4 The Curvature Tensor.

Change of Coordinate Systems. Throughout this section,
we let (M, g) be a (pseudo) Riemannian m-manifold and take
a local coordinate system (U;u?,...,u™) on a neighborhood of
P € U. Choose another coordinate system (V;x!,... 2™) on a
neighborhood V' of P. Then the coordinate change

(4.1) x=(z',...,2™)

= oau(x) = (ul (2. 2™), ™ (2t a™))

is defined as a C°°-map between certain domains in R™. Since
the transformation (4.1) is a diffeomorphism, the inverse

(4.2) w=(u',...,u™)

= oax(u) = (o' (ul, . u™), 2™ (et ™))

is also C'°*°. Thus, the Jacobian matrix

oo
Ozt T Qg™ (81# )

J = . = oxe
durm durm a=L,..m
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is invertible on each point of the domain of u(x), and the Jaco-
bian matrix of the inverse map & = x(u) is obtained as

ost
Oul
oz
Oul

Oxt

ou™ <8£Ea> .
N f— - = J 5
ou? a,i=1,....m

8:ém ,
ou™

where the inverse matrix of the right-hand side is evaluated at
u(x), that is,

T Qx® Qut " Jut Oz

%@ = 5?, and =0
i=1

(43) 2 g g %

hold, where § denotes Kronecker’s delta.

Components of Vector fields and Differential forms. Let
X be a vector field on M. Then it can be expressed on coordi-
nate neighborhoods (U;u) and (V; ) as

X:ZIX out :ZX Oxo’

Since

0 " 9z 0 0 " out 9
(44) out = Ou' Oz° and Oz
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we have the following transformation formula for the compo-
nents of X:

m m ;
~ ox® . . out ~

4.5 X = - X" X' = @
(45) £ ut~ Ox®

=1 a=1
Thus,
Lemma 4.1. The components (g;j) and (gay) of the (pseudo)
Riemannian metric g with respect to the coordinates (ul, ..., u™)
and (z1,...,2™), respectively, are related as

. " out Oud
Gab = %wgij-
i,j=1

(4.6)

Moreover, the inverse matrices (g*) and (g°) of (9ij) and (Gab),
respectively, satisfy

Proof. By (4.4), we have

(0 N _Nowow (9 o
Gab = I\ pa’ gab ) ~ 18:10“ 0207\ 0wt Oui

ij=
m S
ou* ou?
= 2 Gra g
ij=1

proving the first assertion. The second assertion follows from
(4.3). O
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Corollary 4.2. The Christoffel symbols I'F. as in (3.8) with

ij

respect to the coordinate system (ul,...,u™) and the Christoffel
symbols I, with respect to (x',...,xz™) are related as
~. "L 0z | 0%uP "L out oul

ab ™ = OuF | Oz 0x® (O Oz Y

)=

Proof. The definition (3.8) and Lemma 4.1 yields the conclusion
through a direct computation. O

The following corollary is essentially a rephrasing of Theo-
rem 3.13. Namely the proof of the corollary gives an alternative
proof of Theorem 3.13.

Corollary 4.3. Let (M,g) be an m-dimensional (pseudo) Rie-
mannian manifold. Then, for each P, there exists a coordi-
nate neighborhood (U;sut,...,u™) of P such that the compo-
nents (gi;) of the metric g satisfy gi; = £0;; if and only if the
Christoffel symbols facb of any coordinate system (x',... z™)
satisfy (3.12).

Proof. Let (V;x',...,2™) be a coordinate system at P, and
denote the Christoffel symbol with respect to (z%) by I <. Con-
sider a system of partial differential equations

oOF
ox°
where (2,’s are matrices defined by (3.13) for {facb} and F =
(v1,...,0m). Then the integrability condition of (4.7) is equiv-
alent to (3.12) for the Christoffel symbols {f;b} satisfies (3.12).

(4.7)

:fﬂm
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That is, if {I’ .} satisfies (3.12), there exists a solution F (4.7)
with the initial value F(P) = Fp. In addition, if Fy is a regular
matrix, F is valued in GL(m,R).

Moreover, noticing F;b =TIt by there exists a vector-valued
function u = u(x) such that

du = i v dx?
a=1

because the right-hand side is a closed one form. Since F is
the Jacobian matrix of & — w, which is valued in GL(m,R),

u = (ul,...,u™) is a new coordinate system around P.
By Corollary 4.2, the Christoffel symbols with respect to
(u',...,u™) vanishes identically. This means that g;;’s are con-

stants because of (3.11). Since (g;;) is a constant matrix, a
linear transformation of the coordinate system yields the con-
clusion. O

The Curvature Tensor. Set
(4.8)

aplgz 8F/§j - o al'l Jal’l
o= 3o (e G 43 (s - 2,3)

for i,j,k,l =1,...,m, where Fk’s are the Christoffel symbols.
Obviously, it holds that

Lemma 4.4. The (pseudo) Riemannian manifold (M, g) is flat
if and only if, for each point P € M, there exists a coordinate
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system (u?) around P such that Riji (i,7,k,0=1,...,m) van-
1sh identically.

