2 Integrability Conditions

Let $U \subset \mathbb{R}^{m}$ be a domain of $\left(\mathbb{R}^{m} ; u^{1}, \ldots, u^{m}\right)$ and consider m tuple of $n \times n$-matrix valued C^{∞}-maps
(2.1) $\quad \Omega_{j}: \mathbb{R}^{m} \supset U \longrightarrow \mathrm{M}_{n}(\mathbb{R}) \quad(j=1, \ldots, m)$.

In this section, we consider an initial value problem of a system of linear partial differential equations

$$
\begin{equation*}
\frac{\partial X}{\partial u^{j}}=X \Omega_{j} \quad(j=1, \ldots, m), \quad X\left(\mathrm{P}_{0}\right)=X_{0} \tag{2.2}
\end{equation*}
$$

where $\mathrm{P}_{0}=\left(u_{0}^{1}, \ldots, u_{0}^{m}\right) \in U$ is a fixed point, X is an $n \times n$ matrix valued unknown, and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$. The chain rule yields the following:

Lemma 2.1. Let $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be a C^{∞}-map satisfying (2.2). Then for each smooth path $\gamma: I \rightarrow U$ defined on an interval $I \subset \mathbb{R}, \hat{X}:=X \circ \gamma: I \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfies the ordinary differential equation
(2.3) $\frac{d \hat{X}}{d t}(t)=\hat{X}(t) \Omega_{\gamma}(t) \quad\left(\Omega_{\gamma(t)}:=\sum_{j=1}^{n} \Omega_{j} \circ \gamma(t) \frac{d u^{j}}{d t}(t)\right)$ on I, where $\gamma(t)=\left(u^{1}(t), \ldots, u^{m}(t)\right)$.
Proposition 2.2. If a C^{∞}-map $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ defined on a domain $U \subset \mathbb{R}^{m}$ satisfies (2.2) with $X_{0} \in \mathrm{GL}(n, \mathbb{R})$, then

[^0]$X(\mathrm{P}) \in \mathrm{GL}(n, \mathbb{R})$ for all $\mathrm{P} \in U$. In addition, if $\Omega_{j}(j=1, \ldots, m)$ are skew-symmetric and $X_{0} \in \mathrm{SO}(n)$, then $X(\mathrm{P}) \in \mathrm{SO}(n)$ holds for all $\mathrm{P} \in U$.
Proof. Since U is connected, there exists a continuous path $\gamma_{0}:[0,1] \rightarrow U$ such that $\gamma_{0}(0)=\mathrm{P}_{0}$ and $\gamma_{0}(1)=\mathrm{P}$. By Whitney's approximation theorem (cf. Theorem 10.16 in [2-3]), there exists a smooth path $\gamma:[0,1] \rightarrow U$ joining P_{0} and P approximating γ_{0}. Since $\hat{X}:=X \circ \gamma$ satisfies (2.3) with $\hat{X}(0)=X_{0}$, Proposition 1.3 yields that $\operatorname{det} \hat{X}(1) \neq 0$ whenever $\operatorname{det} X_{0} \neq 0$. The latter half follows from Proposition 1.4.
Proposition 2.3. If a matrix-valued C^{∞} function $X: U \rightarrow$ $\mathrm{GL}(n, \mathbb{R})$ satisfies (2.2), it holds that
(2.4) $\quad \frac{\partial \Omega_{j}}{\partial u^{k}}-\frac{\partial \Omega_{k}}{\partial u^{j}}=\Omega_{j} \Omega_{k}-\Omega_{k} \Omega_{j}$
for each (j, k) with $1 \leqq j<k \leqq n$.
Proof. Differentiating (2.2) by u^{k}, we have
$$
\frac{\partial^{2} X}{\partial u^{k} \partial u^{j}}=\frac{\partial X}{\partial u^{k}} \Omega_{j}+X \frac{\partial \Omega_{j}}{\partial u^{k}}=X\left(\frac{\partial \Omega_{j}}{\partial u^{k}}+\Omega_{k} \Omega_{j}\right) .
$$

On the other hand, switching the roles of j and k, we get

$$
\frac{\partial^{2} X}{\partial u^{j} \partial u^{k}}=X\left(\frac{\partial \Omega_{k}}{\partial u^{j}}+\Omega_{j} \Omega_{k}\right) .
$$

Since X is of class C^{∞}, the left-hand sides of these equalities coincide, and so are the right-hand sides. Since $X \in \operatorname{GL}(n, \mathbb{R})$, the conclusion follows.

