3 Flatness

Riemannian manifolds. A Riemannian manifold (resp. pseudo Riemannian manifold) is a pair (M, g) of a C^{∞}-manifold M and a Riemannian metric (resp. pseudo Riemannian metric) on M, that is, g is a collection $\left\{g_{\mathrm{P}} ; \mathrm{P} \in M\right\}$ of positive definite (resp. non-degenerate) inner products on $T_{\mathrm{P}} M$ such that, for each pair of C^{∞}-vector fields (X, Y) on M, the map

$$
M \ni \mathrm{P} \longmapsto g_{\mathrm{P}}\left(X_{\mathrm{P}}, Y_{\mathrm{P}}\right) \in \mathbb{R}
$$

is a C^{∞}-function, where X_{P} and Y_{P} are values of X and Y at P , respectively.
Example 3.1 ((Pseudo) Euclidean spaces.). Let \mathbb{R}_{s}^{n} be a pseudo Euclidean vector space with inner product \langle,$\rangle of signature$ $(n-s, s)$. Identifying the tangent space $T_{\mathrm{P}} \mathbb{R}_{s}^{n}$ of \mathbb{R}_{s}^{n} itself by translations, \langle,$\rangle gives a pseudo Riemannian metric of the man-$ ifold \mathbb{R}_{s}^{n}. Such a pseudo Riemannian manifold is called the pseudo Euclidean space of signature $(n-s, s)$. In particular, $\mathbb{R}^{n}:=\mathbb{R}_{0}^{n}$, which is a Riemannian manifold, is called the Euclidean space.

Example 3.2. Let M be a submanifold of the Euclidean space \mathbb{R}^{n}, that is, M is a subset of \mathbb{R}^{n} and has a structure of C^{∞} manifold such that the inclusion map $\iota: M \rightarrow \mathbb{R}^{n}$ is an immersion. Then $T_{\mathrm{P}} M$ is considered as a linear subspace of $\mathbb{R}^{n}(=$ $T_{\mathrm{P}} \mathbb{R}^{n}$), and then the restriction of the inner product \langle,$\rangle of \mathbb{R}^{n}$ gives a Riemannian metric on M. Such a Riemannian metric is called the induced metric.

[^0]Example 3.3 (Spheres). For positive real number k, a subset $S^{n}(k):=\left\{\boldsymbol{x} \in \mathbb{R}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=1 / k\right\}$ is an n-dimensional C^{∞} submanifold (hypersurface) ${ }^{5}$ of the Euclidean space \mathbb{R}^{n+1}, called the n-dimensional sphere of curvature ${ }^{6} k$.
Example 3.4. A linear subspace L of \mathbb{R}_{s}^{n} is said to be nondegenerate if the restriction of the inner product \langle,$\rangle of \mathbb{R}_{s}^{n}$ to L is non-degenerate. A submanifold $M \subset \mathbb{R}_{s}^{n}$ is said to be non-degenerate if $T_{\mathrm{P}} M$ is a non-degenerate subspace of \mathbb{R}_{s}^{n} for each $\mathrm{P} \in M$. In this case, the restriction of \langle,$\rangle on T_{\mathrm{P}} M$ is a (non-degenerate) inner product of $T_{\mathrm{P}} M$.
Example 3.5 (Hyperbolic spaces.). For positive real number k, a subset

$$
H^{n}(-k):=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1 / k, x^{0}>0\right\}
$$

is a connected C^{∞}-hypersurface of the Lorentz-Minkowski space \mathbb{R}_{1}^{n+1}, where \langle,$\rangle is the inner product of signature (-,+, \ldots,+)$, and $\boldsymbol{x}={ }^{t}\left(x^{0}, x^{1}, \ldots, x^{n}\right)$. The tangent space $T_{\boldsymbol{x}} H^{n}(-k)=$ $\left\{\boldsymbol{v} \in \mathbb{R}_{1}^{n+1} ;\langle\boldsymbol{v}, \boldsymbol{x}\rangle=0\right\}=\boldsymbol{x}^{\perp}$ is non-degenerate subspace in \mathbb{R}_{1}^{n+1} and the restriction of \langle,$\rangle to T_{\boldsymbol{x}} H^{n}(-k)$ is positive definite. Thus, we obtain a Riemannian manifold $H^{n}(-k)$, which is called the hyperbolic space of curvature $-k$.

