2 Integrability Conditions

Let $U \subset \mathbb{R}^m$ be a domain of $(\mathbb{R}^m; u^1, \ldots, u^m)$ and consider *m*-tuple of $n \times n$ -matrix valued C^{∞} -maps

(2.1)
$$\Omega_j : \mathbb{R}^m \supset U \longrightarrow \mathcal{M}_n(\mathbb{R}) \qquad (j = 1, \dots, m).$$

In this section, we consider an initial value problem of a system of linear partial differential equations

(2.2)
$$\frac{\partial X}{\partial u^j} = X\Omega_j \quad (j = 1, \dots, m), \qquad X(\mathbf{P}_0) = X_0,$$

where $P_0 = (u_0^1, \ldots, u_0^m) \in U$ is a fixed point, X is an $n \times n$ matrix valued unknown, and $X_0 \in M_n(\mathbb{R})$. The chain rule yields the following:

Lemma 2.1. Let $X: U \to M_n(\mathbb{R})$ be a C^{∞} -map satisfying (2.2). Then for each smooth path $\gamma: I \to U$ defined on an interval $I \subset \mathbb{R}$, $\hat{X} := X \circ \gamma : I \to M_n(\mathbb{R})$ satisfies the ordinary differential equation

(2.3)
$$\frac{d\hat{X}}{dt}(t) = \hat{X}(t)\Omega_{\gamma}(t) \quad \left(\Omega_{\gamma(t)} := \sum_{j=1}^{n} \Omega_{j} \circ \gamma(t) \frac{du^{j}}{dt}(t)\right)$$

on I, where $\gamma(t) = (u^1(t), \dots, u^m(t)).$

Proposition 2.2. If a C^{∞} -map $X \colon U \to M_n(\mathbb{R})$ defined on a domain $U \subset \mathbb{R}^m$ satisfies (2.2) with $X_0 \in \operatorname{GL}(n, \mathbb{R})$, then $X(\mathbf{P}) \in \mathrm{GL}(n, \mathbb{R})$ for all $\mathbf{P} \in U$. In addition, if Ω_j $(j=1,\ldots,m)$ are skew-symmetric and $X_0 \in \mathrm{SO}(n)$, then $X(\mathbf{P}) \in \mathrm{SO}(n)$ holds for all $\mathbf{P} \in U$.

Proof. Since U is connected, there exists a continuous path $\gamma_0: [0,1] \to U$ such that $\gamma_0(0) = P_0$ and $\gamma_0(1) = P$. By Whitney's approximation theorem (cf. Theorem 10.16 in [2-3]), there exists a smooth path $\gamma: [0,1] \to U$ joining P_0 and P approximating γ_0 . Since $\hat{X} := X \circ \gamma$ satisfies (2.3) with $\hat{X}(0) = X_0$, Proposition 1.3 yields that det $\hat{X}(1) \neq 0$ whenever det $X_0 \neq 0$. The latter half follows from Proposition 1.4.

Proposition 2.3. If a matrix-valued C^{∞} function $X: U \rightarrow GL(n, \mathbb{R})$ satisfies (2.2), it holds that

(2.4)
$$\frac{\partial \Omega_j}{\partial u^k} - \frac{\partial \Omega_k}{\partial u^j} = \Omega_j \Omega_k - \Omega_k \Omega_j$$

for each (j,k) with $1 \leq j < k \leq n$.

MTH.B406: Sect. 2

Proof. Differentiating (2.2) by u^k , we have

$$\frac{\partial^2 X}{\partial u^k \partial u^j} = \frac{\partial X}{\partial u^k} \Omega_j + X \frac{\partial \Omega_j}{\partial u^k} = X \left(\frac{\partial \Omega_j}{\partial u^k} + \Omega_k \Omega_j \right).$$

On the other hand, switching the roles of j and k, we get

$$\frac{\partial^2 X}{\partial u^j \partial u^k} = X \left(\frac{\partial \Omega_k}{\partial u^j} + \Omega_j \Omega_k \right).$$

Since X is of class C^{∞} , the left-hand sides of these equalities coincide, and so are the right-hand sides. Since $X \in GL(n, \mathbb{R})$, the conclusion follows.

^{25.} June, 2019.

The equality (2.4) is called the *integrability condition* or *compatibility condition* of (2.2).