The equality (2.4) is called the integrability condition or compatibility condition of (2.2).

Lemma 2.4. Let $\Omega_{j}: U \rightarrow \mathrm{M}_{n}(\mathbb{R})(j=1, \ldots, m)$ be C^{∞}-map defined on a domain $U \subset \mathbb{R}^{m}$ which satisfy (2.4). Then for each smooth map

$$
\sigma: D \ni(t, w) \longmapsto \sigma(t, w)=\left(u^{1}(t, w), \ldots, u^{m}(t, w)\right) \in U
$$

defined on a domain $D \subset \mathbb{R}^{2}$, it holds that

$$
\begin{equation*}
\frac{\partial T}{\partial w}-\frac{\partial W}{\partial t}-T W+W T=0 \tag{2.5}
\end{equation*}
$$

where
(2.6) $T:=\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}, \quad W:=\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial w} \quad\left(\widetilde{\Omega}_{j}:=\Omega_{j} \circ \sigma\right)$.

Proof. By the chain rule, we have

$$
\begin{aligned}
\frac{\partial T}{\partial w} & =\sum_{j, k=1}^{m} \frac{\partial \Omega_{j}}{\partial u^{k}} \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial w \partial t} \\
\frac{\partial W}{\partial t} & =\sum_{j, k=1}^{m} \frac{\partial \Omega_{j}}{\partial u^{k}} \frac{\partial u^{k}}{\partial t} \frac{\partial u^{j}}{\partial w}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial t \partial w} \\
& =\sum_{j, k=1}^{m} \frac{\partial \Omega_{k}}{\partial u^{j}} \frac{\partial u^{j}}{\partial t} \frac{\partial u^{k}}{\partial w}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial t \partial w} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \frac{\partial T}{\partial w}-\frac{\partial W}{\partial t}=\sum_{j, k=1}^{m}\left(\frac{\partial \Omega_{j}}{\partial u^{k}}-\frac{\partial \Omega_{k}}{\partial u^{j}}\right) \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} \\
&=\sum_{j, k=1}^{m}\left(\Omega_{j} \Omega_{k}-\Omega_{k} \Omega_{j}\right) \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} \\
&=\left(\sum_{j=1}^{m} \Omega_{j} \frac{\partial u^{j}}{\partial t}\right)\left(\sum_{k=1}^{m} \Omega_{k} \frac{\partial u^{k}}{\partial w}\right)-\left(\sum_{k=1}^{m} \Omega_{k} \frac{\partial u^{k}}{\partial w}\right)\left(\sum_{j=1}^{m} \Omega_{j} \frac{\partial u^{j}}{\partial t}\right) \\
&=T W-W T . \\
& \square
\end{aligned}
$$

Integrability of linear systems. In this section, we shall prove the following

Theorem 2.5. Let $\Omega_{j}: U \rightarrow \mathrm{M}_{n}(\mathbb{R})(j=1, \ldots, m)$ bed C^{∞} _ functions defined on a simply connected domain $U \subset \mathbb{R}^{m}$ satisfying (2.4). Then for each $\mathrm{P}_{0} \in U$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique $n \times n$-matrix valued function $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ (2.2). Moreover,

- if $X_{0} \in \mathrm{GL}(n, \mathbb{R}), X(\mathrm{P}) \in \mathrm{GL}(n, \mathbb{R})$ holds on U,
- if $X_{0} \in \mathrm{SO}(n)$ and $\Omega_{j}(j=1, \ldots, m)$ are skew-symmetric matrices, $X \in \mathrm{SO}(n)$ holds on U.
Proof. The latter half is a direct conclusion of Proposition 2.2. We show the existence of X : Take a smooth path $\gamma:[0,1] \rightarrow U$ joining P_{0} and P . Then by Theorem 1.9, there exists unique C^{∞}-map $\hat{X}:[0,1] \rightarrow \mathrm{M}_{m}(\mathbb{R})$ satisfying (2.3) with initial condition $\widetilde{X}(0)=X_{0}$.

