1 Linear Ordinary Differential Equations

Preliminaries: Matrix Norms. Denote by $\mathrm{M}_{n}(\mathbb{R})$ the set of $n \times n$ matrix with real components, which can be identified the vector space $\mathbb{R}^{n^{2}}$. In particular, the Euclidean norm of $\mathbb{R}^{n^{2}}$ induces a norm

$$
\begin{equation*}
|X|_{\mathrm{E}}=\sqrt{\operatorname{tr}\left({ }^{t} X X\right)}=\sqrt{\sum_{i, j=1}^{n} x_{i j}^{2}} \tag{1.1}
\end{equation*}
$$

on $\mathrm{M}_{n}(\mathbb{R})$. On the other hand, we let

$$
\begin{equation*}
|X|_{\mathrm{M}}:=\sup \left\{\frac{|X \boldsymbol{v}|}{|\boldsymbol{v}|} ; \boldsymbol{v} \in \mathbb{R}^{n} \backslash\{\mathbf{0}\}\right\} \tag{1.2}
\end{equation*}
$$

where $|\cdot|$ denotes the Euclidean norm of \mathbb{R}^{n}.
Lemma 1.1. (1) The map $X \mapsto|X|_{\mathrm{M}}$ is a norm of $\mathrm{M}_{n}(\mathbb{R})$.
(2) For $X, Y \in \mathrm{M}_{n}(\mathbb{R})$, it holds that $|X Y|_{\mathrm{M}} \leqq|X|_{\mathrm{M}}|Y|_{\mathrm{M}}$.
(3) Let $\lambda=\lambda(X)$ be the maximum eigenvalue of semi-positive definite symmetric matrix ${ }^{t} X X$. Then $|X|_{\mathrm{M}}=\sqrt{\lambda}$ holds.
(4) $(1 / \sqrt{n})|X|_{\mathrm{E}} \leqq|X|_{\mathrm{M}} \leqq|X|_{\mathrm{E}}$.
(5) The map $|\cdot|_{\mathrm{M}}: \mathrm{M}_{n}(\mathbb{R}) \rightarrow \mathbb{R}$ is continuous with respect to the Euclidean norm.

[^0]Proof. Since $|X \boldsymbol{v}| /|\boldsymbol{v}|$ is invariant under scalar multiplications to \boldsymbol{v}, we have $|X|_{\mathrm{M}}=\sup \left\{|X \boldsymbol{v}| ; \boldsymbol{v} \in S^{n-1}\right\}$, where S^{n-1} is the unit sphere in \mathbb{R}^{n}. Since $S^{n-1} \ni \boldsymbol{x} \mapsto|A \boldsymbol{x}| \in \mathbb{R}$ is a continuous function defined on a compact space, it takes the maximum. Thus, the right-hand side of (1.2) is well-defined. It is easy to verify that $|\cdot|_{\mathrm{M}}$ satisfies the axiom of the norm.

Since $A:={ }^{t} X X$ is positive semi-definite, the eigenvalues $\lambda_{j}(j=1, \ldots, n)$ are non-negative real numbers. In particular, there exists an orthonormal basis $\left[\boldsymbol{a}_{j}\right]$ of \mathbb{R}^{n} satisfying $A \boldsymbol{a}_{j}=$ $\lambda_{j} \boldsymbol{a}_{j}(j=1, \ldots, n)$. Let λ be the maximum eigenvalues of A, and write $\boldsymbol{v}=v_{1} \boldsymbol{a}_{1}+\cdots+v_{n} \boldsymbol{a}_{n}$. Then it holds that

$$
\langle X \boldsymbol{v}, X \boldsymbol{v}\rangle=\lambda_{1} v_{1}^{2}+\cdots+\lambda_{n} v_{n}^{2} \leqq \lambda\langle\boldsymbol{v}, \boldsymbol{v}\rangle,
$$