Geodesics. Let $M \subset \mathbb{R}_{s}^{n+1}$ be a non-degenerate submanifold of dimension m. By non-degeneracy, the orthogonal decompo-

[^1]sition
\[

$$
\begin{equation*}
\mathbb{R}_{s}^{n+1}=T_{\mathrm{P}} \mathbb{R}_{s}^{n+1}=T_{\mathrm{P}} M \oplus N_{\mathrm{P}},\left(N_{\mathrm{P}}:=\left(T_{\mathrm{P}} M\right)^{\perp}\right) \tag{3.1}
\end{equation*}
$$

\]

holds for each $\mathrm{P} \in M$. Take a curve γ on M, that is, γ is a C^{∞}-map

$$
\gamma: J \ni t \longmapsto \gamma(t) \in M \subset \mathbb{R}_{s}^{n+1}
$$

where $J \subset \mathbb{R}$ is an interval. From now on, by a word smooth, we mean "of class C^{∞} ".

Definition 3.6. Let $\gamma: J \rightarrow M \subset \mathbb{R}_{s}^{n+1}$ be a smooth curve on M. A smooth vector field on M along γ is a map

$$
X: J \ni t \longmapsto X(t) \in T_{\gamma(t)} M \subset \mathbb{R}_{s}^{n+1}
$$

which is of class C^{∞} as a map from J to \mathbb{R}_{s}^{n+1}.
Example 3.7. Let $\gamma: J \rightarrow M \subset \mathbb{R}_{s}^{n+1}$ be a smooth curve. Then

$$
\dot{\gamma}: J \ni t \longmapsto \dot{\gamma}(t)=\frac{d \gamma}{d t}(t) \in T_{\gamma(t)} M
$$

is a smooth vector field along γ, called the velocity vector field of the curve γ.
Definition 3.8. Let X be a smooth vector field along a smooth curve γ on M. Then the vector field

$$
\frac{\nabla}{d t} X(t):=\nabla_{\dot{\gamma}(t)} X(t):=[\dot{X}(t)]^{\mathrm{T}} \in T_{\gamma(t)} M
$$

of M along γ is called the covariant derivative of X along γ, where $[*]^{\mathrm{T}}$ denotes the tangential component as in (3.1).

Definition 3.9. The covariant derivative

$$
\begin{equation*}
\frac{\nabla}{d t} \dot{\gamma}(t)=\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t):=[\ddot{\gamma}(t)]^{\mathrm{T}} \in T_{\gamma(t)} M \tag{3.2}
\end{equation*}
$$

of $\dot{\gamma}$ along γ is called the acceleration of the curve γ.
Definition 3.10. A curve γ on a non-degenerate submanifold $M \subset \mathbb{R}_{s}^{n+1}$ is called a geodesic if $\nabla_{\dot{\gamma}} \dot{\gamma}$ vanishes identically.

Local and intrinsic expressions. Let $M \subset \mathbb{R}_{s}^{n+1}$ be a nondegenerate submanifold and take a local coordinate neighborhood $\left(U ; u^{1}, \ldots, u^{m}\right)$ of M, where $m=\operatorname{dim} M$. Then the inclusion map $\iota: M \rightarrow \mathbb{R}_{s}^{n+1}$ induces an immersion
(3.3) $\quad f: U \ni\left(u^{1}, \ldots, u^{m}\right) \longmapsto f\left(u^{1}, \ldots, u^{m}\right) \in M \subset \mathbb{R}_{s}^{n+1}$,
here we identify the coordinate neighborhood $U \subset M$ with a region of \mathbb{R}^{m}. We call such an f a (local) parametrization of M. Under this parametrization, the canonical basis $\left\{\left(\partial / \partial u^{j}\right)_{\mathrm{P}}\right\}$ of $T_{\mathrm{P}} M$ (in the abstract way) is identified with

$$
\left\{\frac{\partial f}{\partial u^{1}}(\mathrm{P}), \ldots, \frac{\partial f}{\partial u^{m}}(\mathrm{P})\right\} \subset T_{\mathrm{P}} M \subset \mathbb{R}_{s}^{n+1}
$$