We shall show that the value $\hat{X}(1)$ does not depend on choice of paths joining P_{0} and P . To show this, choose another smooth path $\tilde{\gamma}$ joining P_{0} and P . Since U is simply connected, there exists a homotopy between γ and $\tilde{\gamma}$, that is, there exists a continuous map $\sigma_{0}:[0,1] \times[0,1] \ni(t, w) \mapsto \sigma(t, w) \in U$ satisfying

$$
\begin{align*}
\sigma_{0}(t, 0) & =\gamma(t), & \sigma_{0}(t, 1) & =\tilde{\gamma}(t) \tag{2.7}\\
\sigma_{0}(0, w) & =\mathrm{P}_{0}, & \sigma_{0}(1, w) & =\mathrm{P}
\end{align*}
$$

Then, by Whitney's approximation theorem (Theorem 10.16 in [2-3]) again, there exists a smooth map $\sigma:[0,1] \times[0,1] \rightarrow U$ satisfying the same boundary conditions as (2.7). We set T and W as in (2.6). For each fixed $w \in[0,1]$, there exists $X_{w}:[0,1] \rightarrow$ $\mathrm{M}_{m}(\mathbb{R})$ such that

$$
\frac{d X_{w}}{d t}(t)=X_{w}(t) T(t, w), \quad X_{w}(0)=X_{0}
$$

Since $T(t, w)$ is smooth in t and w, the map

$$
\check{X}(t, w):[0,1] \times[0,1] \ni(t, w) \mapsto X_{w}(t) \in \mathrm{M}_{m}(\mathbb{R})
$$

is a smooth map. To show that $\hat{X}(1)=\check{X}(t, 0)$ does not depend on choice of paths, it is sufficient to show that b

$$
\begin{equation*}
\frac{\partial \hat{X}}{\partial w}=\hat{X} W \tag{2.8}
\end{equation*}
$$

holds on $[0,1] \times[0,1]$. In fact, by $(2.7), W(1, w)=0$ for all $w \in[0,1]$, and then (2.8) implies that $\dot{X}(1, w)$ is constant.

We prove (2.8): By definition, it holds that

$$
\begin{equation*}
\frac{\partial \hat{X}}{\partial t}=\hat{X} T, \quad \hat{X}(0, w)=X_{0} \tag{2.9}
\end{equation*}
$$

for each $w \in[0, w]$. Hence by (2.5),

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{\partial \hat{X}}{\partial w} & =\frac{\partial^{2} \hat{X}}{\partial t \partial w}=\frac{\partial^{2} \hat{X}}{\partial w \partial t}=\frac{\partial}{\partial w} \hat{X} T \\
& =\frac{\partial \hat{X}}{\partial w} T+\hat{X} \frac{\partial T}{\partial w}=\frac{\partial \hat{X}}{\partial w} T+\hat{X}\left(\frac{\partial W}{\partial t}+T W-W T\right) \\
& =\frac{\partial \hat{X}}{\partial w} T+\hat{X} \frac{\partial W}{\partial t}+\frac{\partial \hat{X}}{\partial t} W-\hat{X} W T \\
& =\frac{\partial}{\partial t}(\hat{X} W)+\left(\frac{\partial \hat{X}}{\partial w}-\hat{X} W\right) T .
\end{aligned}
$$

So, the function $Y_{w}(t):=\partial \hat{X} / \partial w-\hat{X} W$ satisfies the ordinary differential equation

$$
\frac{d Y_{w}}{d t}(t)=Y_{w}(t) T(t, w), \quad Y_{w}(0)=O
$$

holds for each $w \in[0,1]$. Thus, by the uniqueness of the solution, $Y_{w}(t)=O$ holds on $[0,1] \times[0,1]$. Hence we have (2.8).