where \langle,$\rangle is the Euclidean inner product of \mathbb{R}^{n}$. The equality of this inequality holds if and only if \boldsymbol{v} is the λ-eigenvector, proving (3). Noticing the norm (1.1) is invariant under conjugations $X \mapsto{ }^{t} P X P(P \in \mathrm{O}(n))$, we obtain $|X|_{\mathrm{E}}=\sqrt{\lambda_{1}^{2}+\cdots+\lambda_{n}^{2}}$ by diagonalizing ${ }^{t} X X$ by an orthogonal matrix P. Then we obtain (4). Hence two norms $|\cdot|_{\mathrm{E}}$ and $|\cdot|_{\mathrm{M}}$ induce the same topology as $\mathrm{M}_{n}(\mathbb{R})$. In particular, we have (5).

Preliminaries: Matrix-valued Functions.

Lemma 1.2. Let X and Y be C^{∞}-maps defined on a domain $U \subset \mathbb{R}^{m}$ into $\mathrm{M}_{n}(\mathbb{R})$. Then
(1) $\frac{\partial}{\partial u_{j}}(X Y)=\frac{\partial X}{\partial u_{j}} Y+X \frac{\partial Y}{\partial u_{j}}$,
(2) $\frac{\partial}{\partial u_{j}} \operatorname{det} X=\operatorname{tr}\left(\tilde{X} \frac{\partial X}{\partial u_{j}}\right)$, and
(3) $\frac{\partial}{\partial u_{j}} X^{-1}=-X^{-1} \frac{\partial X}{\partial u_{j}} X^{-1}$,
where \widetilde{X} is the cofactor matrix of X, and we assume in (3) that X is a regular matrix.

Proposition 1.3. Assume two C^{∞} matrix-valued functions $X(t)$ and $\Omega(t)$ satisfy
(1.3) $\quad \frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0}$.

Then

$$
\begin{equation*}
\operatorname{det} X(t)=\left(\operatorname{det} X_{0}\right) \exp \int_{t_{0}}^{t} \operatorname{tr} \Omega(\tau) d \tau \tag{1.4}
\end{equation*}
$$

holds. In particular, if $X_{0} \in \operatorname{GL}(n, \mathbb{R}),{ }^{1}$ then $X(t) \in \operatorname{GL}(n, \mathbb{R})$ for all t.

Proof. By (2) of Lemma 1.2, we have

$$
\begin{aligned}
\frac{d}{d t} \operatorname{det} X(t) & =\operatorname{tr}\left(\widetilde{X}(t) \frac{d X(t)}{d t}\right)=\operatorname{tr}(\widetilde{X}(t) X(t) \Omega(t)) \\
& =\operatorname{tr}(\operatorname{det} X(t) \Omega(t))=\operatorname{det} X(t) \operatorname{tr} \Omega(t)
\end{aligned}
$$

[^1]Here, we used the relation $\widetilde{X} X=X \widetilde{X}=(\operatorname{det} X) \operatorname{id}^{2}$. Hence $\frac{d}{d t}\left(\rho(t)^{-1} \operatorname{det} X(t)\right)=0$, where $\rho(t)$ is the right-hand side of (1.4).

Proposition 1.4. Assume $\Omega(t)$ in (1.3) is skew-symmetric for all t, that is, ${ }^{t} \Omega+\Omega$ is identically O. If $X_{0} \in \mathrm{O}(n)$ (resp. $\left.X_{0} \in \mathrm{SO}(n)\right)^{3}, X(t) \in \mathrm{O}(n)($ resp. $X(t) \in \mathrm{SO}(n))$ for all t.

