3 Flatness.

Riemannian manifolds. A Riemannian manifold (resp. pseudo

Riemannian manifold) is a pair (M, g) of a C°*°-manifold M and
a Riemannian metric (resp. pseudo Riemannian metric) on M,
that is, g is a collection {gp ; P € M} of positive definite (resp.
non-degenerate) inner products on Tp M such that, for each pair
of C*>-vector fields (X,Y) on M, the map

M>P I—)gp(Xp,Yp) eR

is a C°°-function, where Xp and Yp are values of X and Y at
P, respectively.

Example 3.1 ((Pseudo) Euclidean spaces.). Let R? be a pseudo
Euclidean vector space with inner product (, ) of signature
(n — s,s). Identifying the tangent space TpR? of R? itself by
translations, ( , ) gives a pseudo Riemannian metric of the man-
ifold R?. Such a pseudo Riemannian manifold is called the
pseudo Euclidean space of signature (n — s,s). In particular,
R" := R{, which is a Riemannian manifold, is called the Eu-
clidean space.

Example 3.2. Let M be a submanifold of the Euclidean space
R™, that is, M is a subset of R™ and has a structure of C°°-
manifold such that the inclusion map ¢: M — R™ is an immer-
sion. Then TpM is considered as a linear subspace of R"(=
TpR"™), and then the restriction of the inner product (, ) of R™
gives a Riemannian metric on M. Such a Riemannian metric is
called the induced metric.
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Example 3.3 (Spheres). For positive real number k, a subset
S*(k) == {x € R"!; (x,x) = 1/k} is an n-dimensional C°-
submanifold (hypersurface)® of the Euclidean space R™*!, called
the n-dimensional sphere of curvature® k.

Example 3.4. A linear subspace L of RY is said to be non-
degenerate if the restriction of the inner product {, ) of R?
to L is non-degenerate. A submanifold M C R is said to be
non-degenerate if Tp M is a non-degenerate subspace of R} for
each P € M. In this case, the restriction of (, ) on TpM is a
(non-degenerate) inner product of Tp M.

Example 3.5 (Hyperbolic spaces.). For positive real number
k, a subset

H"(—k) :={z e R} ; (x,x) = —1/k,2° > 0}

is a connected C'*°-hypersurface of the Lorentz-Minkowski space
R} where (, ) is the inner product of signature (—, +, ..., +),
and z = t(xo,xl,...,x"). The tangent space TpH"(—k) =
{v € R (v,2) = 0} = x* is non-degenerate subspace in
R} and the restriction of (, ) to TuH"(—Fk) is positive defi-
nite. Thus, we obtain a Riemannian manifold H"(—k), which
is called the hyperbolic space of curvature —k.

Geodesics. Let M C R?"! be a non-degenerate submanifold
of dimension m. By non-degeneracy, the orthogonal decompo-

5An n-dimensional submanifold of (n + 1)-dimensional manifold (i.e., a
submanifold of codimension one) is called a hypersurface.
6The word curvature is undefined at the moment.
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sition
(3.1) R = TpRI = Tp M & Np, (Np = (Tp M)*)

holds for each P € M. Take a curve v on M, that is, v is a
C°°-map
v:J 3t y(t) € M C R

where J C R is an interval. From now on, by a word smooth,
we mean “of class C*°”.

Definition 3.6. Let v: J — M C R?"! be a smooth curve on
M. A smooth vector field on M along vy is a map

X:J3tr— X(t) € TyyM C RI!
which is of class C* as a map from J to R?*1.

Example 3.7. Let v: J — M C R?*! be a smooth curve.
Then

. . dry

A JJt— () = E@) € TyiyM
is a smooth vector field along ~, called the velocity vector field
of the curve 7.

Definition 3.8. Let X be a smooth vector field along a smooth
curve v on M. Then the vector field

v . AT

X (1) 1= Vi X (1) = [X(0)] € Ty M
of M along ~ is called the covariant derivative of X along -,
where [¥]" denotes the tangential component as in (3.1).
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Definition 3.9. The covariant derivative

V. . T
(3.2) 27 = Vs07@t) =[] € TyyM
of 4 along 7 is called the acceleration of the curve 7.

Definition 3.10. A curve v on a non-degenerate submanifold
M C R s called a geodesic if V57 vanishes identically.

