4 The Curvature Tensor.

Change of Coordinate Systems. Throughout this section, we let (M, g) be a (pseudo) Riemannian *m*-manifold and take a local coordinate system $(U; u^1, \ldots, u^m)$ on a neighborhood of $P \in U$. Choose another coordinate system $(V; x^1, \ldots, x^m)$ on a neighborhood V of P. Then the coordinate change

(4.1)
$$\boldsymbol{x} = (x^1, \dots, x^m)$$

 $\mapsto \boldsymbol{u}(\boldsymbol{x}) = (u^1(x^1, \dots, x^m), \dots, u^m(x^1, \dots, x^m))$

is defined as a C^{∞} -map between certain domains in \mathbb{R}^m . Since the transformation (4.1) is a diffeomorphism, the inverse

(4.2)
$$\boldsymbol{u} = (u^1, \dots, u^m)$$

 $\mapsto \boldsymbol{x}(\boldsymbol{u}) = (x^1(u^1, \dots, u^m), \dots, x^m(u^1, \dots, u^m))$

is also C^{∞} . Thus, the Jacobian matrix

$$J := \begin{pmatrix} \frac{\partial u^1}{\partial x^1} & \cdots & \frac{\partial u^1}{\partial x^m} \\ \vdots & \ddots & \vdots \\ \frac{\partial u^m}{\partial x^1} & \cdots & \frac{\partial u^m}{\partial x^m} \end{pmatrix} = \left(\frac{\partial u^i}{\partial x^a}\right)_{i,a=1,\dots,m}$$

09. July, 2019. Revised: 16. July, 2019

is invertible on each point of the domain of $\boldsymbol{u}(\boldsymbol{x})$, and the Jacobian matrix of the inverse map $\boldsymbol{x} = \boldsymbol{x}(\boldsymbol{u})$ is obtained as

$$\begin{pmatrix} \frac{\partial x^1}{\partial u^1} & \cdots & \frac{\partial x^1}{\partial u^m} \\ \vdots & \ddots & \vdots \\ \frac{\partial x^m}{\partial u^1} & \cdots & \frac{\partial x^m}{\partial u^m} \end{pmatrix} = \left(\frac{\partial x^a}{\partial u^i}\right)_{a,i=1,\dots,m} = J^{-1},$$

where the inverse matrix of the right-hand side is evaluated at u(x), that is,

(4.3)
$$\sum_{i=1}^{m} \frac{\partial x^{a}}{\partial u^{i}} \frac{\partial u^{i}}{\partial x^{b}} = \delta_{b}^{a}, \quad \text{and} \quad \sum_{a=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial x^{a}}{\partial u^{j}} = \delta_{j}^{i}$$

hold, where δ denotes Kronecker's delta.

Components of Vector fields and Differential forms. Let X be a vector field on M. Then it can be expressed on coordinate neighborhoods (U; u) and (V; x) as

$$X = \sum_{i=1}^m X^i \frac{\partial}{\partial u^i} = \sum_{a=1}^m \widetilde{X}^a \frac{\partial}{\partial x^a}.$$

Since

(4.4)
$$\frac{\partial}{\partial u^i} = \sum_{a=1}^m \frac{\partial x^a}{\partial u^i} \frac{\partial}{\partial x^a} \text{ and } \frac{\partial}{\partial x^a} = \sum_{i=1}^m \frac{\partial u^i}{\partial x^a} \frac{\partial}{\partial u^i},$$

we have the following transformation formula for the components of X:

(4.5)
$$\widetilde{X}^a = \sum_{i=1}^m \frac{\partial x^a}{\partial u^i} X^i, \qquad X^i = \sum_{a=1}^m \frac{\partial u^i}{\partial x^a} \widetilde{X}^a.$$

Thus,

Lemma 4.1. The components (g_{ij}) and (\tilde{g}_{ab}) of the (pseudo) Riemannian metric g with respect to the coordinates (u^1, \ldots, u^m) and (x^1, \ldots, x^m) , respectively, are related as