Proof. By (1) in Lemma 1.2,

$$
\begin{aligned}
\frac{d}{d t}\left(X^{t} X\right) & =\frac{d X^{t}}{d t} X+X^{t}\left(\frac{d X}{d t}\right) \\
& =X \Omega^{t} X+X^{t} \Omega^{t} X=X\left(\Omega+{ }^{t} \Omega\right)^{t} X=O
\end{aligned}
$$

Hence $X^{t} X$ is constant, that is, if $X_{0} \in \mathrm{O}(n)$,

$$
X(t)^{t} X(t)=X\left(t_{0}\right)^{t} X\left(t_{0}\right)=X_{0}{ }^{t} X_{0}=\mathrm{id}
$$

If $X_{0} \in \mathrm{O}(n)$, this proves the first case of the proposition. Since $\operatorname{det} A= \pm 1$ when $A \in \mathrm{O}(n)$, the second case follows by continuity of $\operatorname{det} X(t)$.

Preliminaries: Norms of Matrix-Valued functions. Let $I=[a, b]$ be a closed interval, and denote by $C^{0}\left(I, \mathrm{M}_{n}(\mathbb{R})\right)$ the set of continuous functions $X: I \rightarrow \mathrm{M}_{n}(\mathbb{R})$. For any fixed number k, we define
(1.5) $\quad\|X\|_{I, k}:=\sup \left\{e^{-k t}|X(t)|_{\mathrm{M}} ; t \in I\right\}$

${ }^{2}$ In this lecture, id denotes the identity matrix.

${ }^{3} \mathrm{O}(n)=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) ;{ }^{t} A A=A^{t} A=\mathrm{id}\right\}$: the orthogonal group; $\mathrm{SO}(n)=\{A \in \mathrm{O}(n) ; \operatorname{det} A=1\}$: the special orthogonal group.
for $X \in C^{0}\left(I, \mathrm{M}_{n}(\mathbb{R})\right)$. When $k=0,\|\cdot\|_{I, 0}$ is the uniform norm for continuous functions, which is complete. Similarly, one can prove the following in the same way:

Lemma 1.5. The norm $\|\cdot\|_{I, k}$ on $C^{0}\left(I, \mathrm{M}_{n}(\mathbb{R})\right)$ is complete.
Linear Ordinary Differential Equations. We prove the fundamental theorem for linear ordinary differential equations.

Proposition 1.6. Let $\Omega(t)$ be a C^{∞}-function valued in $\mathrm{M}_{n}(\mathbb{R})$ defined on an interval I. Then for each $t_{0} \in I$, there exists the unique matrix-valued C^{∞}-function $X(t)=X_{t_{0}, \mathrm{id}}(t)$ such that
(1.6) $\quad \frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=\mathrm{id}$.

Proof. Uniqueness: Assume $X(t)$ and $Y(t)$ satisfy (1.6). Then

$$
\begin{aligned}
Y(t)-X(t) & =\int_{t_{0}}^{t}\left(Y^{\prime}(\tau)-X^{\prime}(\tau)\right) d \tau \\
& =\int_{t_{0}}^{t}(Y(\tau)-X(\tau)) \Omega(\tau) d \tau \quad\left({ }^{\prime}=\frac{d}{d t}\right)
\end{aligned}
$$

holds. Hence for an arbitrary closed interval $J \subset I$,

$$
\begin{aligned}
\mid Y(t) & -\left.X(t)\right|_{\mathrm{M}} \leqq\left.\left|\int_{t_{0}}^{t}\right|(Y(\tau)-X(\tau)) \Omega(\tau)\right|_{\mathrm{M}} d \tau \mid \\
& \leqq\left|\int_{t_{0}}^{t}\right| Y(\tau)-\left.X(\tau)\right|_{\mathrm{M}}|\Omega(\tau)|_{\mathrm{M}} d \tau \mid
\end{aligned}
$$

holds for $t \in J$. Thus, for an appropriate choice of $k \in \mathbb{R}$, it holds that

$$
\|Y-X\|_{J, k} \leqq \frac{1}{2}\|Y-X\|_{J, k}
$$

that is, $\|Y-X\|_{J, k}=0$, proving $Y(t)=X(t)$ for $t \in J$. Since J is arbitrary, $Y=X$ holds on I.
Existence: Let $J:=\left[t_{0}, a\right] \subset I$ be a closed interval, and define a sequence $\left\{X_{j}\right\}$ of matrix-valued functions defined on I satisfying $X_{0}(t)=\mathrm{id}$ and
(1.7) $\quad X_{j+1}(t)=\mathrm{id}+\int_{t_{0}}^{t} X_{j}(\tau) \Omega(\tau) d \tau \quad(j=0,1,2, \ldots)$.