We set, for $i, j=1, \ldots, m$,

$$
\begin{equation*}
g_{i j}:=g\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}\right)=\left\langle\frac{\partial f}{\partial u^{i}}, \frac{\partial f}{\partial u^{j}}\right\rangle\left(=g_{j i}\right) \tag{3.4}
\end{equation*}
$$

which is a component of the induced metric $g:=\left.\langle\rangle\right|_{,T_{\mathrm{P}} M}$ with respect to the canonical basis $\left\{\partial / \partial u^{j}\right\}$. Since the induced metric
is non-degenerate, the $m \times m$-matrix $\left(g_{i j}\right)$ is a regular matrix at each point $\mathrm{P} \in M$. In particular, when the induced metric is positive definite, $\left(g_{i j}\right)$ is positive definite. We denote by $\left(g^{i j}\right)$ the inverse matrix of $\left(g_{i j}\right)$:

$$
\sum_{k=1}^{m} g_{i k} g^{k j}=\delta_{i}^{j}= \begin{cases}1 & (i=j) \tag{3.5}\\ 0 & (i \neq j)\end{cases}
$$

Then, as we have seen in Section 5 of "Advanced Topics in Geometry A1, 2019" (the previous quarter), we have
Lemma 3.11. Let γ is a curve in $U \subset M$ and express

$$
\gamma(t)=f\left(u^{1}(t), \ldots, u^{m}(t)\right),
$$

where $f: U \rightarrow M$ is a local parametrization of M as in (3.3).
(3.6) $\quad \dot{\gamma}=\sum_{j=1}^{m} \frac{d u^{j}}{d t} \frac{\partial f}{\partial u^{j}}$

$$
\begin{equation*}
\nabla_{\dot{\gamma}} \dot{\gamma}=\sum_{j=1}^{m}\left(\frac{d^{2} u^{j}}{d t^{2}}+\sum_{k, l=1}^{m} \Gamma_{k l}^{j} \frac{d u^{k}}{d t} \frac{d u^{l}}{d t}\right) \frac{\partial f}{\partial u^{j}} \tag{3.7}
\end{equation*}
$$

hold, where

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l=1}^{m} g^{k l}\left(\frac{\partial g_{i l}}{\partial u^{j}}+\frac{\partial g_{l j}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{l}}\right) . \tag{3.8}
\end{equation*}
$$

The functions $\Gamma_{i j}^{k}$ of (3.8) are called the Christoffel symbols with respect to the local coordinate system $\left(u^{1}, \ldots, u^{m}\right)$.

Christoffel symbols. By definition (3.8), the Christoffel symbols $\Gamma_{i j}^{k}$ are functions defined on the coordinate neighborhood U which are determined only by the coefficients $\left(g_{i j}\right)$ of the (pseudo) Riemannian metric. That is, the definition of $\Gamma_{i j}^{k}$ does not require the knowledge of γ.

Proposition 3.12. Let $M \subset \mathbb{R}_{s}^{n+1}$ be a non-degenerate submanifold with induced metric \langle,$\rangle , and take a local coordinate$ system $\left(U ; u^{1}, \ldots, u^{m}\right)$ of M. We write parametrization of M with respect to $\left(u^{j}\right)$ as (3.3). Then the Christoffel symbols $\Gamma_{i j}^{k}$ with respect to $\left(u^{j}\right)$ satisfy

$$
\begin{gather*}
\Gamma_{i j}^{k}=\Gamma_{j i}^{k} \tag{3.9}\\
\left\langle\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle=\sum_{k=1}^{m} g_{l k} \Gamma_{i j}^{k} \tag{3.10}\\
\frac{\partial g_{i j}}{\partial u^{l}}=\sum_{k=1}^{m}\left(g_{k j} \Gamma_{i l}^{k}+g_{i k} \Gamma_{j l}^{k}\right), \tag{3.11}
\end{gather*}
$$

where $g_{i j}$'s are the components of the induced metric defined in (3.4).