Lemma 2.4. Let $\Omega_j: U \to M_n(\mathbb{R})$ (j = 1, ..., m) be C^{∞} -map defined on a domain $U \subset \mathbb{R}^m$ which satisfy (2.4). Then for each smooth map

$$\sigma \colon D \ni (t, w) \longmapsto \sigma(t, w) = (u^1(t, w), \dots, u^m(t, w)) \in U$$

defined on a domain $D \subset \mathbb{R}^2$, it holds that

(2.5) $\frac{\partial T}{\partial w} - \frac{\partial W}{\partial t} - TW + WT = 0,$

where

(2.6)
$$T := \sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}, \quad W := \sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial w} \quad (\widetilde{\Omega}_{j} := \Omega_{j} \circ \sigma)$$

Proof. By the chain rule, we have

$$\begin{split} \frac{\partial T}{\partial w} &= \sum_{j,k=1}^{m} \frac{\partial \Omega_{j}}{\partial u^{k}} \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} + \sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial w \partial t}, \\ \frac{\partial W}{\partial t} &= \sum_{j,k=1}^{m} \frac{\partial \Omega_{j}}{\partial u^{k}} \frac{\partial u^{k}}{\partial t} \frac{\partial u^{j}}{\partial w} + \sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial t \partial w} \\ &= \sum_{j,k=1}^{m} \frac{\partial \Omega_{k}}{\partial u^{j}} \frac{\partial u^{j}}{\partial t} \frac{\partial u^{k}}{\partial w} + \sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial t \partial w}. \end{split}$$

Hence

$$\begin{split} \frac{\partial T}{\partial w} &- \frac{\partial W}{\partial t} = \sum_{j,k=1}^m \left(\frac{\partial \Omega_j}{\partial u^k} - \frac{\partial \Omega_k}{\partial u^j} \right) \frac{\partial u^k}{\partial w} \frac{\partial u^j}{\partial t} \\ &= \sum_{j,k=1}^m \left(\Omega_j \Omega_k - \Omega_k \Omega_j \right) \frac{\partial u^k}{\partial w} \frac{\partial u^j}{\partial t} \\ &= \left(\sum_{j=1}^m \Omega_j \frac{\partial u^j}{\partial t} \right) \left(\sum_{k=1}^m \Omega_k \frac{\partial u^k}{\partial w} \right) - \left(\sum_{k=1}^m \Omega_k \frac{\partial u^k}{\partial w} \right) \left(\sum_{j=1}^m \Omega_j \frac{\partial u^j}{\partial t} \right) \\ &= TW - WT. \quad \Box \end{split}$$

Integrability of linear systems. In this section, we shall prove the following

Theorem 2.5. Let $\Omega_j: U \to M_n(\mathbb{R})$ (j = 1, ..., m) bed C^{∞} functions defined on a simply connected domain $U \subset \mathbb{R}^m$ satisfying (2.4). Then for each $P_0 \in U$ and $X_0 \in M_n(\mathbb{R})$, there exists the unique $n \times n$ -matrix valued function $X: U \to M_n(\mathbb{R})$ (2.2). Moreover,

- if $X_0 \in GL(n, \mathbb{R})$, $X(P) \in GL(n, \mathbb{R})$ holds on U,
- if $X_0 \in SO(n)$ and Ω_j (j = 1, ..., m) are skew-symmetric matrices, $X \in SO(n)$ holds on U.

Proof. The latter half is a direct conclusion of Proposition 2.2. We show the existence of X: Take a smooth path $\gamma : [0, 1] \to U$ joining P_0 and P. Then by Theorem 1.9, there exists unique C^{∞} -map $\hat{X} : [0, 1] \to M_m(\mathbb{R})$ satisfying (2.3) with initial condition $\tilde{X}(0) = X_0$. We shall show that the value $\hat{X}(1)$ does not depend on choice of paths joining P₀ and P. To show this, choose another smooth path $\tilde{\gamma}$ joining P₀ and P. Since U is simply connected, there exists a homotopy between γ and $\tilde{\gamma}$, that is, there exists a continuous map $\sigma_0: [0,1] \times [0,1] \ni (t,w) \mapsto \sigma(t,w) \in U$ satisfying

(2.7) $\begin{aligned} \sigma_0(t,0) &= \gamma(t), & \sigma_0(t,1) &= \tilde{\gamma}(t), \\ \sigma_0(0,w) &= P_0, & \sigma_0(1,w) &= P. \end{aligned}$

Then, by Whitney's approximation theorem (Theorem 10.16 in [2-3]) again, there exists a smooth map $\sigma: [0,1] \times [0,1] \to U$ satisfying the same boundary conditions as (2.7). We set T and W as in (2.6). For each fixed $w \in [0,1]$, there exists $X_w: [0,1] \to M_m(\mathbb{R})$ such that

$$\frac{dX_w}{dt}(t) = X_w(t)T(t,w), \qquad X_w(0) = X_0$$

Since T(t, w) is smooth in t and w, the map

$$\dot{X}(t,w)\colon [0,1]\times[0,1]\ni (t,w)\mapsto X_w(t)\in \mathcal{M}_m(\mathbb{R})$$

is a smooth map. To show that $\hat{X}(1) = \check{X}(t,0)$ does not depend on choice of paths, it is sufficient to show that b