Let $k:=2 \sup _{J}|\Omega|_{M}$. Then

$$
\begin{aligned}
& \left|X_{j+1}(t)-X_{j}(t)\right|_{\mathrm{M}} \leqq \int_{t_{0}}^{t}\left|X_{j}(\tau)-X_{j-1}(\tau)\right|_{\mathrm{M}}|\Omega(\tau)|_{\mathrm{M}} d \tau \\
& \quad \leqq \frac{e^{k\left(t-t_{0}\right)}}{|k|} \sup _{J}|\Omega|_{\mathrm{M}}| | X_{j}-\left.X_{j-1}\right|_{J, k}
\end{aligned}
$$

for an appropriate choice of $k \in \mathbb{R}$, and hence $\left\|X_{j+1}-X_{j}\right\|_{J, k} \leqq$ $\frac{1}{2}\left\|X_{j}-X_{j-1}\right\|_{J, k}$, that is, $\left\{X_{j}\right\}$ is a Cauchy sequence with respect to $\|\cdot\|_{J, k}$. Thus, by completeness (Lemma 1.5), it converges to some $X \in C^{0}\left(J, \mathrm{M}_{n}(\mathbb{R})\right)$. By (1.7), the limit X satisfies

$$
X\left(t_{0}\right)=\mathrm{id}, \quad X(t)=\mathrm{id}+\int_{t_{0}}^{t} X(\tau) \Omega(\tau) d \tau
$$

Applying the fundamental theorem of calculus, we can see that X satisfies $X^{\prime}(t)=X(t) \Omega(t)\left({ }^{\prime}=d / d t\right)$. Since J can be taken arbitrarily, existence of the solution on I is proven.

Finally, we shall prove that X is of class C^{∞}. Since $X^{\prime}(t)=$ $X(t) \Omega(t)$, the derivative X^{\prime} of X is continuous. Hence X is of class C^{1}, and so is $X(t) \Omega(t)$. Thus we have that $X^{\prime}(t)$ is of class C^{1}, and then X is of class C^{2}. Iterating this argument, we can prove that $X(t)$ is of class C^{r} for arbitrary r.

Corollary 1.7. Let $\Omega(t)$ be a matrix-valued C^{∞}-function defined on an interval I. Then for each $t_{0} \in I$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function $X_{t_{0}, X_{0}}(t) d e$ fined on I such that
(1.8) $\frac{d X(t)}{d t}=X(t) \Omega(t), \quad X\left(t_{0}\right)=X_{0} \quad\left(X(t):=X_{t_{0}, X_{0}}(t)\right)$

In particular, $X_{t_{0}, X_{0}}(t)$ is of class C^{∞} in X_{0} and t.
Proof. We rewrite $X(t)$ in Proposition 1.6 as $Y(t)=X_{t_{0}, \text { id }}(t)$. Then the function

$$
\begin{equation*}
X(t):=X_{0} Y(t)=X_{0} X_{t_{0}, \text { id }}(t), \tag{1.9}
\end{equation*}
$$

is desired one. Conversely, assume $X(t)$ satisfies the conclusion. Noticing $Y(t)$ is a regular matrix for all t because of Proposition 1.3,

$$
W(t):=X(t) Y(t)^{-1}
$$

satisfies

$$
\begin{aligned}
\frac{d W}{d t} & =\frac{d X}{d t} Y^{-1}-X Y^{-1} \frac{d Y}{d t} Y^{-1} \\
& =X \Omega Y^{-1}-X Y^{-1} Y \Omega Y^{-1}=O
\end{aligned}
$$

Hence

$$
W(t)=W\left(t_{0}\right)=X\left(t_{0}\right) Y\left(t_{0}\right)^{-1}=X_{0}
$$

Hence the uniqueness is obtained. The final part is obvious by the expression (1.9).

