
3 Flatness.

Riemannian manifolds. A Riemannian manifold (resp. pseudo
Riemannian manifold) is a pair (M, g) of a C∞-manifold M and
a Riemannian metric (resp. pseudo Riemannian metric) on M ,
that is, g is a collection {gP ; P ∈ M} of positive definite (resp.
non-degenerate) inner products on TPM such that, for each pair
of C∞-vector fields (X,Y ) on M , the map

M ∋ P 7−→ gP(XP, YP) ∈ R

is a C∞-function, where XP and YP are values of X and Y at
P, respectively.

Example 3.1 ((Pseudo) Euclidean spaces.). Let Rn
s be a pseudo

Euclidean vector space with inner product ⟨ , ⟩ of signature
(n − s, s). Identifying the tangent space TPRn

s of Rn
s itself by

translations, ⟨ , ⟩ gives a pseudo Riemannian metric of the man-
ifold Rn

s . Such a pseudo Riemannian manifold is called the
pseudo Euclidean space of signature (n − s, s). In particular,
Rn := Rn

0 , which is a Riemannian manifold, is called the Eu-
clidean space.

Example 3.2. Let M be a submanifold of the Euclidean space
Rn, that is, M is a subset of Rn and has a structure of C∞-
manifold such that the inclusion map ι : M → Rn is an immer-
sion. Then TPM is considered as a linear subspace of Rn(=
TPRn), and then the restriction of the inner product ⟨ , ⟩ of Rn

gives a Riemannian metric on M . Such a Riemannian metric is
called the induced metric.
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Example 3.3 (Spheres). For positive real number k, a subset
Sn(k) := {x ∈ Rn+1 ; ⟨x,x⟩ = 1/k} is an n-dimensional C∞-
submanifold (hypersurface)5 of the Euclidean space Rn+1, called
the n-dimensional sphere of curvature6 k.

Example 3.4. A linear subspace L of Rn
s is said to be non-

degenerate if the restriction of the inner product ⟨ , ⟩ of Rn
s

to L is non-degenerate. A submanifold M ⊂ Rn
s is said to be

non-degenerate if TPM is a non-degenerate subspace of Rn
s for

each P ∈ M . In this case, the restriction of ⟨ , ⟩ on TPM is a
(non-degenerate) inner product of TPM .

Example 3.5 (Hyperbolic spaces.). For positive real number
k, a subset

Hn(−k) := {x ∈ Rn+1
1 ; ⟨x,x⟩ = −1/k, x0 > 0}

is a connected C∞-hypersurface of the Lorentz-Minkowski space
Rn+1

1 , where ⟨ , ⟩ is the inner product of signature (−,+, . . . ,+),

and x =
t
(x0, x1, . . . , xn). The tangent space TxH

n(−k) =
{v ∈ Rn+1

1 ; ⟨v,x⟩ = 0} = x⊥ is non-degenerate subspace in
Rn+1

1 and the restriction of ⟨ , ⟩ to TxH
n(−k) is positive defi-

nite. Thus, we obtain a Riemannian manifold Hn(−k), which
is called the hyperbolic space of curvature −k.

Geodesics. Let M ⊂ Rn+1
s be a non-degenerate submanifold

of dimension m. By non-degeneracy, the orthogonal decompo-

5An n-dimensional submanifold of (n+ 1)-dimensional manifold (i.e., a
submanifold of codimension one) is called a hypersurface.

6The word curvature is undefined at the moment.
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sition

(3.1) Rn+1
s = TPRn+1

s = TPM ⊕NP,
(
NP := (TPM)⊥

)

holds for each P ∈ M . Take a curve γ on M , that is, γ is a
C∞-map

γ : J ∋ t 7−→ γ(t) ∈ M ⊂ Rn+1
s

where J ⊂ R is an interval. From now on, by a word smooth,
we mean “of class C∞”.

Definition 3.6. Let γ : J → M ⊂ Rn+1
s be a smooth curve on

M . A smooth vector field on M along γ is a map

X : J ∋ t 7−→ X(t) ∈ Tγ(t)M ⊂ Rn+1
s

which is of class C∞ as a map from J to Rn+1
s .