Thus, $\hat{X}(1)$ depends only the end point P of the path. Hence we can set $X(\mathrm{P}):=\hat{X}(1)$ for each $\mathrm{P} \in U$, and obtain a map $X: U \rightarrow \mathrm{M}_{m}(\mathbb{R})$. Finally we show that X is the desired solution. The initial condition $X\left(\mathrm{P}_{0}\right)=X_{0}$ is obviously satisfied. On the other hand, if we set

$$
Z(\delta):=X\left(u^{1}, \ldots, u^{j}+\delta, \ldots, u^{m}\right)-X\left(u^{1}, \ldots, u^{m}\right),
$$

$Z(\delta)$ satisfies the equation (2.3) for the path $\gamma(\delta):=\left(u^{1}, \ldots, u^{j}+\right.$ δ, \ldots, u^{m}) with $Z(0)=X(\mathrm{P})$. Since $\Omega_{\gamma}=\Omega_{j}$,

$$
\frac{\partial X}{\partial u^{j}}=\frac{d Z}{d \delta}=Z \Omega_{j}=X \Omega_{j},
$$

which completes the proof.

Application: Poincaré's lemma.

Theorem 2.6 (Poincaré's lemma). If a differential 1-form

$$
\omega=\sum_{j=1}^{m} \alpha_{j}\left(u^{1}, \ldots, u^{m}\right) d u^{j}
$$

defined on a simply connected domain $U \subset \mathbb{R}^{m}$ is closed, that is, $d \omega=0$ holds, then there exists a C^{∞}-function f on U such that $d f=\omega$. Such a function f is unique up to additive constants.

Proof. The assumption is equivalent to

$$
\begin{equation*}
\frac{\partial \alpha_{j}}{\partial u_{i}}-\frac{\partial \alpha_{i}}{\partial u_{j}}=0 \quad(1 \leqq i<j \leqq m) \tag{2.10}
\end{equation*}
$$

Consider a system of linear partial differential equations with unknown ξ, a 1×1-matrix valued function (i.e. a real-valued function), as
(2.11) $\quad \frac{\partial \xi}{\partial u^{j}}=\xi \alpha_{j} \quad(j=1, \ldots, m), \quad \xi\left(u_{0}^{1}, \ldots, u_{0}^{m}\right)=1$.

Then it satisfies (2.4) because of (2.10). Hence by Theorem 2.5, there exists a smooth function $\xi(u, v)$ satisfying (2.11). In particular, Proposition 1.3 yields $\xi=\operatorname{det} \xi$ never vanishes. Here, $\xi\left(u_{0}^{1}, \ldots, u_{0}^{m}\right)=1>0$ means that $\xi>0$ holds on U. Letting $f:=\log \xi$, we have the function f satisfying $d f=\omega$.

Next, we show the uniqueness: if two functions f and g satisfy $d f=d g=\omega$, it holds that $d(f-g)=0$. Hence by connectivity of $U, f-g$ must be constant.

Application: Conjugation of Harmonic functions. In this paragraph, we identify \mathbb{R}^{2} with the complex plane \mathbb{C}. It is well-known that a function

$$
\text { (2.12) } f: U \ni u+\mathrm{i} v \longmapsto \xi(u, v)+\mathrm{i} \eta(u, v) \in \mathbb{C} \quad(\mathrm{i}=\sqrt{-1})
$$

defined on a domain $U \subset \mathbb{C}$ is holomorphic if and only if it satisfies the following relation, called the Cauchy-Riemann equations:

$$
\begin{equation*}
\frac{\partial \xi}{\partial u}=\frac{\partial \eta}{\partial v}, \quad \frac{\partial \xi}{\partial v}=-\frac{\partial \eta}{\partial u} \tag{2.13}
\end{equation*}
$$

Definition 2.7. A function $f: U \rightarrow \mathbb{R}$ defined on a domain $U \subset \mathbb{R}^{2}$ is said to be harmonic if it satisfies

$$
\Delta f=f_{u u}+f_{v v}=0
$$

The operator Δ is called the Laplacian.
Proposition 2.8. If function f in (2.12) is holomorphic, $\xi(u, v)$ and $\eta(u, v)$ are harmonic functions.