Proof. The first equality (3.9) is obvious from the definition
(3.8) and the symmetricity of $\left(g_{i j}\right)$. Next, we prove (3.10). Since

$$
\begin{aligned}
& \left\langle\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle=\frac{\partial}{\partial u^{i}}\left\langle\frac{\partial f}{\partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle-\left\langle\frac{\partial f}{\partial u^{j}}, \frac{\partial^{2} f}{\partial u^{i} \partial u^{l}}\right\rangle \\
& =\frac{\partial g_{j l}}{\partial u^{i}}-\left\langle\frac{\partial f}{\partial u^{j}}, \frac{\partial^{2} f}{\partial u^{l} \partial u^{i}}\right\rangle \\
& =\frac{\partial g_{l j}}{\partial u^{i}}-\frac{\partial}{\partial u^{l}}\left\langle\frac{\partial f}{\partial u^{j}}, \frac{\partial f}{\partial u^{i}}\right\rangle+\left\langle\frac{\partial^{2} f}{\partial u^{l} \partial u^{j}}, \frac{\partial f}{\partial u^{i}}\right\rangle \\
& =\frac{\partial g_{l j}}{\partial u^{i}}-\frac{\partial g_{j i}}{\partial u^{l}}+\left\langle\frac{\partial^{2} f}{\partial u^{j} \partial u^{l}}, \frac{\partial f}{\partial u^{i}}\right\rangle \\
& =\frac{\partial g_{l j}}{\partial u^{i}}-\frac{\partial g_{j i}}{\partial u^{l}}+\frac{\partial}{\partial u^{j}}\left\langle\frac{\partial f}{\partial u^{l}}, \frac{\partial f}{\partial u^{i}}\right\rangle-\left\langle\frac{\partial f}{\partial u^{l}}, \frac{\partial^{2} f}{\partial u^{j} \partial u^{i}}\right\rangle \\
& =\frac{\partial g_{l j}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{l}}+\frac{\partial g_{l i}}{\partial u^{j}}-\left\langle\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle
\end{aligned}
$$

we have

$$
\begin{aligned}
& \left\langle\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle=\frac{1}{2}\left(\frac{\partial g_{l j}}{\partial u^{i}}+\frac{\partial g_{l i}}{\partial u^{j}}-\frac{\partial g_{i j}}{\partial u^{l}}\right) \\
& =\frac{1}{2} \sum_{p=1}^{m} \delta_{l}^{p}\left(\frac{\partial g_{p j}}{\partial u^{i}}+\frac{\partial g_{p i}}{\partial u^{j}}-\frac{\partial g_{i j}}{\partial u^{p}}\right) \\
& =\frac{1}{2} \sum_{k, p=1}^{m} g_{l p} g^{p k}\left(\frac{\partial g_{p j}}{\partial u^{i}}+\frac{\partial g_{p i}}{\partial u^{j}}-\frac{\partial g_{i j}}{\partial u^{p}}\right)=\sum_{k=1}^{m} g_{k l} \Gamma_{i j}^{k}
\end{aligned}
$$

Using this, we have

$$
\begin{aligned}
\frac{\partial g_{i j}}{\partial u^{l}} & =\frac{\partial}{\partial u^{l}}\left\langle\frac{\partial f}{\partial u^{i}}, \frac{\partial f}{\partial u^{j}}\right\rangle=\left\langle\frac{\partial^{2} f}{\partial u^{l} \partial u^{i}}, \frac{\partial f}{\partial u^{j}}\right\rangle+\left\langle\frac{\partial f}{\partial u^{i}}, \frac{\partial^{2} f}{\partial u^{l} \partial u^{j}}\right\rangle \\
& =\sum_{k=1}^{m} g_{k j} \Gamma_{l i}^{k}+\sum_{k=1}^{m} g_{i k} \Gamma_{l j}^{k}
\end{aligned}
$$

proving (3.11).

