3 Flatness.

Riemannian manifolds. A Riemannian manifold (resp. pseudo Riemannian manifold) is a pair (M, g) of a C^{∞} -manifold M and a Riemannian metric (resp. pseudo Riemannian metric) on M, that is, g is a collection $\{g_{\rm P}; {\rm P} \in M\}$ of positive definite (resp. non-degenerate) inner products on $T_{\rm P}M$ such that, for each pair of C^{∞} -vector fields (X, Y) on M, the map

$$M \ni \mathcal{P} \longmapsto g_{\mathcal{P}}(X_{\mathcal{P}}, Y_{\mathcal{P}}) \in \mathbb{R}$$

is a C^{∞} -function, where $X_{\rm P}$ and $Y_{\rm P}$ are values of X and Y at P, respectively.

Example 3.1 ((Pseudo) Euclidean spaces.). Let \mathbb{R}^n_s be a pseudo Euclidean vector space with inner product \langle , \rangle of signature (n - s, s). Identifying the tangent space $T_P \mathbb{R}^n_s$ of \mathbb{R}^n_s itself by translations, \langle , \rangle gives a pseudo Riemannian metric of the manifold \mathbb{R}^n_s . Such a pseudo Riemannian manifold is called the *pseudo Euclidean space* of signature (n - s, s). In particular, $\mathbb{R}^n := \mathbb{R}^n_0$, which is a Riemannian manifold, is called the Euclidean space.

Example 3.2. Let M be a submanifold of the Euclidean space \mathbb{R}^n , that is, M is a subset of \mathbb{R}^n and has a structure of C^{∞} -manifold such that the inclusion map $\iota: M \to \mathbb{R}^n$ is an immersion. Then $T_{\mathrm{P}}M$ is considered as a linear subspace of $\mathbb{R}^n (= T_{\mathrm{P}}\mathbb{R}^n)$, and then the restriction of the inner product \langle , \rangle of \mathbb{R}^n gives a Riemannian metric on M. Such a Riemannian metric is called the *induced metric*.

Example 3.3 (Spheres). For positive real number k, a subset $S^n(k) := \{ \boldsymbol{x} \in \mathbb{R}^{n+1} ; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = 1/k \}$ is an *n*-dimensional C^{∞} -submanifold (hypersurface)⁵ of the Euclidean space \mathbb{R}^{n+1} , called the *n*-dimensional *sphere* of curvature⁶ k.

Example 3.4. A linear subspace L of \mathbb{R}^n_s is said to be *non-degenerate* if the restriction of the inner product \langle , \rangle of \mathbb{R}^n_s to L is non-degenerate. A submanifold $M \subset \mathbb{R}^n_s$ is said to be *non-degenerate* if T_PM is a non-degenerate subspace of \mathbb{R}^n_s for each $P \in M$. In this case, the restriction of \langle , \rangle on T_PM is a (non-degenerate) inner product of T_PM .

Example 3.5 (Hyperbolic spaces.). For positive real number k, a subset

$$H^{n}(-k) := \{ \boldsymbol{x} \in \mathbb{R}^{n+1}_{1}; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1/k, x^{0} > 0 \}$$

is a connected C^{∞} -hypersurface of the Lorentz-Minkowski space \mathbb{R}_1^{n+1} , where \langle , \rangle is the inner product of signature $(-, +, \ldots, +)$, and $\boldsymbol{x} = {}^t(\boldsymbol{x}^0, \boldsymbol{x}^1, \ldots, \boldsymbol{x}^n)$. The tangent space $T_{\boldsymbol{x}}H^n(-k) = \{\boldsymbol{v} \in \mathbb{R}_1^{n+1}; \langle \boldsymbol{v}, \boldsymbol{x} \rangle = 0\} = \boldsymbol{x}^{\perp}$ is non-degenerate subspace in \mathbb{R}_1^{n+1} and the restriction of \langle , \rangle to $T_{\boldsymbol{x}}H^n(-k)$ is positive definite. Thus, we obtain a Riemannian manifold $H^n(-k)$, which is called the *hyperbolic space* of curvature -k.