(4.6)
$$\tilde{g}_{ab} = \sum_{i,j=1}^{m} \frac{\partial u^i}{\partial x^a} \frac{\partial u^j}{\partial x^b} g_{ij}.$$

Moreover, the inverse matrices (g^{ij}) and (\tilde{g}^{ab}) of (g_{ij}) and (\tilde{g}_{ab}) , respectively, satisfy

$$g^{ij} = \sum_{a,b=1}^{m} \frac{\partial u^i}{\partial x^a} \frac{\partial u^j}{\partial x^b} \tilde{g}^{ab}.$$

Proof. By (4.4), we have

$$\tilde{g}_{ab} := g\left(\frac{\partial}{\partial x^a}, \frac{\partial}{\partial x^b}\right) = \sum_{i,j=1}^m \frac{\partial u^i}{\partial x^a} \frac{\partial u^j}{\partial x^b} g\left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j}\right)$$
$$= \sum_{i,j=1}^m \frac{\partial u^i}{\partial x^a} \frac{\partial u^j}{\partial x^b} g_{ij}$$

proving the first assertion. The second assertion follows from (4.3).

Corollary 4.2. The Christoffel symbols Γ_{ij}^k as in (3.8) with respect to the coordinate system (u^1, \ldots, u^m) and the Christoffel symbols $\widetilde{\Gamma}_{ab}^c$ with respect to (x^1, \ldots, x^m) are related as

$$\widetilde{\Gamma}_{ab}^{c} = \sum_{k=1}^{m} \frac{\partial x^{c}}{\partial u^{k}} \left[\frac{\partial^{2} u^{k}}{\partial x^{a} \partial x^{b}} + \sum_{i,j=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} \Gamma_{ij}^{k} \right].$$

Proof. The definition (3.8) and Lemma 4.1 yields the conclusion through a direct computation.

The following corollary is essentially a rephrasing of Theorem 3.13. Namely the proof of the corollary gives an alternative proof of Theorem 3.13.

Corollary 4.3. Let (M,g) be an m-dimensional (pseudo) Riemannian manifold. Then, for each P, there exists a coordinate neighborhood $(U; u^1, \ldots, u^m)$ of P such that the components (g_{ij}) of the metric g satisfy $g_{ij} = \pm \delta_{ij}$ if and only if the Christoffel symbols $\tilde{\Gamma}^c_{ab}$ of any coordinate system (x^1, \ldots, x^m) satisfy (3.12).

Proof. Let $(V; x^1, \ldots, x^m)$ be a coordinate system at P, and denote the Christoffel symbol with respect to (x^a) by $\tilde{\Gamma}^c_{ab}$. Consider a system of partial differential equations

$$\frac{\partial \mathcal{F}}{\partial x^a} = \mathcal{F}\Omega_a,$$

where Ω_a 's are matrices defined by (3.13) for $\{\tilde{\Gamma}_{ab}^c\}$ and $\mathcal{F} = (\boldsymbol{v}_1, \ldots, \boldsymbol{v}_m)$. Then the integrability condition of (4.7) is equivalent to (3.12) for the Christoffel symbols $\{\tilde{\Gamma}_{ab}^c\}$ satisfies (3.12).

That is, if $\{\widetilde{\Gamma}_{ab}^c\}$ satisfies (3.12), there exists a solution \mathcal{F} (4.7) with the initial value $\mathcal{F}(\mathbf{P}) = F_0$. In addition, if F_0 is a regular matrix, \mathcal{F} is valued in $\mathrm{GL}(m, \mathbb{R})$.

