2 Integrability Conditions

Let U C R™ be a domain of (R™;u!,...,u™) and consider m-
tuple of n x n-matrix valued C'*°-maps

21)  2;:R™">SU —M(R) (j=1,...,m).

In this section, we consider an initial value problem of a system
of linear partial differential equations

0X .
(22) % :X.QJ (] = 1,,m), X(Po) :Xo,
where Pg = (ug,...,,uj") € U is a fixed point, X is an n x n-

matrix valued unknown, and X € M,,(R). The chain rule yields
the following:

Lemma 2.1. Let X: U — M,(R) be a C®-map satisfying
(2.2). Then for each smooth path ~v: I — U defined on an in-
terval I C R, X := X oy : I — M, (R) satisfies the ordinary
differential equation

23) S0 = X020 |20 = >0 1) 5 1
on I, where y(t) = (u*(t),...,u™(t)).

Proposition 2.2. If a« C®-map X: U — M,(R) defined on
a domain U C R™ satisfies (2.2) with Xo € GL(n,R), then

25. June, 2019.
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X(P) € GL(n,R) for all P € U. In addition, if 2; (j=1,...,m)
are skew-symmetric and Xy € SO(n), then X (P) € SO(n) holds
forallP € U.

Proof. Since U is connected, there exists a continuous path
Y: [0,1] — U such that v¢(0) = Py and ~o(1) = P. By Whit-
ney’s approximation theorem (cf. Theorem 10.16 in [2-3]), there
exists a smooth path ~: [0,1] — U joining Py and P approxi-
mating 7o. Since X := X o v satisfies (2.3) with X(0) = Xo,
Proposition 1.3 yields that det X (1) # 0 whenever det X, # 0.
The latter half follows from Proposition 1.4. O

Proposition 2.3. If a matriz-valued C*° function X: U —
GL(n,R) satisfies (2.2), it holds that
082; 08X
for each (3,k) with1 < j <k < n.
Proof. Differentiating (2.2) by u*, we have

#X X 09 Ble
dkow — ok T X g =X (au * Qk‘%‘) -

On the other hand, switching the roles of j and k, we get

oud

Since X is of class C'°, the left-hand sides of these equalities
coincide, and so are the right-hand sides. Since X € GL(n,R),
the conclusion follows. O

0?X o
DI ( * ”J‘Qk) -
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The equality (2.4) is called the integrability condition or com-
patibility condition of (2.2).

Lemma 2.4. Let 2;: U — M, (R) (j =1,...,m) be C>®-map

defined on a domain U C R™ which satisfy (2.4). Then for each
smooth map

o: D> (t,w) — o(t,w) = (u'(t,w),...,u™(t,w)) €U

defined on a domain D C R?, it holds that

or ow
2. — — —— =T T =
(2.5) 5w~ 5~ TWHWT =0,
where
" o 0w~
Jj=1 j=1

Proof. By the chain rule, we have

O g 00,0000 $ s 0
ow — ouk ow Ot T wot’

Js Jj=1

ow i 082; ouk du? zm: ~ 9%y

o = 2 9k ot ow T2 giow
k=1 j=1

Js
B 00, Oud ouF T 9%
=2 G o ow 2= Do

3k Jj=1
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Hence
or _ow _ i 082 08 %k%
ow ot _j — ouk  Ouw ) Ow Ot
i Auk Ou?
= ‘Z (22 = 28Y) 5——-
7,k=1
(22 (0.2 (0.2 (s 2
_<J§ Jat><kzl ’“aw> <kzl ) >(J§ Jat)
=TW —WT. O

Integrability of linear systems. In this section, we shall
prove the following

Theorem 2.5. Let £2;: U - M,(R) (j =1,...,m) bed C>°-
functions defined on a simply connected domain U C R™ sat-
isfying (2.4). Then for each Py € U and Xy € M, (R), there
exists the unique n X n-matriz valued function X: U — M, (R)
(2.2). Moreover,

e if Xo € GL(n,R), X(P) € GL(n,R) holds on U,

o if Xo € SO(n) and 2; (j =1,...,m) are skew-symmetric
matrices, X € SO(n) holds on U.