Example 3.7. Let γ : J → M ⊂ Rn+1
s be a smooth curve.

Then

γ̇ : J ∋ t 7−→ γ̇(t) =
dγ

dt
(t) ∈ Tγ(t)M

is a smooth vector field along γ, called the velocity vector field
of the curve γ.

Definition 3.8. Let X be a smooth vector field along a smooth
curve γ on M . Then the vector field

∇
dt

X(t) := ∇γ̇(t)X(t) :=
[
Ẋ(t)

]T
∈ Tγ(t)M

of M along γ is called the covariant derivative of X along γ,
where [∗]T denotes the tangential component as in (3.1).
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Definition 3.9. The covariant derivative

(3.2)
∇
dt

γ̇(t) = ∇γ̇(t)γ̇(t) := [γ̈(t)]
T ∈ Tγ(t)M

of γ̇ along γ is called the acceleration of the curve γ.

Definition 3.10. A curve γ on a non-degenerate submanifold
M ⊂ Rn+1

s is called a geodesic if ∇γ̇ γ̇ vanishes identically.

Local and intrinsic expressions. Let M ⊂ Rn+1
s be a non-

degenerate submanifold and take a local coordinate neighbor-
hood (U ;u1, . . . , um) of M , where m = dimM . Then the inclu-
sion map ι : M → Rn+1

s induces an immersion

(3.3) f : U ∋ (u1, . . . , um) 7−→ f(u1, . . . , um) ∈ M ⊂ Rn+1
s ,

here we identify the coordinate neighborhood U ⊂ M with a
region of Rm. We call such an f a (local) parametrization of M .
Under this parametrization, the canonical basis {(∂/∂uj)P} of
TPM (in the abstract way) is identified with

{
∂f

∂u1
(P), . . . ,

∂f

∂um
(P)

}
⊂ TPM ⊂ Rn+1

s .

We set, for i, j = 1, . . . ,m,

(3.4) gij := g

(
∂

∂ui
,

∂

∂uj

)
=

⟨
∂f

∂ui
,
∂f

∂uj

⟩(
= gji

)

which is a component of the induced metric g := ⟨ , ⟩ |TPM with
respect to the canonical basis {∂/∂uj}. Since the induced metric
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is non-degenerate, the m × m-matrix (gij) is a regular matrix
at each point P ∈ M . In particular, when the induced metric
is positive definite, (gij) is positive definite. We denote by (gij)
the inverse matrix of (gij):

(3.5)

m∑

k=1

gikg
kj = δji =

{
1 (i = j)

0 (i ̸= j)

Then, as we have seen in Section 5 of “Advanced Topics in
Geometry A1, 2019” (the previous quarter), we have

Lemma 3.11. Let γ is a curve in U ⊂ M and express

γ(t) = f
(
u1(t), . . . , um(t)

)
,

where f : U → M is a local parametrization of M as in (3.3).

γ̇ =
m∑

j=1

duj

dt

∂f

∂uj
(3.6)

∇γ̇ γ̇ =
m∑

j=1


d2uj

dt2
+

m∑

k,l=1

Γ j
kl

duk

dt

dul

dt


 ∂f

∂uj
(3.7)

hold, where

(3.8) Γ k
ij =

1

2

m∑

l=1

gkl
(
∂gil
∂uj

+
∂glj
∂ui

− ∂gij
∂ul

)
.

The functions Γ k
ij of (3.8) are called the Christoffel symbols

with respect to the local coordinate system (u1, . . . , um).
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Christoffel symbols. By definition (3.8), the Christoffel sym-
bols Γ k

ij are functions defined on the coordinate neighborhood
U which are determined only by the coefficients (gij) of the
(pseudo) Riemannian metric. That is, the definition of Γ k

ij does
not require the knowledge of γ.