Moreover, noticing $\widetilde{\Gamma}_{ab}^c = \widetilde{\Gamma}_{ba}^c$, there exists a vector-valued function $\boldsymbol{u} = \boldsymbol{u}(\boldsymbol{x})$ such that

$$doldsymbol{u} = \sum_{a=1}^m oldsymbol{v}_a dx^a$$

because the right-hand side is a closed one form. Since \mathcal{F} is the Jacobian matrix of $\boldsymbol{x} \mapsto \boldsymbol{u}$, which is valued in $\operatorname{GL}(m, \mathbb{R})$, $\boldsymbol{u} = (u^1, \ldots, u^m)$ is a new coordinate system around P.

By Corollary 4.2, the Christoffel symbols with respect to (u^1, \ldots, u^m) vanishes identically. This means that g_{ij} 's are constants because of (3.11). Since (g_{ij}) is a constant matrix, a linear transformation of the coordinate system yields the conclusion.

The Curvature Tensor. Set (4.8) $R_{ijkl} := \sum_{q=1}^{m} g_{ql} \left(\frac{\partial \Gamma_{ki}^{q}}{\partial u^{j}} - \frac{\partial \Gamma_{kj}^{q}}{\partial u^{i}} + \sum_{p=1}^{m} \left(\Gamma_{ik}^{p} \Gamma_{pj}^{q} - \Gamma_{kj}^{p} \Gamma_{pi}^{q} \right) \right)$

for i, j, k, l = 1, ..., m, where Γ_{ij}^k 's are the Christoffel symbols. Obviously, it holds that

Lemma 4.4. The (pseudo) Riemannian manifold (M, g) is flat if and only if, for each point $P \in M$, there exists a coordinate system (u^j) around P such that R_{ijkl} (i, j, k, l = 1, ..., m) vanish identically.

Here, the condition "there exists a coordinate system" in Lemma 4.4 can be replaced by "for any coordinate systems", because of the following lemma:

Lemma 4.5. Let (x^1, \ldots, x^m) be another coordinate system, and define \widetilde{R}_{abcd} by (4.8) replacing Γ with $\widetilde{\Gamma}$, u with x. Then

(4.9)
$$\widetilde{R}_{abcd} = \sum_{i,j,k,l=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} \frac{\partial u^{k}}{\partial x^{c}} \frac{\partial u^{l}}{\partial x^{d}} R_{ijkl}$$

holds for each $a, b, c, d = 1, \ldots, m$.

Proof. By tedious but simple computation, the conclusion follows. $\hfill \Box$

The relation (4.9) looks similar to (4.6), where the metric g is a notion which is independent of choice of coordinates. In fact, by (4.5) and (4.3), we have

Corollary 4.6. Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ and $\boldsymbol{w} \in T_{\mathrm{P}}M$ and write them by

$$\boldsymbol{x} = \sum_{i=1}^{m} x^{i} \left(\frac{\partial}{\partial u^{i}}\right)_{\mathrm{P}}, \qquad \boldsymbol{y} = \sum_{j=1}^{m} y^{j} \left(\frac{\partial}{\partial u^{j}}\right)_{\mathrm{P}}$$
$$\boldsymbol{z} = \sum_{k=1}^{m} z^{k} \left(\frac{\partial}{\partial u^{k}}\right)_{\mathrm{P}}, \qquad \boldsymbol{w} = \sum_{l=1}^{m} w^{l} \left(\frac{\partial}{\partial u^{l}}\right)_{\mathrm{P}}.$$

MTH.B406; Sect. 4

Then

(4.10)
$$R(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{w}) := \sum_{i,j,k,l=1}^{m} x^{i} y^{j} z^{k} w^{l} R_{ijkl}$$

does not depend on choice of coordinates.