Geodesics. Let $M \subset \mathbb{R}^{n+1}_s$ be a non-degenerate submanifold of dimension m. By non-degeneracy, the orthogonal decompo-

^{02.} July, 2019. Revised: 09. July, 2019

⁵An *n*-dimensional submanifold of (n + 1)-dimensional manifold (i.e., a submanifold of codimension one) is called a *hypersurface*.

 $^{^{6}}$ The word *curvature* is undefined at the moment.

sition

(3.1)
$$\mathbb{R}_{s}^{n+1} = T_{\mathrm{P}}\mathbb{R}_{s}^{n+1} = T_{\mathrm{P}}M \oplus N_{\mathrm{P}}, (N_{\mathrm{P}} := (T_{\mathrm{P}}M)^{\perp})$$

holds for each $P \in M$. Take a curve γ on M, that is, γ is a C^{∞} -map

$$\gamma \colon J \ni t \longmapsto \gamma(t) \in M \subset \mathbb{R}^{n+1}_s$$

where $J \subset \mathbb{R}$ is an interval. From now on, by a word *smooth*, we mean "of class C^{∞} ".

Definition 3.6. Let $\gamma: J \to M \subset \mathbb{R}^{n+1}_s$ be a smooth curve on M. A smooth vector field on M along γ is a map

$$X \colon J \ni t \longmapsto X(t) \in T_{\gamma(t)}M \subset \mathbb{R}^{n+1}_s$$

which is of class C^{∞} as a map from J to \mathbb{R}^{n+1}_s .

Example 3.7. Let $\gamma: J \to M \subset \mathbb{R}^{n+1}_s$ be a smooth curve. Then

$$\dot{\gamma} \colon J \ni t \longmapsto \dot{\gamma}(t) = \frac{d\gamma}{dt}(t) \in T_{\gamma(t)}M$$

is a smooth vector field along γ , called the *velocity* vector field of the curve γ .

Definition 3.8. Let X be a smooth vector field along a smooth curve γ on M. Then the vector field

$$\frac{\nabla}{dt}X(t) := \nabla_{\dot{\gamma}(t)}X(t) := \left[\dot{X}(t)\right]^{\mathrm{T}} \in T_{\gamma(t)}M$$

of M along γ is called the *covariant derivative* of X along γ , where $[*]^{\mathrm{T}}$ denotes the tangential component as in (3.1).

Definition 3.9. The covariant derivative

(3.2)
$$\frac{\nabla}{dt}\dot{\gamma}(t) = \nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) := \left[\ddot{\gamma}(t)\right]^{\mathrm{T}} \in T_{\gamma(t)}M$$

of $\dot{\gamma}$ along γ is called the *acceleration* of the curve γ .

Definition 3.10. A curve γ on a non-degenerate submanifold $M \subset \mathbb{R}^{n+1}_s$ is called a *geodesic* if $\nabla_{\dot{\gamma}}\dot{\gamma}$ vanishes identically.

Local and intrinsic expressions. Let $M \subset \mathbb{R}^{n+1}_s$ be a nondegenerate submanifold and take a local coordinate neighborhood $(U; u^1, \ldots, u^m)$ of M, where $m = \dim M$. Then the inclusion map $\iota \colon M \to \mathbb{R}^{n+1}_s$ induces an immersion

(3.3) $f: U \ni (u^1, \dots, u^m) \longmapsto f(u^1, \dots, u^m) \in M \subset \mathbb{R}^{n+1}_s,$

here we identify the coordinate neighborhood $U \subset M$ with a region of \mathbb{R}^m . We call such an f a (local) parametrization of M. Under this parametrization, the canonical basis $\{(\partial/\partial u^j)_{\rm P}\}$ of $T_{\rm P}M$ (in the abstract way) is identified with

$$\left\{\frac{\partial f}{\partial u^1}(\mathbf{P}),\ldots,\frac{\partial f}{\partial u^m}(\mathbf{P})\right\} \subset T_{\mathbf{P}}M \subset \mathbb{R}^{n+1}_s.$$