(2.8)
$$\frac{\partial \hat{X}}{\partial w} = \hat{X}W$$

holds on $[0,1] \times [0,1]$. In fact, by (2.7), W(1,w) = 0 for all $w \in [0,1]$, and then (2.8) implies that $\check{X}(1,w)$ is constant.

We prove (2.8): By definition, it holds that

(2.9)
$$\frac{\partial \hat{X}}{\partial t} = \hat{X}T, \qquad \hat{X}(0,w) = X_0$$

for each $w \in [0, w]$. Hence by (2.5),

$$\frac{\partial}{\partial t}\frac{\partial \hat{X}}{\partial w} = \frac{\partial^2 \hat{X}}{\partial t \partial w} = \frac{\partial^2 \hat{X}}{\partial w \partial t} = \frac{\partial}{\partial w} \hat{X}T$$

$$= \frac{\partial \hat{X}}{\partial w}T + \hat{X}\frac{\partial T}{\partial w} = \frac{\partial \hat{X}}{\partial w}T + \hat{X}\left(\frac{\partial W}{\partial t} + TW - WT\right)$$

$$= \frac{\partial \hat{X}}{\partial w}T + \hat{X}\frac{\partial W}{\partial t} + \frac{\partial \hat{X}}{\partial t}W - \hat{X}WT$$

$$= \frac{\partial}{\partial t}(\hat{X}W) + \left(\frac{\partial \hat{X}}{\partial w} - \hat{X}W\right)T.$$

So, the function $Y_w(t) := \partial \hat{X} / \partial w - \hat{X} W$ satisfies the ordinary differential equation

$$\frac{dY_w}{dt}(t) = Y_w(t)T(t,w), \quad Y_w(0) = O$$

holds for each $w \in [0, 1]$. Thus, by the uniqueness of the solution, $Y_w(t) = O$ holds on $[0, 1] \times [0, 1]$. Hence we have (2.8).

Thus, $\hat{X}(1)$ depends only the end point P of the path. Hence we can set $X(P) := \hat{X}(1)$ for each $P \in U$, and obtain a map $X: U \to M_m(\mathbb{R})$. Finally we show that X is the desired solution. The initial condition $X(P_0) = X_0$ is obviously satisfied. On the other hand, if we set

$$Z(\delta) := X(u^1, \dots, u^j + \delta, \dots, u^m) - X(u^1, \dots, u^m),$$

 $Z(\delta)$ satisfies the equation (2.3) for the path $\gamma(\delta) := (u^1, \ldots, u^j + \delta, \ldots, u^m)$ with $Z(0) = X(\mathbf{P})$. Since $\Omega_{\gamma} = \Omega_j$,

$$\frac{\partial X}{\partial u^j} = \frac{dZ}{d\delta} = Z\Omega_j = X\Omega_j,$$

which completes the proof.

Application: Poincaré's lemma.

Theorem 2.6 (Poincaré's lemma). If a differential 1-form

$$\omega = \sum_{j=1}^{m} \alpha_j(u^1, \dots, u^m) \, du^j$$

defined on a simply connected domain $U \subset \mathbb{R}^m$ is closed, that is, $d\omega = 0$ holds, then there exists a C^{∞} -function f on U such that $df = \omega$. Such a function f is unique up to additive constants.

Proof. The assumption is equivalent to

(2.10)
$$\frac{\partial \alpha_j}{\partial u_i} - \frac{\partial \alpha_i}{\partial u_j} = 0 \qquad (1 \le i < j \le m).$$

Consider a system of linear partial differential equations with unknown ξ , a 1 × 1-matrix valued function (i.e. a real-valued function), as

(2.11)
$$\frac{\partial\xi}{\partial u^j} = \xi\alpha_j \quad (j = 1, \dots, m), \qquad \xi(u_0^1, \dots, u_0^m) = 1$$

Then it satisfies (2.4) because of (2.10). Hence by Theorem 2.5, there exists a smooth function $\xi(u, v)$ satisfying (2.11). In particular, Proposition 1.3 yields $\xi = \det \xi$ never vanishes. Here, $\xi(u_0^1, \ldots, u_0^m) = 1 > 0$ means that $\xi > 0$ holds on U. Letting $f := \log \xi$, we have the function f satisfying $df = \omega$.