Proposition 1.8. Let $\Omega(t)$ and $B(t)$ be matrix-valued $C^{\infty}{ }_{-}$ functions defined on I. Then for each $t_{0} \in I$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrix-valued C^{∞}-function defined on I satisfying

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t)+B(t), \quad X\left(t_{0}\right)=X_{0} \tag{1.10}
\end{equation*}
$$

Proof. Rewrite X in Proposition 1.6 as $Y:=X_{t_{0}, \text { id }}$. Then

$$
\begin{equation*}
X(t)=\left(X_{0}+\int_{t_{0}}^{t} B(\tau) Y^{-1}(\tau) d \tau\right) Y(t) \tag{1.11}
\end{equation*}
$$

satisfies (1.10). Conversely, if X satisfies (1.10), $W:=X Y^{-1}$ satisfies

$$
X^{\prime}=W^{\prime} Y+W Y^{\prime}=W^{\prime} Y+W Y \Omega, \quad X \Omega+B=W Y \Omega+B
$$

and then we have $W^{\prime}=B Y^{-1}$. Since $W\left(t_{0}\right)=X_{0}$,

$$
W=X_{0}+\int_{t_{0}}^{t} B(\tau) Y^{-1}(\tau) d \tau
$$

Thus we obtain (1.11).
Theorem 1.9. Let I and U be an interval and a domain in \mathbb{R}^{m}, respectively, and let $\Omega(t, \boldsymbol{\alpha})$ and $B(t, \boldsymbol{\alpha})$ be matrix-valued C^{∞}, functions defined on $I \times U\left(\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)\right)$. Then for each $t_{0} \in I, \boldsymbol{\alpha} \in U$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique matrixvalued C^{∞}-function $X(t)=X_{t_{0}, X_{0}, \boldsymbol{\alpha}}(t)$ defined on I such that

$$
\begin{equation*}
\frac{d X(t)}{d t}=X(t) \Omega(t, \boldsymbol{\alpha})+B(t, \boldsymbol{\alpha}), \quad X\left(t_{0}\right)=X_{0} \tag{1.12}
\end{equation*}
$$

Moreover,

$$
I \times I \times \mathrm{M}_{n}(\mathbb{R}) \times U \ni\left(t, t_{0}, X_{0}, \boldsymbol{\alpha}\right) \mapsto X_{t_{0}, X_{0}, \boldsymbol{\alpha}}(t) \in \mathrm{M}_{n}(\mathbb{R})
$$

is a C^{∞}-map.
Proof. Let $\widetilde{\Omega}(t, \tilde{\boldsymbol{\alpha}}):=\Omega\left(t+t_{0}, \boldsymbol{\alpha}\right)$ and $\widetilde{B}(t, \tilde{\boldsymbol{\alpha}})=B\left(t+t_{0}, \boldsymbol{\alpha}\right)$, and let $\widetilde{X}(t):=X\left(t+t_{0}\right)$. Then (1.12) is equivalent to
(1.13) $\quad \frac{d \widetilde{X}(t)}{d t}=\widetilde{X}(t) \widetilde{\Omega}(t, \tilde{\boldsymbol{\alpha}})+\widetilde{B}(t, \tilde{\boldsymbol{\alpha}}), \quad \widetilde{X}(0)=X_{0}$,
where $\tilde{\boldsymbol{\alpha}}:=\left(t_{0}, \alpha_{1}, \ldots, \alpha_{m}\right)$. There exists the unique solution $\widetilde{X}(t)=\widetilde{X}_{\mathrm{id}, X_{0}, \tilde{\boldsymbol{\alpha}}}(t)$ of (1.13) for each $\tilde{\boldsymbol{\alpha}}$ because of Proposition 1.8. So it is sufficient to show differentiability with respect
to the parameter $\tilde{\boldsymbol{\alpha}}$. We set $Z=Z(t)$ the unique solution of

$$
\begin{equation*}
\frac{d Z}{d t}=Z \widetilde{\Omega}+\widetilde{X} \frac{\partial \widetilde{\Omega}}{\partial \alpha_{j}}+\frac{\partial \widetilde{B}}{\partial \alpha_{j}}, \quad Z(0)=O \tag{1.14}
\end{equation*}
$$

