\Gamma_{i j}^{k}$'s are the Christoffel symbols defined in (3.8).
Proposition 4.8. Assume M is a (non-degenerate) submanifold of the (pseudo) Euclidean space \mathbb{R}_{s}^{n+1}, and take a vector field X on M defined on a neighborhood of $\mathrm{P} \in M$. Then

$$
\nabla_{\boldsymbol{v}} X=\left[D_{\boldsymbol{v}} X\right]^{\mathrm{T}}
$$

holds, where $D \boldsymbol{v} X$ is a directional derivative of \mathbb{R}_{s}^{n+1}-valued function with respect to \boldsymbol{v}, and $[*]^{\mathrm{T}}$ denotes the tangential component of it, as in (3.1).

Proof. Let $f=f\left(u^{1}, \ldots, u^{m}\right)$ be a parametrization of M with respect to the local coordinate system $\left(u^{j}\right)$ and we let

$$
\left[\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}\right]^{\mathrm{T}}=\sum_{k=1}^{m} G_{i j}^{k} \frac{\partial f}{\partial u^{k}}
$$

Then by (3.10) and (3.4), we have

$$
\sum_{k=1}^{m} g_{k l} G_{i j}^{k}=\sum_{k=1}^{m} g_{k l} \Gamma_{i j}^{k}
$$

Since $\left(g_{i j}\right)$ is a regular matrix, we have $G_{i j}^{k}=\Gamma_{i j}^{k}$. In other words,

$$
\begin{equation*}
\left[\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}\right]^{\mathrm{T}}=\sum_{k=1}^{m} \Gamma_{i j}^{k} \frac{\partial f}{\partial u^{k}} \tag{4.13}
\end{equation*}
$$

holds. Thus, identifying $\partial / \partial u^{j}$ with $\partial f / \partial u^{j}$, we have

$$
\left[D_{\partial / \partial u^{i}} \frac{\partial f}{\partial u^{j}}\right]^{\mathrm{T}}=\left[\frac{\partial^{2} f}{\partial u^{i} \partial u^{k}}\right]^{\mathrm{T}}=\sum_{k=1}^{m} \Gamma_{i j}^{k} \frac{\partial f}{\partial u^{k}}=\nabla_{\partial / \partial u^{i}} \frac{\partial f}{\partial u^{j}} .
$$

Applying this, the conclusion follows.
Using covariant derivative, we obtain the bilinear

$$
\text { (4.14) } \quad \nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \mapsto \nabla_{X} Y \in \mathfrak{X}(M),
$$

which is also called the covariant derivative, alternatively, the Riemannian connection or the Levi-Civita connection.

Proposition 4.9. For each $X, Y \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$,

$$
\begin{align*}
\nabla_{f X} Y & =f \nabla_{X} Y, \tag{4.15}\\
\nabla_{X} f Y & =(X f) Y+f \nabla_{X} Y \tag{4.16}\\
\nabla_{X} Y-\nabla_{Y} X & =[X, Y] \tag{4.17}\\
X g(Y, Z) & =g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right), \tag{4.18}
\end{align*}
$$

where [,] denotes the Lie-bracket for vector fields.

Proof. The first two assertions are direct conclusion of the definition of ∇. The third assertion follows because $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$ (cf. (3.9)) The last assertion can be proved by

$$
\frac{\partial g_{i j}}{\partial u^{l}}=\sum_{k=1}^{m}\left(g_{k j} \Gamma_{i l}^{k}+g_{i k} \Gamma_{j l}^{k}\right)
$$

as seen in (3.11).

Proposition 4.10. For X, Y, Z and $W \in \mathfrak{X}(M)$, it holds that (4.19) $R(X, Y, Z, W)=g\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, W\right)$, where R is the curvature tensor as in (5.7).

Proof. Denote the right-hand side of (4.19) by $S(X, Y, Z, W)$. Then by Proposition 4.9, it holds that

$$
\text { (4.19a) } \begin{array}{r}
S(f X, Y, Z, W)= \\
S(X, f Y, Z, W)=S(X, Y, f Z, W) \\
\\
S(X, Y, Z, f W)=f S(X, Y, Z, W) .
\end{array}
$$

Then by (4.19a) it is sufficient to show the conclusion for

$$
\begin{equation*}
X=\frac{\partial}{\partial u^{i}}, \quad Y=\frac{\partial}{\partial u^{j}}, \quad Z=\frac{\partial}{\partial u^{k}}, \quad W=\frac{\partial}{\partial u^{l}} . \tag{4.20}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
\nabla_{\partial / \partial u^{j}} \frac{\partial}{\partial u^{i}} & =\sum_{l=1}^{m} \Gamma_{i j}^{l} \frac{\partial}{\partial u^{k}}, \\
\nabla_{\partial / \partial u^{k}} \nabla_{\partial / \partial u^{j}} \frac{\partial}{\partial u^{i}} & =\sum_{l=1}^{m}\left[\frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}} \frac{\partial}{\partial u^{l}}+\Gamma_{i j}^{l} \nabla_{\partial / \partial u^{k}} \frac{\partial}{\partial u^{l}}\right] \\
& =\left[\frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}}+\Gamma_{i j}^{p} \Gamma_{p k}^{l}\right] \frac{\partial}{\partial u^{l}},
\end{aligned}
$$

and

$$
\left[\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}\right]=0
$$

yield the conclusion.

Exercises
4-1 Prove Corollary 4.2.
4-2 We consider a Riemannian metric g on a domain $U \subset \mathbb{R}^{2}$ with

$$
g_{11}=g_{22}=e^{2 \sigma}, \quad g_{12}=g_{21}=0
$$

with respect to the canonical coordinate system $\left(u^{1}, u^{2}\right)$, where σ is a smooth function on U.
(1) Show that (U, g) is flat if and only if σ is a harmonic function, that is, it satisfies

$$
\frac{\partial^{2} \sigma}{\left(\partial u^{1}\right)^{2}}+\frac{\partial^{2} \sigma}{\left(\partial u^{2}\right)^{2}}=0
$$

(2) Compute $R_{i j k l}$ for

$$
e^{2 \sigma}=\frac{4}{\left(1+k\left(u^{2}+v^{2}\right)\right)^{2}}
$$

where k is a constant and $(u, v)=\left(u^{1}, u^{2}\right)$ is the canonical coordinate system on \mathbb{R}^{2}.

[^0]: 9. July, 2019. Revised: 16. July, 2019