Flatness. We shall prove the following:
Theorem 3.13. Let (M, g) be a Riemannian manifold of dimension m (resp. pseudo Riemannian manifold of signature $(m-s, s))$, and $\left(U ; u^{1}, \ldots, u^{m}\right)$ a local coordinate system. Assume there exists an immersion $f: U \rightarrow \mathbb{R}^{m}$ (resp. \mathbb{R}_{s}^{m}) into the Euclidean space (resp. the pseudo Euclidean space) with the same dimension m as M whose induced metric is g. Then the Christoffel symbols $\Gamma_{i j}^{k}$ with respect to the coordinate system (u^{j}) satisfy

$$
\begin{equation*}
\frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}}-\frac{\partial \Gamma_{i k}^{l}}{\partial u^{j}}+\sum_{p=1}^{m}\left(\Gamma_{i j}^{p} \Gamma_{p k}^{l}-\Gamma_{i k}^{p} \Gamma_{p j}^{l}\right)=0 \tag{3.12}
\end{equation*}
$$

holds for $i, j, k, l=1, \ldots, m$. Conversely, when U is simply connected and (3.12) holds, there exists an immersion $f: U \rightarrow$ \mathbb{R}^{m} (resp. $\left.\mathbb{R}_{s}^{m}\right)$ such that the induced metric by f coincides with the metric g.

Lemma 3.14. Let $f: U \rightarrow \mathbb{R}^{m}$ (resp. \mathbb{R}_{s}^{m}) be an immersion of a domain $\left(U ; u^{1}, \ldots, u^{m}\right) \subset \mathbb{R}^{m}$, and set

$$
\mathcal{F}:=\left(\frac{\partial f}{\partial u^{1}}, \ldots, \frac{\partial f}{\partial u^{m}}\right): U \rightarrow \mathrm{M}_{m}(\mathbb{R}) .
$$

Then \mathcal{F} satisfies

$$
\frac{\partial \mathcal{F}}{\partial u^{j}}=\mathcal{F} \Omega_{j}, \quad \Omega_{j}:=\left(\begin{array}{ccc}
\Gamma_{1 j}^{1} & \ldots & \Gamma_{m j}^{1} \tag{3.13}\\
\vdots & \ddots & \vdots \\
\Gamma_{1 j}^{m} & \ldots & \Gamma_{m j}^{m}
\end{array}\right)
$$

for $j=1, \ldots, m$, where $\Gamma_{i j}^{k}$'s are the Christoffel symbols of the induced metric with respect to the coordinate system $\left(u^{j}\right)$. Moreover, the Christoffel symbols satisfy (3.12).
Proof. Problem 3-1.
Lemma 3.15. Let $A \in \mathrm{M}_{m}(\mathbb{R})$ be a symmetric matrix such that the quadratic form $\boldsymbol{x} \mapsto{ }^{t} \boldsymbol{x} A \boldsymbol{x}$ has a signature $(s, m-s)$. Then there exists a regular matrix P such that

$$
{ }^{t} P J_{s, m-s} P=A, \quad J_{s, m-s}=\left(\begin{array}{cc}
-\mathrm{id}_{s} & O \\
O & \operatorname{id}_{m-s}
\end{array}\right)
$$

where id_{k} is the $k \times k$ identity matrix and O 's are zero matrices. Proof. By the assumptions, A has $(m-s)$ positive eigenvalues and s negative eigenvalues, and A can be diagonalized by an orthogonal matrix Q :

$$
A={ }^{t} Q\left(\begin{array}{cc}
\Lambda_{-} & O \\
O & \Lambda_{+}
\end{array}\right) Q
$$

where $\Lambda_{-}:=\operatorname{diag}\left(-a_{1}^{2}, \ldots,-a_{s}^{2}\right), \Lambda_{+}:=\operatorname{diag}\left(a_{s+1}^{2}, \ldots, a_{m}^{2}\right)$ and a_{j} 's $(j=1, \ldots, m)$ are non-zero real numbers. Let $D:=$ $\operatorname{diag}\left(a_{1}, \ldots, a_{m}\right)$ and $P:=D Q$, we have the conclusion.