Proof. By (2.13), we have

$$
\xi_{u u}=\left(\xi_{u}\right)_{u}=\left(\eta_{v}\right)_{u}=\eta_{v u}=\eta_{u v}=\left(\eta_{u}\right)_{v}=\left(-\xi_{v}\right)_{v}=-\xi_{v v} .
$$

Hence $\Delta \xi=0$. Similarly,

$$
\eta_{u u}=\left(-\xi_{v}\right)_{u}=-\xi_{v u}=-\xi_{u v}=-\left(\xi_{u}\right)_{v}=-\left(\eta_{v}\right)_{v}=-\eta_{v v}
$$

Thus $\Delta \eta=0$.

Theorem 2.9. Let $U \subset \mathbb{C}=\mathbb{R}^{2}$ be a simply connected domain and $\xi(u, v)$ a C^{∞}-function harmonic on U^{4}. Then there exists a C^{∞} harmonic function η on U such that $\xi(u, v)+\mathrm{i} \eta(u, v)$ is holomorphic on U.

Proof. Let $\alpha:=-\xi_{v} d u+\xi_{u} d v$. Then by the assumption,

$$
d \alpha=\left(\xi_{v v}+\xi_{u u}\right) d u \wedge d v=0
$$

holds, that is, α is a closed 1 -form. Hence by simple connectivity of U and the Poincaré's lemma (Theorem 2.6), there exists a function η such that $d \eta=\eta_{u} d u+\eta_{v} d v=\alpha$. Such a function η satisfies (2.13) for given ξ. Hence $\xi+\mathrm{i} \eta$ is holomorphic in $u+\mathrm{i} v$.

Definition 2.10. The harmonic function η in Theorem 2.9 is called the conjugate harmonic function of ξ.

[^1]The fundamental theorem for Surfaces. Let $p: U \rightarrow \mathbb{R}^{3}$ be a parametrization of a regular surface defined on a domain $U \subset \mathbb{R}^{2}$. That is, $p=p(u, v)$ is a C^{∞}-map such that p_{u} and p_{v} are linearly independent at each point on U. Then $\nu:=$ $\left(p_{u} \times p_{v}\right) /\left|p_{u} \times p_{v}\right|$ is the unit normal vector field to the surface. The matrix-valued function $\mathcal{F}:=\left(p_{u}, p_{v}, \nu\right): U \rightarrow \mathrm{M}_{3}(\mathbb{R})$ is called the Gauss frame of p. We set

$$
\begin{align*}
d s^{2} & :=E d u^{2}+2 F d u d v+G d v^{2} \\
I I & :=L d u^{2}+2 M d u d v+N d v^{2} \tag{2.14}
\end{align*}
$$

where

$$
\begin{array}{rll}
E=p_{u} \cdot p_{u} & F=p_{u} \cdot p_{v} & G=p_{v} \cdot p_{v} \\
L=p_{u u} \cdot \nu & M=p_{u v} \cdot \nu & N=p_{v v} \cdot \nu
\end{array}
$$

We call $d s^{2}$ (resp. II) the first (resp. second) fundamental form. Note that linear independence of p_{u} and p_{v} implies

$$
\begin{equation*}
E>0 \tag{2.15}
\end{equation*}
$$

$$
G>0
$$

and
$E G-F^{2}>0$.
Set

$$
\begin{array}{ll}
\Gamma_{11}^{1}:=\frac{G E_{u}-2 F F_{u}+F E_{v}}{2\left(E G-F^{2}\right)}, & \Gamma_{11}^{2}:=\frac{2 E F_{u}-E E_{v}-F E_{u}}{2\left(E G-F^{2}\right)}, \\
\Gamma_{12}^{1}=\Gamma_{21}^{1}:=\frac{G E_{v}-F G_{u}}{2\left(E G-F^{2}\right)}, & \Gamma_{12}^{2}=\Gamma_{21}^{2}:=\frac{E G_{u}-F E_{v}}{2\left(E G-F^{2}\right)}, \\
\Gamma_{22}^{1}:=\frac{2 G F_{v}-G G_{u}-F G_{v}}{2\left(E G-F^{2}\right)}, & \Gamma_{22}^{2}:=\frac{E G_{v}-2 F F_{v}+F G_{u}}{2\left(E G-F^{2}\right)} .
\end{array}
$$

and

$$
A=\left(\begin{array}{cc}
A_{1}^{1} & A_{2}^{1} \tag{2.17}\\
A_{1}^{2} & A_{2}^{2}
\end{array}\right):=\left(\begin{array}{ll}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right)
$$