Then it holds that $Z=\partial \widetilde{X} / \partial \alpha_{j}$ (Problem 1-1). In particular, by the proof of Proposition 1.8, it holds that

$$
Z=\frac{\partial \widetilde{X}}{\partial \alpha_{j}}=\left(\int_{0}^{t}\left(\widetilde{X}(\tau) \frac{\partial \widetilde{\Omega}(\tau, \tilde{\boldsymbol{\alpha}})}{\partial \alpha_{j}}+\frac{\partial \widetilde{B}(\tau, \tilde{\boldsymbol{\alpha}})}{\partial \alpha_{j}}\right) Y^{-1}(\tau) d \tau\right) Y(t)
$$

Here, $Y(t)$ is the unique matrix-valued C^{∞}-function satisfying $Y^{\prime}(t)=Y(t) \widetilde{\Omega}(t, \widetilde{\boldsymbol{\alpha}})$, and $Y(0)=$ id. Hence \widetilde{X} is a C^{∞}-function in $(t, \tilde{\boldsymbol{\alpha}})$.

Fundamental Theorem for Space Curves. As an application, we prove the fundamental theorem for space curves. A C^{∞}-map $\gamma: I \rightarrow \mathbb{R}^{3}$ defined on an interval $I \subset \mathbb{R}$ into \mathbb{R}^{3} is said to be a regular curve if $\dot{\gamma} \neq \mathbf{0}$ holds on I. For a regular curve $\gamma(t)$, there exists a parameter change $t=t(s)$ such that $\tilde{\gamma}(s):=\gamma(t(s))$ satisfies $\left|\tilde{\gamma}^{\prime}(s)\right|=1$. Such a parameter s is called the arc-length parameter.

Let $\gamma(s)$ be a regular curve in \mathbb{R}^{3} parametrized by the arclength satisfying $\gamma^{\prime \prime}(s) \neq \mathbf{0}$ for all s. Then

$$
\boldsymbol{e}(s):=\gamma^{\prime}(s), \quad \boldsymbol{n}(s):=\frac{\gamma^{\prime \prime}(s)}{\left|\gamma^{\prime \prime}(s)\right|}, \quad \boldsymbol{b}(s):=\boldsymbol{e}(s) \times \boldsymbol{n}(s)
$$

forms a positively oriented orthonormal basis $\{\boldsymbol{e}, \boldsymbol{n}, \boldsymbol{b}\}$ of \mathbb{R}^{3} for each s. Regarding each vector as column vector, we have the
matrix-valued function

$$
\begin{equation*}
\mathcal{F}(s):=(\boldsymbol{e}(s), \boldsymbol{n}(s), \boldsymbol{b}(s)) \in \mathrm{SO}(3) \tag{1.15}
\end{equation*}
$$

in s, which is called the Frenet frame associated to the curve γ. Under the situation above, we set

$$
\kappa(s):=\left|\gamma^{\prime \prime}(s)\right|>0, \quad \tau(s):=-\left\langle\boldsymbol{b}^{\prime}(s), \boldsymbol{n}(s)\right\rangle,
$$

which are called the curvature and torsion, respectively, of γ. Using these quantities, the Frenet frame satisfies

$$
\frac{d \mathcal{F}}{d s}=\mathcal{F} \Omega, \quad \Omega=\left(\begin{array}{ccc}
0 & -\kappa & 0 \tag{1.16}\\
\kappa & 0 & -\tau \\
0 & \tau & 0
\end{array}\right)
$$