Local and intrinsic expressions. Let M C R""! be a non-
degenerate submanifold and take a local coordinate neighbor-
hood (U;ut,...,u™) of M, where m = dim M. Then the inclu-
sion map ¢: M — R?"! induces an immersion

(33) f:U3,...,u™) — fu,...,u™) e M Cc R?T,

here we identify the coordinate neighborhood U C M with a
region of R™. We call such an f a (local) parametrization of M.
Under this parametrization, the canonical basis {(9/0u’)p} of
TpM (in the abstract way) is identified with

{ of (P) of (P)} Cc TpM C R

oul™ 7 Qum

We set, for i,j =1,...,m,

0 0 af of
(3.4) gij =4 (8ui’ 8uﬂ> = <8ui’8uﬂ'> (: gji)

which is a component of the induced metric g := ( , ) |70 with
respect to the canonical basis {9/0u’ }. Since the induced metric
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is non-degenerate, the m x m-matrix (g;;) is a regular matrix
at each point P € M. In particular, when the induced metric
is positive definite, (g;;) is positive definite. We denote by (g*/)
the inverse matrix of (g;;):

S (i =)
(35) 2 g = = {0 (i # )
Then, as we have seen in Section 5 of “Advanced Topics in
Geometry A1, 2019”7 (the previous quarter), we have
Lemma 3.11. Let 7y is a curve in U C M and express
Y(t) = f(u' (@), ..., u™ (1)),

where f: U — M is a local parametrization of M as in (3.3).

" du?
0 =3 e or
. WL - j du® dut \ Of
(3.7) V4= ; —z + kZl::l el e
hold, where
1 . . .
(3.8) rh=3 ;gkl (gfj} + ggzjj - 8895) .

The functions Fi’} of (3.8) are called the Christoffel symbols

with respect to the local coordinate system (ul,... ,u™).
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Christoffel symbols. By definition (3.8), the Christoffel sym-
bols I ik'» are functions defined on the coordinate neighborhood
U which are determined only by the coefficients (g;;) of the
(pseudo) Riemannian metric. That is, the definition of Filj- does

not require the knowledge of ~.

Proposition 3.12. Let M C R?*! be a non-degenerate sub-
manifold with induced metric { , ), and take a local coordinate
system (Usut,...,u™) of M. We write parametrization of M
with respect to (u’) as (3.3). Then the Christoffel symbols I'};
with respect to (u?) satisfy

k _ ok
(3.9) rk=ry;
*f  of - k
. <auiauj ! aul> =2 T,
k=1
9gij G
(3.11) Biul] = Z (gu; T + gin))
k=1

where g;;’s are the components of the induced metric defined in

(3.4).

Proof. The first equality (3.9) is obvious from the definition



31 (20190709) MTH.B406; Sect. 3

(3.8) and the symmetricity of (g;;). Next, we prove (3.10). Since

P or\_ o jor o\ Jor o
Autoud’ dul /T Out \ Oud’ dul oul’ Ouiou!
_ g0 [/ of O*f
out ouwl’ Oulout

o, 0 JOf or\ [ 9 of
T oout oul \ Qud ot ouloui’ out
9915 0gji n *f  of
out  ou! ouwioul’ Out

_O9y 09 0 [Oof OFN _/Of &
out  Oul  Ouw \oul o oul’ Owi dut
_ 991 99ij T Ogii o*f af
out  Oul  Oul Ouidui’ Oul

we have
f OfN 1
uidui’ oul /2
2 Z 99p; 891%’ _ 99i5
ou’ 8u7 ouP

Ogp; 09y 0915\~ 5
Z glp <81ﬁ * oul B ouP - kZ:lgleij

k,p=1

out  Ouw ou!

(8%‘ Ogi;  0gij )
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Using this, we have

0gij _ 0 [Of OfN\ _/ &f of\_ [of &
Aul  Out \Out’ dui /T \ Ouldut’ dul out’ Ouloud

m

= ngjrh + ngny

proving (3.11). O

Flatness. We shall prove the following:

Theorem 3.13. Let (M,g) be a Riemannian manifold of di-
mension m (resp. pseudo Riemannian manifold of signature
(m —s,58)), and (U;ul,...,u™) a local coordinate system. As-
sume there exists an immersion f: U — R™ (resp. RT") into
the Euclidean space (resp. the pseudo Euclidean space) with the
same dimension m as M whose induced metric is g. Then the
Christoffel symbols FZ} with respect to the coordinate system (u’)
satisfy

ort.  art i
() ik E I Fl I Fl
8uk_8uj+ (ipjpk_ ﬁcpj)_o
p:l

(3.12)

holds for i,j,k,l = 1,...,m. Conversely, when U is simply
connected and (3.12) holds, there exists an immersion f: U —
R™ (resp. R™") such that the induced metric by f coincides with
the metric g.



