
2 Integrability Conditions

Let U ⊂ Rm be a domain of (Rm;u1, . . . , um) and consider m-
tuple of n× n-matrix valued C∞-maps

(2.1) Ωj : Rm ⊃ U −→ Mn(R) (j = 1, . . . ,m).

In this section, we consider an initial value problem of a system
of linear partial differential equations

(2.2)
∂X

∂uj
= XΩj (j = 1, . . . ,m), X(P0) = X0,

where P0 = (u1
0, . . . , , u

m
0 ) ∈ U is a fixed point, X is an n × n-

matrix valued unknown, andX0 ∈ Mn(R). The chain rule yields
the following:

Lemma 2.1. Let X : U → Mn(R) be a C∞-map satisfying
(2.2). Then for each smooth path γ : I → U defined on an in-
terval I ⊂ R, X̂ := X ◦ γ : I → Mn(R) satisfies the ordinary
differential equation

(2.3)
dX̂

dt
(t) = X̂(t)Ωγ(t)


Ωγ(t) :=

n∑

j=1

Ωj ◦ γ(t)
duj

dt
(t)




on I, where γ(t) =
(
u1(t), . . . , um(t)

)
.

Proposition 2.2. If a C∞-map X : U → Mn(R) defined on
a domain U ⊂ Rm satisfies (2.2) with X0 ∈ GL(n,R), then
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X(P) ∈ GL(n,R) for all P ∈ U . In addition, if Ωj (j=1,. . . ,m)
are skew-symmetric and X0 ∈ SO(n), then X(P) ∈ SO(n) holds
for all P ∈ U .

Proof. Since U is connected, there exists a continuous path
γ0 : [0, 1] → U such that γ0(0) = P0 and γ0(1) = P. By Whit-
ney’s approximation theorem (cf. Theorem 10.16 in [2-3]), there
exists a smooth path γ : [0, 1] → U joining P0 and P approxi-
mating γ0. Since X̂ := X ◦ γ satisfies (2.3) with X̂(0) = X0,
Proposition 1.3 yields that det X̂(1) ̸= 0 whenever detX0 ̸= 0.
The latter half follows from Proposition 1.4.

Proposition 2.3. If a matrix-valued C∞ function X : U →
GL(n,R) satisfies (2.2), it holds that

(2.4)
∂Ωj

∂uk
− ∂Ωk

∂uj
= ΩjΩk −ΩkΩj

for each (j, k) with 1 ≦ j < k ≦ n.

Proof. Differentiating (2.2) by uk, we have

∂2X

∂uk∂uj
=

∂X

∂uk
Ωj +X

∂Ωj

∂uk
= X

(
∂Ωj

∂uk
+ΩkΩj

)
.

On the other hand, switching the roles of j and k, we get

∂2X

∂uj∂uk
= X

(
∂Ωk

∂uj
+ΩjΩk

)
.

Since X is of class C∞, the left-hand sides of these equalities
coincide, and so are the right-hand sides. Since X ∈ GL(n,R),
the conclusion follows.
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The equality (2.4) is called the integrability condition or com-
patibility condition of (2.2).

Lemma 2.4. Let Ωj : U → Mn(R) (j = 1, . . . ,m) be C∞-map
defined on a domain U ⊂ Rm which satisfy (2.4). Then for each
smooth map

σ : D ∋ (t, w) 7−→ σ(t, w) = (u1(t, w), . . . , um(t, w)) ∈ U

defined on a domain D ⊂ R2, it holds that

(2.5)
∂T

∂w
− ∂W

∂t
− TW +WT = 0,

where

(2.6) T :=
m∑

j=1

Ω̃j
∂uj

∂t
, W :=

m∑

j=1

Ω̃j
∂uj

∂w
(Ω̃j := Ωj ◦ σ).