Proposition 3.12. Let M ⊂ Rn+1
s be a non-degenerate sub-

manifold with induced metric ⟨ , ⟩, and take a local coordinate
system (U ;u1, . . . , um) of M . We write parametrization of M
with respect to (uj) as (3.3). Then the Christoffel symbols Γ k

ij

with respect to (uj) satisfy

Γ k
ij = Γ k

ji(3.9)
⟨

∂2f

∂ui∂uj
,
∂f

∂ul

⟩
=

m∑

k=1

glkΓ
k
ij ,(3.10)

∂gij
∂ul

=
m∑

k=1

(
gkjΓ

k
il + gikΓ

k
jl

)
,(3.11)

where gij’s are the components of the induced metric defined in
(3.4).

Proof. The first equality (3.9) is obvious from the definition
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(3.8) and the symmetricity of (gij). Next, we prove (3.10). Since

⟨
∂2f

∂ui∂uj
,
∂f

∂ul

⟩
=

∂

∂ui

⟨
∂f

∂uj
,
∂f

∂ul

⟩
−

⟨
∂f

∂uj
,

∂2f

∂ui∂ul

⟩

=
∂gjl
∂ui

−
⟨

∂f

∂uj
,

∂2f

∂ul∂ui

⟩

=
∂glj
∂ui

− ∂

∂ul

⟨
∂f

∂uj
,
∂f

∂ui

⟩
+

⟨
∂2f

∂ul∂uj
,
∂f

∂ui

⟩

=
∂glj
∂ui

− ∂gji
∂ul

+

⟨
∂2f

∂uj∂ul
,
∂f

∂ui

⟩

=
∂glj
∂ui

− ∂gji
∂ul

+
∂

∂uj

⟨
∂f

∂ul
,
∂f

∂ui

⟩
−
⟨

∂f

∂ul
,

∂2f

∂uj∂ui

⟩

=
∂glj
∂ui

− ∂gij
∂ul

+
∂gli
∂uj

−
⟨

∂2f

∂ui∂uj
,
∂f

∂ul

⟩
,

we have

⟨
∂2f

∂ui∂uj
,
∂f

∂ul

⟩
=

1

2

(
∂glj
∂ui

+
∂gli
∂uj

− ∂gij
∂ul

)

=
1

2

m∑

p=1

δpl

(
∂gpj
∂ui

+
∂gpi
∂uj

− ∂gij
∂up

)

=
1

2

m∑

k,p=1

glpg
pk

(
∂gpj
∂ui

+
∂gpi
∂uj

− ∂gij
∂up

)
=

m∑

k=1

gklΓ
k
ij .
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Using this, we have

∂gij
∂ul

=
∂

∂ul

⟨
∂f

∂ui
,
∂f

∂uj

⟩
=

⟨
∂2f

∂ul∂ui
,
∂f

∂uj

⟩
+

⟨
∂f

∂ui
,

∂2f

∂ul∂uj

⟩

=
m∑

k=1

gkjΓ
k
li +

m∑

k=1

gikΓ
k
lj ,

proving (3.11).

Flatness. We shall prove the following:

Theorem 3.13. Let (M, g) be a Riemannian manifold of di-
mension m (resp. pseudo Riemannian manifold of signature
(m − s, s)), and (U ;u1, . . . , um) a local coordinate system. As-
sume there exists an immersion f : U → Rm (resp. Rm

s ) into
the Euclidean space (resp. the pseudo Euclidean space) with the
same dimension m as M whose induced metric is g. Then the
Christoffel symbols Γ k

ij with respect to the coordinate system (uj)
satisfy

(3.12)
∂Γ l

ij

∂uk
− ∂Γ l

ik

∂uj
+

m∑

p=1

(
Γ p
ijΓ

l
pk − Γ p

ikΓ
l
pj

)
= 0

holds for i, j, k, l = 1, . . . ,m. Conversely, when U is simply
connected and (3.12) holds, there exists an immersion f : U →
Rm (resp. Rm

s ) such that the induced metric by f coincides with
the metric g.
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Lemma 3.14. Let f : U → Rm (resp. Rm
s ) be an immersion of

a domain (U ;u1, . . . , um) ⊂ Rm, and set

F :=

(
∂f

∂u1
, . . . ,

∂f

∂um

)
: U → Mm(R).

Then F satisfies

(3.13)
∂F
∂uj

= FΩj , Ωj :=



Γ 1
1j . . . Γ 1

mj
...