33 (20190709) MTH.B406; Sect. 3

Lemma 3.14. Let f: U — R™ (resp. R™) be an immersion of

a domain (Usut, ..., u™) C R™, and set
of of
= =,..., = ): M, (R).
7 <8u1’ ’aum) v— (R)
Then F satisfies

1
3.13 OF _Fo; 0= B
(3.13) 90 = S = .
e

forj=1,...,m, where Fi’;- ’s are the Christoffel symbols of the

induced metric with respect to the coordinate system (u’). More-
over, the Christoffel symbols satisfy (3.12).

Proof. Problem 3-1. O

Lemma 3.15. Let A € M,,,(R) be a symmetric matrixz such that
the quadratic form x — 'xAx has a signature (s,m — s). Then
there exists a regular matriz P such that

—id, 0
tPJs,m—sP = A7 Js,m—s = ( 9] id. ) ;

where idy, is the k X k identity matrix and O’s are zero matrices.

Proof. By the assumptions, A has (m — s) positive eigenvalues
and s negative eigenvalues, and A can be diagonalized by an
orthogonal matrix Q:

L (A O
a=e(y e
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where A_ := diag(—a3,...,—a?), Ay = diag(a?,,,...,d2,)
and a;’s (j = 1,...,m) are non-zero real numbers. Let D :=
diag(ay,...,am) and P := D@, we have the conclusion. O

Proof of Theorem 3.13. The first assertion has been proved
in Lemma 3.14. We assume (3.12) holds for each i, j, k, | =
1,...,m, and fix Pp € U. We let A = (g;;(Po)), which is a
symmetric matrix such that the corresponding quadratic form
is of signature (m — s, s). Then there exists a regular matrix P
as in Lemma 3.15. Then by Theorem 2.5, there exists F: U —
M,,,(R) satisfying (3.13) with initial condition F(Pg) = P. We
set

wi=Y fyd!,  where F=(f,....fn)
j=1
Then by (3.9), we know that w is a vector-valued closed one

form. Hence by Poincaré’s Lemma (Theorem 2.6), there exists
a C*>°-function f: M — R7" such that df = w, that is,

0
a—lj;:fj (G=1,...,m).

We shall prove that this f is the desired immersion, that is, our
goal is to prove

gij:<fi7f_j> (i,7=1,...,m).

To do it, we set

Kij =gij — (Fi. £5) (.5 =1,...,m).
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So, by a choice of the initial condition, we have Exercises

(3.14) kij(Po) =0 (i,5=1,...,m). 3-1 Show Lemma 3.14.

3-2 Let M := Ry x R = {(u*,u?); u! > 0}, and consider a

Th 1 .11), it hol h
en, by (3.13) and (3.11), it holds that Riemannian metric g on M whose components are

8%

m . 2
(315 Z sz l+“ikjF£) (7’7.]712 17""m)' g11 :17 g12 :07 g22 = {Sﬁ(ul)} 3
k=1

where ¢: Ry — R, is a smooth function.
Let P € U and take a path v(¢) (0 < ¢ < 1) in U satisfying

7(0) = Py and v(1) = P. Then the functions &;;(t) satisfy a e Find a function ¢ satisfying (3.12) and t£%1+ p(t) = 0.

system of ordinary differential equations . . 9
e Under the situation above, find f: U — R® on an

d"fz m_m dul appropriate domain U on M such that the induced
/ Z Z fizkfl oy + K/k]Fﬂ o ’7) i (i, =1,...,m), metric coincides with g.
1=1 k=1
where v(t) = (u'(t),...,u™(t)). Since &i;(t) =0 (i, =1,...,m)

satisfy the equation with initial condition (3.14), uniqueness the—
orem implies that &;;(1) = k;;(P) = 0, proving the theorem.

Remark 3.16. As we see in the following section, the condition
(3.12) does not depend on choice of local coordinate systems.
We say a (pseudo) Riemmanian manifold (M, g) to be flat if
(3.12) holds on M.