Next, we show the uniqueness: if two functions f and g satisfy $df = dg = \omega$, it holds that d(f - g) = 0. Hence by connectivity of U, f - g must be constant.

Application: Conjugation of Harmonic functions. In this paragraph, we identify \mathbb{R}^2 with the complex plane \mathbb{C} . It is well-known that a function

(2.12) $f: U \ni u + \mathrm{i} v \longmapsto \xi(u, v) + \mathrm{i} \eta(u, v) \in \mathbb{C}$ $(\mathrm{i} = \sqrt{-1})$

defined on a domain $U \subset \mathbb{C}$ is *holomorphic* if and only if it satisfies the following relation, called the *Cauchy-Riemann equations*:

(2.13)
$$\frac{\partial \xi}{\partial u} = \frac{\partial \eta}{\partial v}, \qquad \frac{\partial \xi}{\partial v} = -\frac{\partial \eta}{\partial u}$$

Definition 2.7. A function $f: U \to \mathbb{R}$ defined on a domain $U \subset \mathbb{R}^2$ is said to be *harmonic* if it satisfies

$$\Delta f = f_{uu} + f_{vv} = 0$$

The operator Δ is called the *Laplacian*.

Proposition 2.8. If function f in (2.12) is holomorphic, $\xi(u, v)$ and $\eta(u, v)$ are harmonic functions.

Proof. By (2.13), we have

$$\xi_{uu} = (\xi_u)_u = (\eta_v)_u = \eta_{vu} = \eta_{uv} = (\eta_u)_v = (-\xi_v)_v = -\xi_{vv}$$

Hence $\Delta \xi = 0$. Similarly,

$$\eta_{uu} = (-\xi_v)_u = -\xi_{vu} = -\xi_{uv} = -(\xi_u)_v = -(\eta_v)_v = -\eta_{vv}.$$

Thus $\Delta \eta = 0.$

Theorem 2.9. Let $U \subset \mathbb{C} = \mathbb{R}^2$ be a simply connected domain and $\xi(u, v)$ a C^{∞} -function harmonic on U^4 . Then there exists a C^{∞} harmonic function η on U such that $\xi(u, v) + i\eta(u, v)$ is holomorphic on U.

Proof. Let $\alpha := -\xi_v du + \xi_u dv$. Then by the assumption,

$$d\alpha = (\xi_{vv} + \xi_{uu}) \, du \wedge dv = 0$$

holds, that is, α is a closed 1-form. Hence by simple connectivity of U and the Poincaré's lemma (Theorem 2.6), there exists a function η such that $d\eta = \eta_u du + \eta_v dv = \alpha$. Such a function η satisfies (2.13) for given ξ . Hence $\xi + i \eta$ is holomorphic in u + i v.

Definition 2.10. The harmonic function η in Theorem 2.9 is called the *conjugate* harmonic function of ξ .

The fundamental theorem for Surfaces. Let $p: U \to \mathbb{R}^3$ be a parametrization of a *regular surface* defined on a domain $U \subset \mathbb{R}^2$. That is, p = p(u, v) is a C^{∞} -map such that p_u and p_v are linearly independent at each point on U. Then $\nu := (p_u \times p_v)/|p_u \times p_v|$ is the *unit normal vector field* to the surface. The matrix-valued function $\mathcal{F} := (p_u, p_v, \nu): U \to M_3(\mathbb{R})$ is called the *Gauss frame* of p. We set

(2.14)
$$ds^{2} := E \, du^{2} + 2F \, du \, dv + G \, dv^{2},$$
$$H := L \, du^{2} + 2M \, du \, dv + N \, dv^{2},$$

where

$$E = p_u \cdot p_u \qquad F = p_u \cdot p_v \qquad G = p_v \cdot p_v$$
$$L = p_{uu} \cdot \nu \qquad M = p_{uv} \cdot \nu \qquad N = p_{vv} \cdot \nu.$$

We call ds^2 (resp. II) the first (resp. second) fundamental form. Note that linear independence of p_u and p_v implies

(2.15) E > 0, G > 0 and $EG - F^2 > 0$. Set $\Gamma_{11}^1 := \frac{GE_u - 2FF_u + FE_v}{2(EG - F^2)}$, $\Gamma_{11}^2 := \frac{2EF_u - EE_v - FE_u}{2(EG - F^2)}$, (2.16) $\Gamma_1^1 = \frac{GE_v - FG_u}{GE_v - FG_u}$, $\Gamma_2^2 = \frac{F^2}{2} = \frac{EG_u - FE_v}{EG_u - FE_v}$