Proof. The latter half is a direct conclusion of Proposition 2.2.
We show the existence of X: Take a smooth path v: [0,1] = U
joining Py and P. Then by Theorem 1.9, there exists unique
C°°-map X : [0,1] — M,,(R) satisfying (2.3) with initial condi-
tion X (0) = Xo.
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We shall show that the value X (1) does not depend on choice
of paths joining Py and P. To show this, choose another smooth
path ¥ joining Py and P. Since U is simply connected, there
exists a homotopy between v and ¥, that is, there exists a con-
tinuous map oq: [0,1] x [0,1] 3 (t,w) — o(t,w) € U satisfying
(2 7) GO(taO) = ’}/(t), Go(t 1) = ’3/( )
0'0(0,111) :Po, 0'0( ) P.
Then, by Whitney’s approximation theorem (Theorem 10.16 in
[2-3]) again, there exists a smooth map o: [0,1] x [0,1] - U
satisfying the same boundary conditions as (2.7). We set T" and
W asin (2.6). For each fixed w € [0, 1], there exists X,,: [0,1] —
M, (R) such that

CLzl(—tw(t) = X, ()T (t,w), Xw(0) = Xo.

Since T'(t,w) is smooth in ¢ and w, the map
X (t,w): [0,1] x [0,1] > (t,w) = Xy (t) € M, (R)

is a smooth map. To show that X (1) = X (¢,0) does not depend
on choice of paths, it is sufficient to show that b

X N
(2.8) gw Xw
holds on [0,1] x [0,1]. In fact, by (2.7), W(1l,w) = 0 for all

w € [0,1], and then (2.8) implies that X (1,w) is constant.
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We prove (2.8): By definition, it holds that

(2.9) ox _ XT,  X(0,w)= X,

ot
for each w € [0 w] Hence by (2.5),

L S S S
ot ow  Otow  owdt  ow
%T f(g—i %T X (8(;1/ +TW — WT)
:ngJrXa;/ %XW XWT
= %(Xw) + (gf —~ XW) T

So, the function Yy, (t) := 0X /8w — XW satisfies the ordinary
differential equation

dYy,
W(t) = Yw(t)T(tv w)7 Yw(o) =0

holds for each w € [0,1]. Thus, by the uniqueness of the solu-
tion, Y4, (¢) = O holds on [0, 1] x [0,1]. Hence we have (2.8).

Thus, X (1) depends only the end point P of the path. Hence
we can set X (P) := X (1) for each P € U, and obtain a map
X: U — M,,(R). Finally we show that X is the desired solution.
The initial condition X (Py) = Xy is obviously satisfied. On the
other hand, if we set

Z(8) = X(u'y. . w46, u™) — X (ut L u™),
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Z(6) satisfies the equation (2.3) for the path v(8) := (ul,... , u/+
d,...,u™) with Z(0) = X(P). Since £2, = 2},

oxX dz
—=—=702;,=X1,;
ou  db J I
which completes the proof. O

Application: Poincaré’s lemma.

Theorem 2.6 (Poincaré’s lemma). If a differential 1-form
m .
w= Zaj(ul,... ,u™) du?
j=1

defined on a simply connected domain U C R™ is closed, that is,
dw = 0 holds, then there exists a C*°-function f on U such that
df = w. Such a function f is unique up to additive constants.

Proof. The assumption is equivalent to

Oaj  Ooy ..
_ — <

[IA

m).

Consider a system of linear partial differential equations with
unknown ¢, a 1 X l-matrix valued function (i.e. a real-valued
function), as

9]
(211) &g, (G=1.om)  Ewhog) =1
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Then it satisfies (2.4) because of (2.10). Hence by Theorem 2.5,
there exists a smooth function £(u,v) satisfying (2.11). In par-
ticular, Proposition 1.3 yields & = det & never vanishes. Here,
E(ug, .. ul) =1 > 0 means that £ > 0 holds on U. Letting
f :=1log&, we have the function f satisfying df = w.

Next, we show the uniqueness: if two functions f and g
satisfy df = dg = w, it holds that d(f — ¢g) = 0. Hence by
connectivity of U, f — g must be constant. O

Application: Conjugation of Harmonic functions. In
this paragraph, we identify R? with the complex plane C. It
is well-known that a function

(2.12) f:Usu+iv+—— &(u,v) +in(u,v) € C (i=+v-1)

defined on a domain U C C is holomorphic if and only if it sat-
isfies the following relation, called the Cauchy-Riemann equa-
tions:

o _on 0 _ Oy
(2.13) ou  ov’ o Ou’

Definition 2.7. A function f: U — R defined on a domain
U C R? is said to be harmonic if it satisfies

Af = fuu + fvv =0.
The operator A is called the Laplacian.