Proof. By the chain rule, we have

∂T

∂w
=

m∑

j,k=1

∂Ωj

∂uk

∂uk

∂w

∂uj

∂t
+

m∑

j=1

Ω̃j
∂2uj

∂w∂t
,

∂W

∂t
=

m∑

j,k=1

∂Ωj

∂uk

∂uk

∂t

∂uj

∂w
+

m∑

j=1

Ω̃j
∂2uj

∂t∂w

=
m∑

j,k=1

∂Ωk

∂uj

∂uj

∂t

∂uk

∂w
+

m∑

j=1

Ω̃j
∂2uj

∂t∂w
.
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Hence

∂T

∂w
− ∂W

∂t
=

m∑

j,k=1

(
∂Ωj

∂uk
− ∂Ωk

∂uj

)
∂uk

∂w

∂uj

∂t

=
m∑

j,k=1

(ΩjΩk −ΩkΩj)
∂uk

∂w

∂uj

∂t

=




m∑

j=1

Ωj
∂uj

∂t



(

m∑

k=1

Ωk
∂uk

∂w

)
−
(

m∑

k=1

Ωk
∂uk

∂w

)


m∑

j=1

Ωj
∂uj

∂t




= TW −WT.

Integrability of linear systems. In this section, we shall
prove the following

Theorem 2.5. Let Ωj : U → Mn(R) (j = 1, . . . ,m) bed C∞-
functions defined on a simply connected domain U ⊂ Rm sat-
isfying (2.4). Then for each P0 ∈ U and X0 ∈ Mn(R), there
exists the unique n× n-matrix valued function X : U → Mn(R)
(2.2). Moreover,

• if X0 ∈ GL(n,R), X(P) ∈ GL(n,R) holds on U ,

• if X0 ∈ SO(n) and Ωj (j = 1, . . . ,m) are skew-symmetric
matrices, X ∈ SO(n) holds on U .

Proof. The latter half is a direct conclusion of Proposition 2.2.
We show the existence of X: Take a smooth path γ : [0, 1] → U
joining P0 and P. Then by Theorem 1.9, there exists unique
C∞-map X̂ : [0, 1] → Mm(R) satisfying (2.3) with initial condi-

tion X̃(0) = X0.
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We shall show that the value X̂(1) does not depend on choice
of paths joining P0 and P. To show this, choose another smooth
path γ̃ joining P0 and P. Since U is simply connected, there
exists a homotopy between γ and γ̃, that is, there exists a con-
tinuous map σ0 : [0, 1]× [0, 1] ∋ (t, w) 7→ σ(t, w) ∈ U satisfying

(2.7)
σ0(t, 0) = γ(t), σ0(t, 1) = γ̃(t),

σ0(0, w) = P0, σ0(1, w) = P.

Then, by Whitney’s approximation theorem (Theorem 10.16 in
[2-3]) again, there exists a smooth map σ : [0, 1] × [0, 1] → U
satisfying the same boundary conditions as (2.7). We set T and
W as in (2.6). For each fixed w ∈ [0, 1], there existsXw : [0, 1] →
Mm(R) such that

dXw

dt
(t) = Xw(t)T (t, w), Xw(0) = X0.

Since T (t, w) is smooth in t and w, the map

X̌(t, w) : [0, 1]× [0, 1] ∋ (t, w) 7→ Xw(t) ∈ Mm(R)

is a smooth map. To show that X̂(1) = X̌(t, 0) does not depend
on choice of paths, it is sufficient to show that b

(2.8)
∂X̂

∂w
= X̂W

holds on [0, 1] × [0, 1]. In fact, by (2.7), W (1, w) = 0 for all
w ∈ [0, 1], and then (2.8) implies that X̌(1, w) is constant.
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We prove (2.8): By definition, it holds that

(2.9)
∂X̂

∂t
= X̂T, X̂(0, w) = X0

for each w ∈ [0, w]. Hence by (2.5),

∂

∂t

∂X̂

∂w
=

∂2X̂

∂t∂w
=

∂2X̂

∂w∂t
=

∂

∂w
X̂T

=
∂X̂

∂w
T + X̂

∂T

∂w
=

∂X̂

∂w
T + X̂

(
∂W

∂t
+ TW −WT

)

=
∂X̂

∂w
T + X̂

∂W

∂t
+

∂X̂

∂t
W − X̂WT

=
∂

∂t

(
X̂W

)
+

(
∂X̂

∂w
− X̂W

)
T.