Proof of Theorem 3.13. The first assertion has been proved in Lemma 3.14. We assume (3.12) holds for each $i, j, k, l=$ $1, \ldots, m$, and fix $\mathrm{P}_{0} \in U$. We let $A=\left(g_{i j}\left(\mathrm{P}_{0}\right)\right)$, which is a symmetric matrix such that the corresponding quadratic form is of signature $(m-s, s)$. Then there exists a regular matrix P as in Lemma 3.15. Then by Theorem 2.5, there exists $\mathcal{F}: U \rightarrow$ $\mathrm{M}_{m}(\mathbb{R})$ satisfying (3.13) with initial condition $\mathcal{F}\left(\mathrm{P}_{0}\right)=P$. We set

$$
\omega:=\sum_{j=1}^{m} \boldsymbol{f}_{j} d u^{j}, \quad \text { where } \quad \mathcal{F}=\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) .
$$

Then by (3.9), we know that ω is a vector-valued closed one form. Hence by Poincaré's Lemma (Theorem 2.6), there exists a C^{∞}-function $f: M \rightarrow \mathbb{R}_{s}^{m}$ such that $d f=\omega$, that is,

$$
\frac{\partial f}{\partial u^{j}}=\boldsymbol{f}_{j} \quad(j=1, \ldots, m)
$$

We shall prove that this f is the desired immersion, that is, our goal is to prove

$$
g_{i j}=\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle \quad(i, j=1, \ldots, m) .
$$

To do it, we set

$$
\kappa_{i j}:=g_{i j}-\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle \quad(i, j=1, \ldots, m)
$$

So, by a choice of the initial condition, we have
(3.14)

$$
\kappa_{i j}\left(\mathrm{P}_{0}\right)=0
$$

$$
(i, j=1, \ldots, m)
$$

Then, by (3.13) and (3.11), it holds that
(3.15) $\quad \frac{\partial \kappa_{i j}}{\partial u^{l}}=\sum_{k=1}^{m}\left(\kappa_{i k} \Gamma_{j l}^{k}+\kappa_{k j} \Gamma_{i l}^{k}\right) \quad(i, j, l=1, \ldots, m)$.

Let $\mathrm{P} \in U$ and take a path $\gamma(t)(0 \leqq t \leqq 1)$ in U satisfying $\gamma(0)=\mathrm{P}_{0}$ and $\gamma(1)=\mathrm{P}$. Then the functions $\tilde{\kappa}_{i j}(t)$ satisfy a system of ordinary differential equations
$\frac{d \tilde{\kappa}_{i j}}{d t}=\sum_{l=1}^{m} \sum_{k=1}^{m}\left(\tilde{\kappa}_{i k} \Gamma_{j l}^{k} \circ \gamma+\tilde{\kappa}_{k j} \Gamma_{i l}^{k} \circ \gamma\right) \frac{d u^{l}}{d t} \quad(i, j=1, \ldots, m)$,
where $\gamma(t)=\left(u^{1}(t), \ldots, u^{m}(t)\right)$. Since $\tilde{\kappa}_{i j}(t)=0(i, j=1, \ldots, m)$ satisfy the equation with initial condition (3.14), uniqueness theorem implies that $\tilde{\kappa}_{i j}(1)=\kappa_{i j}(\mathrm{P})=0$, proving the theorem.
Remark 3.16. As we see in the following section, the condition (3.12) does not depend on choice of local coordinate systems. We say a (pseudo) Riemmanian manifold (M, g) to be flat if (3.12) holds on M.

Exercises
3-1 Show Lemma 3.14.
3-2 Let $M:=\mathbb{R}_{+} \times \mathbb{R}=\left\{\left(u^{1}, u^{2}\right) ; u^{1}>0\right\}$, and consider a Riemannian metric g on M whose components are

$$
g_{11}=1, \quad g_{12}=0, \quad g_{22}=\left\{\varphi\left(u^{1}\right)\right\}^{2}
$$

where $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a smooth function.

- Find a function φ satisfying (3.12) and $\lim _{t \rightarrow 0+} \varphi(t)=0$.
- Under the situation above, find $f: U \rightarrow \mathbb{R}^{2}$ on an appropriate domain U on M such that the induced metric coincides with g.

[^0]: 2. July, 2019. Revised: 09. July, 2019
[^1]: ${ }^{5}$ An n-dimensional submanifold of ($n+1$)-dimensional manifold (i.e., a ubmanifold of codimension one) is called a hypersurface.
 ${ }^{6}$ The word curvature is undefined at the moment.