(2.16)
$$\Gamma_{12}^1 = \Gamma_{21}^1 := \frac{G_{21}}{2(EG - F^2)}, \quad \Gamma_{12}^2 = \Gamma_{21}^2 := \frac{G_{21}}{2(EG - F^2)},$$

 $\Gamma_{22}^1 := \frac{2GF_v - GG_u - FG_v}{2(EG - F^2)}, \quad \Gamma_{22}^2 := \frac{EG_v - 2FF_v + FG_u}{2(EG - F^2)}.$

and

(2.17)
$$A = \begin{pmatrix} A_1^1 & A_2^1 \\ A_1^2 & A_2^2 \end{pmatrix} := \begin{pmatrix} E & F \\ F & G \end{pmatrix}^{-1} \begin{pmatrix} L & M \\ M & N \end{pmatrix}.$$

 $^{^4\}mathrm{The}$ theorem holds under the assumption of $C^2\text{-differentiablity}.$

The functions Γ_{ij}^k and the matrix A are called the *Christoffel* symbols and the *Weingarten matrix*. We state the following the fundamental theorem for surfaces, and give a proof (for a special case) in the following section.

Theorem 2.11 (The Fundamental Theorem for Surfaces). Let $p: U \ni (u, v) \mapsto p(u, v) \in \mathbb{R}^3$ be a parametrization of a regular surface defined on a domain $U \subset \mathbb{R}^2$. Then the Gauss frame $\mathcal{F} := \{p_u, p_v, \nu\}$ satisfies the equations

$$\begin{array}{ll} (2.18) & \frac{\partial \mathcal{F}}{\partial u} = \mathcal{F}\Omega, & \frac{\partial \mathcal{F}}{\partial v} = \mathcal{F}\Lambda, \\ \Omega := \begin{pmatrix} \Gamma_{11}^1 & \Gamma_{12}^1 & -A_1^1 \\ \Gamma_{11}^2 & \Gamma_{12}^2 & -A_1^2 \\ L & M & 0 \end{pmatrix}, & \Lambda := \begin{pmatrix} \Gamma_{21}^1 & \Gamma_{22}^1 & -A_2^1 \\ \Gamma_{21}^2 & \Gamma_{22}^2 & -A_2^2 \\ M & N & 0 \end{pmatrix}, \end{array}$$

where Γ_{jk}^{i} (i, j, k = 1, 2), A_{l}^{k} and L, M, N are the Christoffel symbols, the entries of the Weingarten matrix and the entries of the second fundamental form, respectively.

Theorem 2.12. Let $U \subset \mathbb{R}^2$ be a simply connected domain, E, F, G, L, M, $N \subset \mathcal{C}^{\infty}$ -functions satisfying (2.15), and Γ_{ij}^k , A_i^j the functions defined by (2.16) and (2.17), respectively. If Ω and Λ satisfies

(2.19) $\Omega_v - \Lambda_u = \Omega \Lambda - \Lambda \Omega,$

there exists a parameterization $p: U \to \mathbb{R}^3$ of regular surface whose fundamental forms are given by (2.14). Moreover, such a surface is unique up to orientation preserving isometries of \mathbb{R}^3 .

References

- [2-1] 梅原雅顕・山田光太郎:曲線と曲面—微分幾何的アプローチ(改訂版), 裳華房,2014.
- [2-2] Masaaki Umehara and Kotaro Yamada, Differential Geometry of Curves and Surfaces, World Scientific, 2017.
- [2-3] John M. Lee, Introduction to Smooth Manifolds, Graduate Texts in Mathematics 218, Springer-Verlag, 2013.
- [2-4] Lars V. Ahlfors, Complex Analysis, Dover Publications, 1980.

Exercises

- **2-1** Let $\xi(u, v) = \log \sqrt{u^2 + v^2}$ be a function defined on $U = \mathbb{R}^2 \setminus \{(0, 0)\}$
 - (1) Show that ξ is harmonic on U.
 - (2) Find the conjugate harmonic function η of ξ on

$$V = \mathbb{R}^2 \setminus \{(u,0) \mid u \leq 0\} \subset U.$$

- (3) Show that there exists no conjugate harmonic function of ξ defined on U.
- **2-2** Let $\theta = \theta(u, v)$ be a smooth function on a domain $U \subset \mathbb{R}^2$ such that $0 < \theta < \pi$, and

 $ds^2 := du^2 + 2\cos\theta \, du \, dv + dv^2, \quad II := 2\sin\theta \, du \, dv.$

Show that the condition (2.19) is equivalent to

$$\theta_{uv} = \sin \theta$$