Thus, we can define a 4-linear map

$$R: T_{\mathrm{P}}M \times T_{\mathrm{P}}M \times T_{\mathrm{P}}M \times T_{\mathrm{P}}M \longrightarrow \mathbb{R},$$

and

$$R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to C^{\infty}(M),$$

where $C^{\infty}(M)$ is the commutative ring consists of C^{∞} -functions on M, and $\mathfrak{X}(M)$ is the $C^{\infty}(M)$ -module consists of smooth vector fields on M. In fact, for X, Y, Z, W, we define

 $R(X, Y, Z, W) \colon M \ni P \mapsto R(X_P, Y_P, Z_P, W_P) \in \mathbb{R}.$

Then R is $C^{\infty}(M)$ -linear in each entry, namely, for X, Y, Z, $W \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$,

(4.11) R(fX, Y, Z, W) = R(X, fY, Z, W) = R(X, Y, fZ, W)= R(X, Y, Z, fW) = fR(X, Y, Z, W)

holds. We call this R the *curvature tensor* of (M, g). Theorem 3.13 can be restated as following "coordinate free" form.

Corollary 4.7. The Riemannian manifold is flat if and only if its curvature tensor vanishes identically. **Covariant Derivatives.** To define the curvature tensor in the coordinate-free form, we introduce the notion of *covariant derivatives* of vector fields.

For a vector field Y and tangent vector $\boldsymbol{v} \in T_{\mathrm{P}}M$, we define

(4.12)
$$\nabla_{\boldsymbol{v}} Y := \sum_{j=1}^{m} \left[\sum_{k=1}^{m} v^k \left(\frac{\partial Y^j}{\partial u^k} + \sum_{l=1}^{m} \Gamma_{lk}^j Y^l \right) \right] \left(\frac{\partial}{\partial u^j} \right)_{\mathbf{P}},$$

where $Y = \sum_{i=1}^{m} Y^{i}(\partial/\partial u^{i})$ and $\boldsymbol{v} = \sum_{i=1}^{m} v^{i}(\partial/\partial u^{i})_{\mathrm{P}}$, and Γ_{ij}^{k} 's are the Christoffel symbols defined in (3.8).

Proposition 4.8. Assume M is a (non-degenerate) submanifold of the (pseudo) Euclidean space \mathbb{R}^{n+1}_s , and take a vector field X on M defined on a neighborhood of $P \in M$. Then

$$\nabla_{\boldsymbol{v}} X = \left[D_{\boldsymbol{v}} X \right]^{\mathrm{T}}$$

holds, where $D_{\boldsymbol{v}}X$ is a directional derivative of \mathbb{R}^{n+1}_s -valued function with respect to \boldsymbol{v} , and $[*]^T$ denotes the tangential component of it, as in (3.1).

Proof. Let $f = f(u^1, \ldots, u^m)$ be a parametrization of M with respect to the local coordinate system (u^j) and we let

$$\left[\frac{\partial^2 f}{\partial u^i \partial u^j}\right]^{\mathrm{T}} = \sum_{k=1}^m G_{ij}^k \frac{\partial f}{\partial u^k}$$

Then by (3.10) and (3.4), we have

$$\sum_{k=1}^{m} g_{kl} G_{ij}^k = \sum_{k=1}^{m} g_{kl} \Gamma_{ij}^k$$

Since (g_{ij}) is a regular matrix, we have $G_{ij}^k = \Gamma_{ij}^k$. In other words,

(4.13)
$$\left[\frac{\partial^2 f}{\partial u^i \partial u^j}\right]^{\mathrm{T}} = \sum_{k=1}^m \Gamma_{ij}^k \frac{\partial f}{\partial u^k}$$

holds. Thus, identifying $\partial/\partial u^j$ with $\partial f/\partial u^j$, we have

$$\left[D_{\partial/\partial u^{i}}\frac{\partial f}{\partial u^{j}}\right]^{\mathrm{T}} = \left[\frac{\partial^{2} f}{\partial u^{i} \partial u^{k}}\right]^{\mathrm{T}} = \sum_{k=1}^{m} \Gamma_{ij}^{k}\frac{\partial f}{\partial u^{k}} = \nabla_{\partial/\partial u^{i}}\frac{\partial f}{\partial u^{j}}$$

Applying this, the conclusion follows.