The functions $\Gamma_{i j}^{k}$ and the matrix A are called the Christoffel symbols and the Weingarten matrix．We state the following the fundamental theorem for surfaces，and give a proof（for a special case）in the following section．
Theorem 2.11 （The Fundamental Theorem for Surfaces）．Let $p: U \ni(u, v) \mapsto p(u, v) \in \mathbb{R}^{3}$ be a parametrization of a regular surface defined on a domain $U \subset \mathbb{R}^{2}$ ．Then the Gauss frame $\mathcal{F}:=\left\{p_{u}, p_{v}, \nu\right\}$ satisfies the equations
（2．18）$\quad \frac{\partial \mathcal{F}}{\partial u}=\mathcal{F} \Omega, \quad \frac{\partial \mathcal{F}}{\partial v}=\mathcal{F} \Lambda$ ，

$$
\Omega:=\left(\begin{array}{ccc}
\Gamma_{11}^{1} & \Gamma_{12}^{1} & -A_{1}^{1} \\
\Gamma_{11}^{2} & \Gamma_{12}^{2} & -A_{1}^{2} \\
L & M & 0
\end{array}\right), \quad \Lambda:=\left(\begin{array}{ccc}
\Gamma_{21}^{1} & \Gamma_{22}^{1} & -A_{2}^{1} \\
\Gamma_{21}^{2} & \Gamma_{22}^{2} & -A_{2}^{2} \\
M & N & 0
\end{array}\right)
$$

where $\Gamma_{j k}^{i}(i, j, k=1,2), A_{l}^{k}$ and L, M, N are the Christoffel symbols，the entries of the Weingarten matrix and the entries of the second fundamental form，respectively．

Theorem 2．12．Let $U \subset \mathbb{R}^{2}$ be a simply connected domain，E ， $F, G, L, M, N C^{\infty}$－functions satisfying（2．15），and $\Gamma_{i j}^{k}, A_{i}^{j}$ the functions defined by（2．16）and（2．17），respectively．If Ω and Λ satisfies

$$
\begin{equation*}
\Omega_{v}-\Lambda_{u}=\Omega \Lambda-\Lambda \Omega \tag{2.19}
\end{equation*}
$$

there exists a parameterization $p: U \rightarrow \mathbb{R}^{3}$ of regular surface whose fundamental forms are given by（2．14）．Moreover，such a surface is unique up to orientation preserving isometries of \mathbb{R}^{3} ．

References

［2－1］梅原雅顕•山田光太郎：曲線と曲面—微分幾何的アプローチ（改訂版），裳華房， 2014.
［2－2］Masaaki Umehara and Kotaro Yamada，Differential Geometry of Curves and Surfaces，World Scientific， 2017.
［2－3］John M．Lee，Introduction to Smooth Manifolds，Graduate Texts in Mathematics 218，Springer－Verlag， 2013.
［2－4］Lars V．Ahlfors，Complex Analysis，Dover Publications， 1980.

Exercises

2－1 Let $\xi(u, v)=\log \sqrt{u^{2}+v^{2}}$ be a function defined on $U=$ $\mathbb{R}^{2} \backslash\{(0,0)\}$
（1）Show that ξ is harmonic on U ．
（2）Find the conjugate harmonic function η of ξ on

$$
V=\mathbb{R}^{2} \backslash\{(u, 0) \mid u \leqq 0\} \subset U
$$

（3）Show that there exists no conjugate harmonic func－ tion of ξ defined on U ．
2－2 Let $\theta=\theta(u, v)$ be a smooth function on a domain $U \subset \mathbb{R}^{2}$ such that $0<\theta<\pi$ ，and

$$
d s^{2}:=d u^{2}+2 \cos \theta d u d v+d v^{2}, \quad I I:=2 \sin \theta d u d v
$$

Show that the condition（2．19）is equivalent to

$$
\theta_{u v}=\sin \theta
$$

[^0]: 25. June, 2019.
[^1]: ${ }^{4}$ The theorem holds under the assumption of C^{2}-differentiablity.