So, the function Yw(t) := ∂X̂/∂w − X̂W satisfies the ordinary
differential equation

dYw

dt
(t) = Yw(t)T (t, w), Yw(0) = O

holds for each w ∈ [0, 1]. Thus, by the uniqueness of the solu-
tion, Yw(t) = O holds on [0, 1]× [0, 1]. Hence we have (2.8).

Thus, X̂(1) depends only the end point P of the path. Hence
we can set X(P) := X̂(1) for each P ∈ U , and obtain a map
X : U → Mm(R). Finally we show thatX is the desired solution.
The initial condition X(P0) = X0 is obviously satisfied. On the
other hand, if we set

Z(δ) := X(u1, . . . , uj + δ, . . . , um)−X(u1, . . . , um),
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Z(δ) satisfies the equation (2.3) for the path γ(δ) := (u1, . . . , uj+
δ, . . . , um) with Z(0) = X(P). Since Ωγ = Ωj ,

∂X

∂uj
=

dZ

dδ
= ZΩj = XΩj ,

which completes the proof.

Application: Poincaré’s lemma.

Theorem 2.6 (Poincaré’s lemma). If a differential 1-form

ω =
m∑

j=1

αj(u
1, . . . , um) duj

defined on a simply connected domain U ⊂ Rm is closed, that is,
dω = 0 holds, then there exists a C∞-function f on U such that
df = ω. Such a function f is unique up to additive constants.

Proof. The assumption is equivalent to

(2.10)
∂αj

∂ui
− ∂αi

∂uj
= 0 (1 ≦ i < j ≦ m).

Consider a system of linear partial differential equations with
unknown ξ, a 1 × 1-matrix valued function (i.e. a real-valued
function), as

(2.11)
∂ξ

∂uj
= ξαj (j = 1, . . . ,m), ξ(u1

0, . . . , u
m
0 ) = 1.
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Then it satisfies (2.4) because of (2.10). Hence by Theorem 2.5,
there exists a smooth function ξ(u, v) satisfying (2.11). In par-
ticular, Proposition 1.3 yields ξ = det ξ never vanishes. Here,
ξ(u1

0, . . . , u
m
0 ) = 1 > 0 means that ξ > 0 holds on U . Letting

f := log ξ, we have the function f satisfying df = ω.
Next, we show the uniqueness: if two functions f and g

satisfy df = dg = ω, it holds that d(f − g) = 0. Hence by
connectivity of U , f − g must be constant.

Application: Conjugation of Harmonic functions. In
this paragraph, we identify R2 with the complex plane C. It
is well-known that a function

(2.12) f : U ∋ u+ i v 7−→ ξ(u, v) + i η(u, v) ∈ C (i =
√
−1)

defined on a domain U ⊂ C is holomorphic if and only if it sat-
isfies the following relation, called the Cauchy-Riemann equa-
tions:

(2.13)
∂ξ

∂u
=

∂η

∂v
,

∂ξ

∂v
= −∂η

∂u
.

Definition 2.7. A function f : U → R defined on a domain
U ⊂ R2 is said to be harmonic if it satisfies

∆f = fuu + fvv = 0.

The operator ∆ is called the Laplacian.

Proposition 2.8. If function f in (2.12) is holomorphic, ξ(u, v)
and η(u, v) are harmonic functions.
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Proof. By (2.13), we have

ξuu = (ξu)u = (ηv)u = ηvu = ηuv = (ηu)v = (−ξv)v = −ξvv.

Hence ∆ξ = 0. Similarly,

ηuu = (−ξv)u = −ξvu = −ξuv = −(ξu)v = −(ηv)v = −ηvv.

Thus ∆η = 0.

Theorem 2.9. Let U ⊂ C = R2 be a simply connected domain
and ξ(u, v) a C∞-function harmonic on U4. Then there exists
a C∞ harmonic function η on U such that ξ(u, v) + i η(u, v) is
holomorphic on U .

Proof. Let α := −ξv du+ ξu dv. Then by the assumption,

dα = (ξvv + ξuu) du ∧ dv = 0

holds, that is, α is a closed 1-form. Hence by simple connectivity
of U and the Poincaré’s lemma (Theorem 2.6), there exists a
function η such that dη = ηu du + ηv dv = α. Such a function
η satisfies (2.13) for given ξ. Hence ξ + i η is holomorphic in
u+ i v.