. . .
...

Γm
1j . . . Γm

mj




for j = 1, . . . ,m, where Γ k
ij’s are the Christoffel symbols of the

induced metric with respect to the coordinate system (uj). More-
over, the Christoffel symbols satisfy (3.12).

Proof. Problem 3-1.

Lemma 3.15. Let A ∈ Mm(R) be a symmetric matrix such that
the quadratic form x 7→ txAx has a signature (s,m− s). Then
there exists a regular matrix P such that

tPJs,m−sP = A, Js,m−s =

(
− ids O
O idm−s

)
,

where idk is the k×k identity matrix and O’s are zero matrices.

Proof. By the assumptions, A has (m− s) positive eigenvalues
and s negative eigenvalues, and A can be diagonalized by an
orthogonal matrix Q:

A = tQ

(
Λ− O
O Λ+

)
Q,
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where Λ− := diag(−a21, . . . ,−a2s), Λ+ := diag(a2s+1, . . . , a
2
m)

and aj ’s (j = 1, . . . ,m) are non-zero real numbers. Let D :=
diag(a1, . . . , am) and P := DQ, we have the conclusion.

Proof of Theorem 3.13. The first assertion has been proved
in Lemma 3.14. We assume (3.12) holds for each i, j, k, l =
1, . . . ,m, and fix P0 ∈ U . We let A = (gij(P0)), which is a
symmetric matrix such that the corresponding quadratic form
is of signature (m− s, s). Then there exists a regular matrix P
as in Lemma 3.15. Then by Theorem 2.5, there exists F : U →
Mm(R) satisfying (3.13) with initial condition F(P0) = P . We
set

ω :=
m∑

j=1

f j du
j , where F = (f1, . . . ,fm).

Then by (3.9), we know that ω is a vector-valued closed one
form. Hence by Poincaré’s Lemma (Theorem 2.6), there exists
a C∞-function f : M → Rm

s such that df = ω, that is,

∂f

∂uj
= f j (j = 1, . . . ,m).

We shall prove that this f is the desired immersion, that is, our
goal is to prove

gij =
⟨
f i,f j

⟩
(i, j = 1, . . . ,m).

To do it, we set

κij := gij −
⟨
f i,f j

⟩
(i, j = 1, . . . ,m).



35 (20190709) MTH.B406; Sect. 3

So, by a choice of the initial condition, we have

(3.14) κij(P0) = 0 (i, j = 1, . . . ,m).

Then, by (3.13) and (3.11), it holds that

(3.15)
∂κij

∂ul
=

m∑

k=1

(
κikΓ

k
jl + κkjΓ

k
il

)
(i, j, l = 1, . . . ,m).

Let P ∈ U and take a path γ(t) (0 ≦ t ≦ 1) in U satisfying
γ(0) = P0 and γ(1) = P. Then the functions κ̃ij(t) satisfy a
system of ordinary differential equations

dκ̃ij

dt
=

m∑

l=1

m∑

k=1

(
κ̃ikΓ

k
jl ◦ γ + κ̃kjΓ

k
il ◦ γ

) dul

dt
(i, j = 1, . . . ,m),

where γ(t) = (u1(t), . . . , um(t)). Since κ̃ij(t) = 0 (i, j = 1, . . . ,m)
satisfy the equation with initial condition (3.14), uniqueness the-
orem implies that κ̃ij(1) = κij(P) = 0, proving the theorem.

Remark 3.16. As we see in the following section, the condition
(3.12) does not depend on choice of local coordinate systems.
We say a (pseudo) Riemmanian manifold (M, g) to be flat if
(3.12) holds on M .
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Exercises

3-1 Show Lemma 3.14.

3-2 Let M := R+ × R = {(u1, u2) ; u1 > 0}, and consider a
Riemannian metric g on M whose components are

g11 = 1, g12 = 0, g22 =
{
φ(u1)

}2
,

where φ : R+ → R+ is a smooth function.

• Find a function φ satisfying (3.12) and lim
t→0+

φ(t) = 0.

• Under the situation above, find f : U → R2 on an
appropriate domain U on M such that the induced
metric coincides with g.