Using covariant derivative, we obtain the bilinear

$$(4.14) \qquad \nabla \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \ni (X,Y) \mapsto \nabla_X Y \in \mathfrak{X}(M),$$

which is also called the *covariant derivative*, alternatively, the *Riemannian connection* or the *Levi-Civita connection*.

Proposition 4.9. For each $X, Y \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$,

(4.15) $\nabla_{fX}Y = f\nabla_XY,$

(4.16)
$$\nabla_X f Y = (Xf)Y + f \nabla_X Y,$$

(4.17)
$$\nabla_X Y - \nabla_Y X = [X, Y],$$

(4.18) $Xg(Y,Z) = g(\nabla_X Y,Z) + g(Y,\nabla_X Z),$

where [,] denotes the Lie-bracket for vector fields.

MTH.B406; Sect. 4

Proof. The first two assertions are direct conclusion of the definition of ∇ . The third assertion follows because $\Gamma_{ij}^k = \Gamma_{ji}^k$ (cf. (3.9)) The last assertion can be proved by

$$\frac{\partial g_{ij}}{\partial u^l} = \sum_{k=1}^m \left(g_{kj} \Gamma_{il}^k + g_{ik} \Gamma_{jl}^k \right),$$

as seen in (3.11).

Proposition 4.10. For X, Y, Z and $W \in \mathfrak{X}(M)$, it holds that

(4.19) $R(X, Y, Z, W) = g(\nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z, W),$

where R is the curvature tensor as in (5.7).

Proof. Denote the right-hand side of (4.19) by S(X, Y, Z, W). Then by Proposition 4.9, it holds that

(4.19a) S(fX, Y, Z, W) = S(X, fY, Z, W) = S(X, Y, fZ, W)S(X, Y, Z, fW) = fS(X, Y, Z, W).

Then by (4.19a) it is sufficient to show the conclusion for

(4.20)
$$X = \frac{\partial}{\partial u^i}, \quad Y = \frac{\partial}{\partial u^j}, \quad Z = \frac{\partial}{\partial u^k}, \quad W = \frac{\partial}{\partial u^l}.$$

MTH.B406; Sect. 4

$$\begin{split} \nabla_{\partial/\partial u^j} \frac{\partial}{\partial u^i} &= \sum_{l=1}^m \Gamma_{ij}^l \frac{\partial}{\partial u^k}, \\ \nabla_{\partial/\partial u^k} \nabla_{\partial/\partial u^j} \frac{\partial}{\partial u^i} &= \sum_{l=1}^m \left[\frac{\partial \Gamma_{ij}^l}{\partial u^k} \frac{\partial}{\partial u^l} + \Gamma_{ij}^l \nabla_{\partial/\partial u^k} \frac{\partial}{\partial u^l} \right] \\ &= \left[\frac{\partial \Gamma_{ij}^l}{\partial u^k} + \Gamma_{ij}^p \Gamma_{pk}^l \right] \frac{\partial}{\partial u^l}, \end{split}$$

and

$$\left[\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j}\right] = 0$$

yield the conclusion.

Exercises

- **4-1** Prove Corollary 4.2.
- **4-2** We consider a Riemannian metric g on a domain $U \subset \mathbb{R}^2$ with

$$g_{11} = g_{22} = e^{2\sigma}, \qquad g_{12} = g_{21} = 0,$$

with respect to the canonical coordinate system (u^1, u^2) , where σ is a smooth function on U.

(1) Show that (U, g) is flat if and only if σ is a harmonic function, that is, it satisfies

$$\frac{\partial^2 \sigma}{(\partial u^1)^2} + \frac{\partial^2 \sigma}{(\partial u^2)^2} = 0.$$

(2) Compute R_{ijkl} for

$$e^{2\sigma} = \frac{4}{(1+k(u^2+v^2))^2},$$

where k is a constant and $(u, v) = (u^1, u^2)$ is the canonical coordinate system on \mathbb{R}^2 .