Proposition 1.10. The curvature and the torsion are invariant under the transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}+\boldsymbol{b}$ of $\mathbb{R}^{3}(A \in \mathrm{SO}(3), \boldsymbol{b} \in$ $\left.\mathbb{R}^{3}\right)$. Conversely, two curves $\gamma_{1}(s), \gamma_{2}(s)$ parametrized by arclength parameter have common curvature and torsion, there exist $A \in \mathrm{SO}(3)$ and $\boldsymbol{b} \in \mathbb{R}^{3}$ such that $\gamma_{2}=A \gamma_{1}+\boldsymbol{b}$.

Proof. Let κ, τ and \mathcal{F}_{1} be the curvature, torsion and the Frenet frame of γ_{1}, respectively. Then the Frenet frame of $\gamma_{2}=A \gamma_{1}+\boldsymbol{b}$ $\left(A \in \mathrm{SO}(3), \boldsymbol{b} \in \mathbb{R}^{3}\right)$ is $\mathcal{F}_{2}=A \mathcal{F}_{1}$. Hence both \mathcal{F}_{1} and \mathcal{F}_{2} satisfy (1.16), and then γ_{1} and γ_{2} have common curvature and torsion.

Conversely, assume γ_{1} and γ_{2} have common curvature and torsion. Then the frenet frame $\mathcal{F}_{1}, \mathcal{F}_{2}$ both satisfy (1.16). Let \mathcal{F} be the unique solution of (1.16) with $\mathcal{F}\left(t_{0}\right)=\mathrm{id}$. Then by the proof of Corollary 1.7, we have $\mathcal{F}_{j}(t)=\mathcal{F}_{j}\left(t_{0}\right) \mathcal{F}(t)(j=$ $1,2)$. In particular, since $\mathcal{F}_{j} \in \operatorname{SO}(3), \mathcal{F}_{2}(t)=A \mathcal{F}_{1}(t)(A:=$
$\left.\mathcal{F}_{2}\left(t_{0}\right) \mathcal{F}_{1}\left(t_{0}\right)^{-1} \in \mathrm{SO}(3)\right)$. Comparing the first column of these, $\gamma_{2}^{\prime}(s)=A \gamma_{1}^{\prime}(t)$ holds. Integrating this, the conclusion follows.

Theorem 1.11 (The fundamental theorem for space curves). For given C^{∞}-functions $\kappa(s)$ and $\tau(s)$ defined on I such that $\kappa(s)>0$ on I. Then there exists a space curve $\gamma(s)$ parametrized by arc-length whose curvature and torsion are κ and τ, respectively. Moreover, such a curve is unique up to transformation $\boldsymbol{x} \mapsto A \boldsymbol{x}+\boldsymbol{b}\left(A \in \mathrm{SO}(3), \boldsymbol{b} \in \mathbb{R}^{3}\right)$ of \mathbb{R}^{3}.

Proof. We have already shown the uniqueness in Proposition 1.10. We shall prove the existence: Let $\Omega(s)$ be as in (1.16), and $\mathcal{F}(s)$ the solution of (1.16) with $\mathcal{F}\left(s_{0}\right)=$ id. Since Ω is skewsymmetric, $\mathcal{F}(s) \in \mathrm{SO}(3)$ by Proposition 1.4. Denoting the column vectors of \mathcal{F} by $\boldsymbol{e}, \boldsymbol{n}, \boldsymbol{b}$, and let

$$
\gamma(s):=\int_{s_{0}}^{s} \boldsymbol{e}(\sigma) d \sigma
$$

Then \mathcal{F} is the Frenet frame of γ, and κ, and τ are the curvature and torsion of γ, respectively (Problem 1-2).

Exercises

1-1 Verify that Z in (1.14) coincides with $\partial \widetilde{X} / \partial \alpha_{j}$.
1-2 Complete the proof of Theorem 1.11.
1-3 Find an explicit expression of a space curve $\gamma(s)$ parametrized the arc-length s, whose curvature and torsion are $a /\left(1+s^{2}\right)$ and $b /\left(1+s^{2}\right)$, respectively, where a and b are constants.