Proposition 2.8. If function f in (2.12) is holomorphic, &(u, v)
and n(u,v) are harmonic functions.
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Proof. By (2.13), we have

guu = (fu)u = (nv)u = Nou = Nuv = (nu)v = (_fv)v = _gmw

Hence A¢ = 0. Similarly,

Nuu = (_gv)u = _gvu = _fuv = _(gu)v = _(7]11)71 = —Nuw-

Thus Anp = 0. O

Theorem 2.9. Let U C C = R? be a simply connected domain
and &(u,v) a C®-function harmonic on U*. Then there erists
a C™ harmonic function n on U such that £(u,v) +in(u,v) is
holomorphic on U.

Proof. Let a := —&, du + &, dv. Then by the assumption,
do = (&pp + Euu) duNdv =0

holds, that is, a is a closed 1-form. Hence by simple connectivity
of U and the Poincaré’s lemma (Theorem 2.6), there exists a
function n such that dn = n, du + n, dv = «. Such a function
7 satisfies (2.13) for given . Hence £ 4 in is holomorphic in
u+1iv. O

Definition 2.10. The harmonic function n in Theorem 2.9 is
called the conjugate harmonic function of &.

4The theorem holds under the assumption of C2-differentiablity.
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The fundamental theorem for Surfaces. Let p: U — R?
be a parametrization of a regular surface defined on a domain
U C R2. That is, p = p(u,v) is a C*°-map such that p, and
p, are linearly independent at each point on U. Then v :=
(pu X Pv)/|Pu X Poul is the unit normal vector field to the surface.
The matrix-valued function F := (py,pv,v): U — M3(R) is

called the Gauss frame of p. We set
(2.14) ds? := E du® 4+ 2F dudv + G dv?,
' II := Ldu® + 2M dudv + N dv?,

where
E=p, pu F =py - py G =Dpy Do
L:puu'V M:pu'u'V N:pvv'y-

We call ds? (resp. II) the first (resp. second) fundamental form.
Note that linear independence of p, and p, implies

(2.15) E>0, G>0 and EG-F?*>0.
Set
ri . GBu—2FF,+FE, ., _2EF,—EE,— FE,
e 2(EG—-F?2) = U 2AEG—F2)
GE, — FG EG, - FE
1 _ 1l v u 2 2 . u v
(2.16) Iy =1y = 2(BG — F?)’ Ity =13 := 2AEG — F2)
1. 2GFy = GGy~ FGy ., EGy—2FF, + FGy
2 20EG-F?) 27T 2(EG — F?)

and

(A AN (E F\'(L M
(2.17) A(A% 2)=(r ¢ von
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The functions Fllj and the matrix A are called the Christoffel
symbols and the Weingarten matriz. We state the following the
fundamental theorem for surfaces, and give a proof (for a special

case) in the following section.

Theorem 2.11 (The Fundamental Theorem for Surfaces). Let
p: U > (u,v) = p(u,v) € R3 be a parametrization of a regular
surface defined on a domain U C R%. Then the Gauss frame
F :={pu,pv, v} satisfies the equations

oF oF
(2.18) au—]-'Q, g = FA,
Iy, Iy —A Iy Iy, —A
2:= F121 F122 _A% , A= F221 F222 —A% )
L M 0 M N 0

where F]?k (i,5,k = 1,2), AF and L, M, N are the Christoffel
symbols, the entries of the Weingarten matriz and the entries
of the second fundamental form, respectively.

Theorem 2.12. Let U C R? be a simply connected domain, E,
F,G, L, M, N C®-functions satisfying (2.15), and F;}, Al the

functions defined by (2.16) and (2.17), respectively. If 2 and A
satisfies

(2.19) 2y — Ay = QA — AL,

there exists a parameterization p: U — R3 of regular surface
whose fundamental forms are given by (2.14). Moreover, such a
surface is unique up to orientation preserving isometries of R3.
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Ezxercises

2-1 Let &(u,v) = log vu? + v? be a function defined on U =
R?\ {(0,0)}
(1) Show that £ is harmonic on U.

(2) Find the conjugate harmonic function 7 of £ on
V =R*\ {(v,0)|u<0}CU.

(3) Show that there exists no conjugate harmonic func-
tion of ¢ defined on U.

2-2 Let 6 = O(u,v) be a smooth function on a domain U C R?
such that 0 < 6 < 7, and

ds? = du® +2cosOdudv + dv?, II :=2sinfdudv.
Show that the condition (2.19) is equivalent to

0yy = sinb.