We set, for $i, j = 1, \ldots, m$,

(3.4)
$$g_{ij} := g\left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j}\right) = \left\langle\frac{\partial f}{\partial u^i}, \frac{\partial f}{\partial u^j}\right\rangle (=g_{ji})$$

which is a component of the induced metric $g := \langle , \rangle |_{T_{\rm P}M}$ with respect to the canonical basis $\{\partial/\partial u^j\}$. Since the induced metric

is non-degenerate, the $m \times m$ -matrix (g_{ij}) is a regular matrix at each point $P \in M$. In particular, when the induced metric is positive definite, (g_{ij}) is positive definite. We denote by (g^{ij}) the inverse matrix of (g_{ij}) :

(3.5)
$$\sum_{k=1}^{m} g_{ik} g^{kj} = \delta_i^j = \begin{cases} 1 & (i=j) \\ 0 & (i\neq j) \end{cases}$$

Then, as we have seen in Section 5 of "Advanced Topics in Geometry A1, 2019" (the previous quarter), we have

Lemma 3.11. Let γ is a curve in $U \subset M$ and express

$$\gamma(t) = f(u^1(t), \dots, u^m(t)),$$

where $f: U \to M$ is a local parametrization of M as in (3.3).

(3.6)
$$\dot{\gamma} = \sum_{j=1}^{m} \frac{du^{j}}{dt} \frac{\partial f}{\partial u^{j}}$$
(3.7)
$$\nabla_{\dot{\gamma}} \dot{\gamma} = \sum_{j=1}^{m} \left(\frac{d^{2}u^{j}}{dt^{2}} + \sum_{k,l=1}^{m} \Gamma_{kl}^{j} \frac{du^{k}}{dt} \frac{du^{l}}{dt} \right) \frac{\partial f}{\partial u^{j}}$$

hold, where

(3.8)
$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{m} g^{kl} \left(\frac{\partial g_{il}}{\partial u^{j}} + \frac{\partial g_{lj}}{\partial u^{i}} - \frac{\partial g_{ij}}{\partial u^{l}} \right).$$

The functions Γ_{ij}^k of (3.8) are called the *Christoffel symbols* with respect to the local coordinate system (u^1, \ldots, u^m) .

Christoffel symbols. By definition (3.8), the Christoffel symbols Γ_{ij}^k are functions defined on the coordinate neighborhood U which are determined only by the coefficients (g_{ij}) of the (pseudo) Riemannian metric. That is, the definition of Γ_{ij}^k does not require the knowledge of γ .

Proposition 3.12. Let $M \subset \mathbb{R}^{n+1}_s$ be a non-degenerate submanifold with induced metric \langle , \rangle , and take a local coordinate system $(U; u^1, \ldots, u^m)$ of M. We write parametrization of Mwith respect to (u^j) as (3.3). Then the Christoffel symbols Γ^k_{ij} with respect to (u^j) satisfy

(3.9)
$$\Gamma_{ij}^{k} = \Gamma_{ji}^{k}$$

(3.10)
$$\left\langle \frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}, \frac{\partial f}{\partial u^{l}} \right\rangle = \sum_{k=1}^{m} g_{lk} \Gamma_{ij}^{k},$$

(3.11)
$$\frac{\partial g_{ij}}{\partial u^{l}} = \sum_{k=1}^{m} \left(g_{kj} \Gamma_{il}^{k} + g_{ik} \Gamma_{jl}^{k} \right),$$

where g_{ij} 's are the components of the induced metric defined in (3.4).