Definition 2.10. The harmonic function η in Theorem 2.9 is
called the conjugate harmonic function of ξ.

4The theorem holds under the assumption of C2-differentiablity.
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The fundamental theorem for Surfaces. Let p : U → R3

be a parametrization of a regular surface defined on a domain
U ⊂ R2. That is, p = p(u, v) is a C∞-map such that pu and
pv are linearly independent at each point on U . Then ν :=
(pu×pv)/|pu×pv| is the unit normal vector field to the surface.
The matrix-valued function F := (pu, pv, ν) : U → M3(R) is
called the Gauss frame of p. We set

(2.14)
ds2 := E du2 + 2F du dv +Gdv2,

II := Ldu2 + 2M dudv +N dv2,

where

E = pu · pu F = pu · pv G = pv · pv
L = puu · ν M = puv · ν N = pvv · ν.

We call ds2 (resp. II) the first (resp. second) fundamental form.
Note that linear independence of pu and pv implies

(2.15) E > 0, G > 0 and EG− F 2 > 0.

Set

(2.16)

Γ 1
11 :=

GEu − 2FFu + FEv

2(EG− F 2)
, Γ 2

11 :=
2EFu − EEv − FEu

2(EG− F 2)
,

Γ 1
12 = Γ 1

21 :=
GEv − FGu

2(EG− F 2)
, Γ 2

12 = Γ 2
21 :=

EGu − FEv

2(EG− F 2)
,

Γ 1
22 :=

2GFv −GGu − FGv

2(EG− F 2)
, Γ 2

22 :=
EGv − 2FFv + FGu

2(EG− F 2)
.

and

(2.17) A =

(
A1

1 A1
2

A2
1 A2

2

)
:=

(
E F
F G

)−1(
L M
M N

)
.
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The functions Γ k
ij and the matrix A are called the Christoffel

symbols and the Weingarten matrix. We state the following the
fundamental theorem for surfaces, and give a proof (for a special
case) in the following section.

Theorem 2.11 (The Fundamental Theorem for Surfaces). Let
p : U ∋ (u, v) 7→ p(u, v) ∈ R3 be a parametrization of a regular
surface defined on a domain U ⊂ R2. Then the Gauss frame
F := {pu, pv, ν} satisfies the equations

(2.18)
∂F
∂u

= FΩ,
∂F
∂v

= FΛ,

Ω :=



Γ 1
11 Γ 1

12 −A1
1

Γ 2
11 Γ 2

12 −A2
1

L M 0


 , Λ :=



Γ 1
21 Γ 1

22 −A1
2

Γ 2
21 Γ 2

22 −A2
2

M N 0


 ,

where Γ i
jk (i, j, k = 1, 2), Ak

l and L, M , N are the Christoffel
symbols, the entries of the Weingarten matrix and the entries
of the second fundamental form, respectively.

Theorem 2.12. Let U ⊂ R2 be a simply connected domain, E,
F , G, L, M , N C∞-functions satisfying (2.15), and Γ k

ij, A
j
i the

functions defined by (2.16) and (2.17), respectively. If Ω and Λ
satisfies

(2.19) Ωv − Λu = ΩΛ− ΛΩ,

there exists a parameterization p : U → R3 of regular surface
whose fundamental forms are given by (2.14). Moreover, such a
surface is unique up to orientation preserving isometries of R3.
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Exercises

2-1 Let ξ(u, v) = log
√
u2 + v2 be a function defined on U =

R2 \ {(0, 0)}
(1) Show that ξ is harmonic on U .

(2) Find the conjugate harmonic function η of ξ on

V = R2 \ {(u, 0) |u ≦ 0} ⊂ U.

(3) Show that there exists no conjugate harmonic func-
tion of ξ defined on U .

2-2 Let θ = θ(u, v) be a smooth function on a domain U ⊂ R2

such that 0 < θ < π, and

ds2 := du2 + 2 cos θ du dv + dv2, II := 2 sin θ du dv.

Show that the condition (2.19) is equivalent to

θuv = sin θ.