Here, the condition “there exists a coordinate system” in
Lemma 4.4 can be replaced by “for any coordinate systems”,
because of the following lemma:

Lemma 4.5. Let (x',...,2™) be another coordinate system,
and define Rapeq by (4.8) replacing I' with I', u with x. Then

T ut oud duk dut

Dz Ozb dxc dgd I
ik l=1

(4.9) Eabcd =

holds for each a, b, c, d=1,...,m

Proof. By tedious but simple computation, the conclusion fol-
lows. O

The relation (4.9) looks similar to (4.6), where the metric
g is a notion which is independent of choice of coordinates. In
fact, by (4.5) and (4.3), we have

Corollary 4.6. Let x, y, z and w € Tp M and write them by

m 7 a m
v=2 (au) y=2v (aw)

Jj=1

m 6 m
_ k(_~
TS (auk)P’ w=) v (au)

=1
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Then
(4.10) R(z,y,z,w) = Z w'yl 2Fw' R

irj, k=1

does not depend on choice of coordinates.
Thus, we can define a 4-linear map
R:TpM xTpM x TpM x TpM — R,
and
R:X(M)xX(M)xX(M) x X(M) — C*(M),

where C*° (M) is the commutative ring consists of C*°-functions
on M, and X(M) is the C°°(M)-module consists of smooth vec-
tor fields on M. In fact, for X, Y, Z, W, we define

R(X,Y,Z,W): M 5P — R(Xp,Yp, Zp,Wp) € R.

Then R is C°°(M)-linear in each entry, namely, for X, Y, Z
W e X(M) and f € C°(M),
(411) R(fX,Y,Z, W) =R(X, fY,Z,W) = R(X,Y, fZ,W)

— R(X.Y, Z,fW) = fR(X,Y, Z,W)

holds. We call this R the curvature tensor of (M,g). Theo-
rem 3.13 can be restated as following “coordinate free” form.

Corollary 4.7. The Riemannian manifold is flat if and only if
its curvature tensor vanishes identically.
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Covariant Derivatives. To define the curvature tensor in
the coordinate-free form, we introduce the notion of covariant
derivatives of vector fields.

For a vector field Y and tangent vector v € Tp M, we define
o) E AN )
k Y
S (9 Som)| (),
k=1 =1 P

where Y = Y7 V¥(9/0u’) and v = Y1, v(9/0u’)p, and
I'’s are the Christoffel symbols defined in (3.8).

m

(412) VpY =)

j=1

m

j7
Proposition 4.8. Assume M is a (non-degenerate) subman-
ifold of the (pseudo) Euclidean space R?TY, and take a vector
field X on M defined on a neighborhood of P € M. Then

VoX = [DyX]"

holds, where DyX is a directional derivative of R !-valued
function with respect to v, and [*]T denotes the tangential com-
ponent of it, as in (3.1).

Proof. Let f = f(u',...,u™) be a parametrization of M with
respect to the local coordinate system (u’) and we let

°f 17 S Of
[8ui8uj] _ZG”W'

k=1

Then by (3.10) and (3.4), we have

m m

> oGl = gull.

k=1 k=1
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Since (gi;) is a regular matrix, we have G¥;, = I}f;. In other
words,
82f T m . Bf
4.13 — = k=L
(4.13) [8u’5‘uﬂ } ; 7 Quk

holds. Thus, identifying 9/0u’ with f/0u’, we have

ar" f 17 &, Of of

Outuk — 4 guk
Applying this, the conclusion follows. O
Using covariant derivative, we obtain the bilinear
(4.14) V:X(M)xX(M)>(X,)Y)— VxY € X(M),

which is also called the covariant derivative, alternatively, the
Riemannian connection or the Levi-Civita connection.

Proposition 4.9. For each X, Y € X(M) and f € C*(M),

(4.15) VixY = fVxY,

(4.16) Vi fY = (X[)Y + [VxY,

(4.17) VxY - VyX = [X,Y],

(4.18) Xg(Y,2) = g(VxY.Z) + 9(Y,Vx 2Z),
where [, | denotes the Lie-bracket for vector fields.
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Proof. The first two assertions are direct conclusion of the def-
inition of V. The third assertion follows because I’ i’;» =T fi (cf.
(3.9)) The last assertion can be proved by

a .. i
angzj =>_ (9T + 9inT51)
k=1

as seen in (3.11). O

Proposition 4.10. For X, Y, Z and W € X(M), it holds that
(4.19) R(X, Y, Z, W) = g(VXVyZ - VyVXZ - V[}Qy]Z, W),
where R is the curvature tensor as in (5.7).

Proof. Denote the right-hand side of (4.19) by S(X,Y,Z, W).
Then by Proposition 4.9, it holds that

(4.192) S(fX,Y.Z,W) = S(X,[Y,Z,W) = S(X,Y, fZ,W)
S(X,Y,Z, fW) = [S(X,Y,Z,W).

Then by (4.19a) it is sufficient to show the conclusion for

R

(4.20) X = out’ oud’ ouk’ ou!
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In fact,

0 =, 0
vc‘)/&uﬂ'@:znjw’
=1

0 |9 0 .
Va/aukva/auj@ = Z 3 ’j? + 173V our Sl

_ Filj P il i

| Ouk Pkl gyl
and

g 0
{81# " ou ]

yield the conclusion. O

Ezxercises

4-1 Prove Corollary 4.2.

4-2 We consider a Riemannian metric g on a domain U C R?
with
g11 = go2 = €77, g12 = g21 =0,
with respect to the canonical coordinate system (u',u?),
where ¢ is a smooth function on U.

(1) Show that (U, g) is flat if and only if o is a harmonic
function, that is, it satisfies

(2) Compute R;jj; for

9 4
e’ = ;
T+ k@ + 7))
where k is a constant and (u,v) = (u!,u?) is the

canonical coordinate system on R2.