Proof. The first equality (3.9) is obvious from the definition

(3.8) and the symmetricity of (g_{ij}) . Next, we prove (3.10). Since

$$\begin{split} \left\langle \frac{\partial^2 f}{\partial u^i \partial u^j}, \frac{\partial f}{\partial u^l} \right\rangle &= \frac{\partial}{\partial u^i} \left\langle \frac{\partial f}{\partial u^j}, \frac{\partial f}{\partial u^l} \right\rangle - \left\langle \frac{\partial f}{\partial u^j}, \frac{\partial^2 f}{\partial u^i \partial u^l} \right\rangle \\ &= \frac{\partial g_{jl}}{\partial u^i} - \left\langle \frac{\partial f}{\partial u^j}, \frac{\partial^2 f}{\partial u^l \partial u^i} \right\rangle \\ &= \frac{\partial g_{lj}}{\partial u^i} - \frac{\partial}{\partial u^l} \left\langle \frac{\partial f}{\partial u^j}, \frac{\partial f}{\partial u^i} \right\rangle + \left\langle \frac{\partial^2 f}{\partial u^l \partial u^j}, \frac{\partial f}{\partial u^i} \right\rangle \\ &= \frac{\partial g_{lj}}{\partial u^i} - \frac{\partial g_{ji}}{\partial u^l} + \left\langle \frac{\partial^2 f}{\partial u^j \partial u^l}, \frac{\partial f}{\partial u^i} \right\rangle \\ &= \frac{\partial g_{lj}}{\partial u^i} - \frac{\partial g_{ji}}{\partial u^l} + \frac{\partial}{\partial u^j} \left\langle \frac{\partial f}{\partial u^l}, \frac{\partial f}{\partial u^i} \right\rangle - \left\langle \frac{\partial f}{\partial u^l}, \frac{\partial^2 f}{\partial u^j \partial u^i} \right\rangle \\ &= \frac{\partial g_{lj}}{\partial u^i} - \frac{\partial g_{ji}}{\partial u^l} + \frac{\partial}{\partial u^j} \left\langle \frac{\partial f}{\partial u^l}, \frac{\partial f}{\partial u^j} \right\rangle - \left\langle \frac{\partial f}{\partial u^l}, \frac{\partial^2 f}{\partial u^j \partial u^i} \right\rangle \end{split}$$

we have

$$\left\langle \frac{\partial^2 f}{\partial u^i \partial u^j}, \frac{\partial f}{\partial u^l} \right\rangle = \frac{1}{2} \left(\frac{\partial g_{lj}}{\partial u^i} + \frac{\partial g_{li}}{\partial u^j} - \frac{\partial g_{ij}}{\partial u^l} \right)$$
$$= \frac{1}{2} \sum_{p=1}^m \delta_l^p \left(\frac{\partial g_{pj}}{\partial u^i} + \frac{\partial g_{pi}}{\partial u^j} - \frac{\partial g_{ij}}{\partial u^p} \right)$$
$$= \frac{1}{2} \sum_{k,p=1}^m g_{lp} g^{pk} \left(\frac{\partial g_{pj}}{\partial u^i} + \frac{\partial g_{pj}}{\partial u^j} - \frac{\partial g_{ij}}{\partial u^j} \right) = \sum_{k=1}^m g_{kl} \Gamma_{ij}^k.$$

Using this, we have

$$\frac{\partial g_{ij}}{\partial u^l} = \frac{\partial}{\partial u^l} \left\langle \frac{\partial f}{\partial u^i}, \frac{\partial f}{\partial u^j} \right\rangle = \left\langle \frac{\partial^2 f}{\partial u^l \partial u^i}, \frac{\partial f}{\partial u^j} \right\rangle + \left\langle \frac{\partial f}{\partial u^i}, \frac{\partial^2 f}{\partial u^l \partial u^j} \right\rangle$$
$$= \sum_{k=1}^m g_{kj} \Gamma_{li}^k + \sum_{k=1}^m g_{ik} \Gamma_{lj}^k,$$

proving (3.11).

Flatness. We shall prove the following:

Theorem 3.13. Let (M,g) be a Riemannian manifold of dimension m (resp. pseudo Riemannian manifold of signature (m-s,s)), and $(U; u^1, \ldots, u^m)$ a local coordinate system. Assume there exists an immersion $f: U \to \mathbb{R}^m$ (resp. \mathbb{R}^m_s) into the Euclidean space (resp. the pseudo Euclidean space) with the same dimension m as M whose induced metric is g. Then the Christoffel symbols Γ^k_{ij} with respect to the coordinate system (u^j) satisfy

(3.12)
$$\frac{\partial \Gamma_{ij}^l}{\partial u^k} - \frac{\partial \Gamma_{ik}^l}{\partial u^j} + \sum_{p=1}^m \left(\Gamma_{ij}^p \Gamma_{pk}^l - \Gamma_{ik}^p \Gamma_{pj}^l \right) = 0$$

holds for i, j, k, l = 1, ..., m. Conversely, when U is simply connected and (3.12) holds, there exists an immersion $f: U \to \mathbb{R}^m$ (resp. \mathbb{R}^m_s) such that the induced metric by f coincides with the metric g. **Lemma 3.14.** Let $f: U \to \mathbb{R}^m$ (resp. \mathbb{R}^m_s) be an immersion of a domain $(U; u^1, \ldots, u^m) \subset \mathbb{R}^m$, and set

$$\mathcal{F} := \left(\frac{\partial f}{\partial u^1}, \dots, \frac{\partial f}{\partial u^m}\right) : U \to \mathcal{M}_m(\mathbb{R}).$$

Then \mathcal{F} satisfies

(3.13)
$$\frac{\partial \mathcal{F}}{\partial u^j} = \mathcal{F}\Omega_j, \quad \Omega_j := \begin{pmatrix} \Gamma_{1j}^1 & \dots & \Gamma_{mj}^1 \\ \vdots & \ddots & \vdots \\ \Gamma_{1j}^m & \dots & \Gamma_{mj}^m \end{pmatrix}$$

for j = 1, ..., m, where Γ_{ij}^k 's are the Christoffel symbols of the induced metric with respect to the coordinate system (u^j) . Moreover, the Christoffel symbols satisfy (3.12).

Proof. Problem 3-1.

Lemma 3.15. Let $A \in M_m(\mathbb{R})$ be a symmetric matrix such that the quadratic form $\mathbf{x} \mapsto {}^t \mathbf{x} A \mathbf{x}$ has a signature (s, m - s). Then there exists a regular matrix P such that

$${}^{t}PJ_{s,m-s}P = A, \qquad J_{s,m-s} = \begin{pmatrix} -\operatorname{id}_{s} & O\\ O & \operatorname{id}_{m-s} \end{pmatrix},$$

where id_k is the $k \times k$ identity matrix and O's are zero matrices.

Proof. By the assumptions, A has (m - s) positive eigenvalues and s negative eigenvalues, and A can be diagonalized by an orthogonal matrix Q:

$$A = {}^{t}Q \begin{pmatrix} \Lambda_{-} & O \\ O & \Lambda_{+} \end{pmatrix} Q,$$

where $\Lambda_{-} := \operatorname{diag}(-a_{1}^{2}, \ldots, -a_{s}^{2}), \Lambda_{+} := \operatorname{diag}(a_{s+1}^{2}, \ldots, a_{m}^{2})$ and a_{j} 's $(j = 1, \ldots, m)$ are non-zero real numbers. Let $D := \operatorname{diag}(a_{1}, \ldots, a_{m})$ and P := DQ, we have the conclusion. \Box

Proof of Theorem 3.13. The first assertion has been proved in Lemma 3.14. We assume (3.12) holds for each i, j, k, l = $1, \ldots, m$, and fix $P_0 \in U$. We let $A = (g_{ij}(P_0))$, which is a symmetric matrix such that the corresponding quadratic form is of signature (m - s, s). Then there exists a regular matrix Pas in Lemma 3.15. Then by Theorem 2.5, there exists $\mathcal{F}: U \rightarrow$ $M_m(\mathbb{R})$ satisfying (3.13) with initial condition $\mathcal{F}(P_0) = P$. We set

$$\omega := \sum_{j=1}^m \boldsymbol{f}_j \, du^j, \qquad ext{where} \quad \mathcal{F} = (\boldsymbol{f}_1, \dots, \boldsymbol{f}_m).$$

Then by (3.9), we know that ω is a vector-valued closed one form. Hence by Poincaré's Lemma (Theorem 2.6), there exists a C^{∞} -function $f: M \to \mathbb{R}^m_s$ such that $df = \omega$, that is,

$$\frac{\partial f}{\partial u^j} = \boldsymbol{f}_j \qquad (j = 1, \dots, m)$$

We shall prove that this f is the desired immersion, that is, our goal is to prove

$$g_{ij} = \left\langle \boldsymbol{f}_i, \boldsymbol{f}_j \right\rangle \qquad (i, j = 1, \dots, m).$$

To do it, we set

$$\kappa_{ij} := g_{ij} - \langle \boldsymbol{f}_i, \boldsymbol{f}_j \rangle$$
 $(i, j = 1, \dots, m).$

So, by a choice of the initial condition, we have

(3.14)
$$\kappa_{ij}(\mathbf{P}_0) = 0$$
 $(i, j = 1, \dots, m).$

Then, by (3.13) and (3.11), it holds that

(3.15)
$$\frac{\partial \kappa_{ij}}{\partial u^l} = \sum_{k=1}^m \left(\kappa_{ik} \Gamma_{jl}^k + \kappa_{kj} \Gamma_{il}^k \right) \qquad (i, j, l = 1, \dots, m).$$

Let $P \in U$ and take a path $\gamma(t)$ $(0 \leq t \leq 1)$ in U satisfying $\gamma(0) = P_0$ and $\gamma(1) = P$. Then the functions $\tilde{\kappa}_{ij}(t)$ satisfy a system of ordinary differential equations

$$\frac{d\tilde{\kappa}_{ij}}{dt} = \sum_{l=1}^{m} \sum_{k=1}^{m} \left(\tilde{\kappa}_{ik} \Gamma_{jl}^{k} \circ \gamma + \tilde{\kappa}_{kj} \Gamma_{il}^{k} \circ \gamma \right) \frac{du^{l}}{dt} \quad (i, j = 1, \dots, m),$$

where $\gamma(t) = (u^1(t), \dots, u^m(t))$. Since $\tilde{\kappa}_{ij}(t) = 0$ $(i, j = 1, \dots, m)$ satisfy the equation with initial condition (3.14), uniqueness theorem implies that $\tilde{\kappa}_{ij}(1) = \kappa_{ij}(\mathbf{P}) = 0$, proving the theorem.

Remark 3.16. As we see in the following section, the condition (3.12) does not depend on choice of local coordinate systems. We say a (pseudo) Riemmanian manifold (M, g) to be *flat* if (3.12) holds on M.

Exercises

- **3-1** Show Lemma 3.14.
- **3-2** Let $M := \mathbb{R}_+ \times \mathbb{R} = \{(u^1, u^2); u^1 > 0\}$, and consider a Riemannian metric g on M whose components are

$$g_{11} = 1, \qquad g_{12} = 0, \qquad g_{22} = \left\{\varphi(u^1)\right\}^2,$$

where $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$ is a smooth function.

- Find a function φ satisfying (3.12) and $\lim_{t \to 0+} \varphi(t) = 0$.
- Under the situation above, find $f: U \to \mathbb{R}^2$ on an appropriate domain U on M such that the induced metric coincides with g.