2 Integrability Conditions

Let $U \subset \mathbb{R}^{m}$ be a domain of $\left(\mathbb{R}^{m} ; u^{1}, \ldots, u^{m}\right)$ and consider m tuple of $n \times n$-matrix valued C^{∞}-maps
(2.1) $\quad \Omega_{j}: \mathbb{R}^{m} \supset U \longrightarrow \mathrm{M}_{n}(\mathbb{R}) \quad(j=1, \ldots, m)$.

In this section, we consider an initial value problem of a system of linear partial differential equations

$$
\begin{equation*}
\frac{\partial X}{\partial u^{j}}=X \Omega_{j} \quad(j=1, \ldots, m), \quad X\left(\mathrm{P}_{0}\right)=X_{0} \tag{2.2}
\end{equation*}
$$

where $\mathrm{P}_{0}=\left(u_{0}^{1}, \ldots, u_{0}^{m}\right) \in U$ is a fixed point, X is an $n \times n$ matrix valued unknown, and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$. The chain rule yields the following:
Lemma 2.1. Let $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ be a C^{∞}-map satisfying (2.2). Then for each smooth path $\gamma: I \rightarrow U$ defined on an interval $I \subset \mathbb{R}, \hat{X}:=X \circ \gamma: I \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfies the ordinary differential equation
(2.3) $\frac{d \hat{X}}{d t}(t)=\hat{X}(t) \Omega_{\gamma}(t) \quad\left(\Omega_{\gamma}(t):=\sum_{j=1}^{n} \Omega_{j} \circ \gamma(t) \frac{d u^{j}}{d t}(t)\right)$ on I, where $\gamma(t)=\left(u^{1}(t), \ldots, u^{m}(t)\right)$.
Proposition 2.2. If a $C^{\infty}{ }_{-m a p} X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ defined on a domain $U \subset \mathbb{R}^{m}$ satisfies (2.2) with $X_{0} \in \mathrm{GL}(n, \mathbb{R})$, then

[^2]$X(\mathrm{P}) \in \mathrm{GL}(n, \mathbb{R})$ for all $\mathrm{P} \in U$. In addition, if $\Omega_{j}(j=$ $1, \ldots, m)$ are skew-symmetric and $X_{0} \in \mathrm{SO}(n)$, then $X(\mathrm{P}) \in$ $\mathrm{SO}(n)$ holds for all $\mathrm{P} \in U$.
Proof. Since U is connected, there exists a continuous path $\gamma_{0}:[0,1] \rightarrow U$ such that $\gamma_{0}(0)=\mathrm{P}_{0}$ and $\gamma_{0}(1)=\mathrm{P}$. By Whitney's approximation theorem (cf. Theorem 10.16 in [2-3]), there exists a smooth path $\gamma:[0,1] \rightarrow U$ joining P_{0} and P approximating γ_{0}. Since $\hat{X}:=X \circ \gamma$ satisfies (2.3) with $\hat{X}(0)=X_{0}$, Proposition 1.3 yields that $\operatorname{det} \hat{X}(1) \neq 0$ whenever $\operatorname{det} X_{0} \neq 0$. The latter half follows from Proposition 1.4.
Proposition 2.3. If a matrix-valued C^{∞} function $X: U \rightarrow$ $\mathrm{GL}(n, \mathbb{R})$ satisfies (2.2), it holds that
(2.4) $\quad \frac{\partial \Omega_{j}}{\partial u^{k}}-\frac{\partial \Omega_{k}}{\partial u^{j}}=\Omega_{j} \Omega_{k}-\Omega_{k} \Omega_{j}$
for each (j, k) with $1 \leqq j<k \leqq m$.
Proof. Differentiating (2.2) by u^{k}, we have
$$
\frac{\partial^{2} X}{\partial u^{k} \partial u^{j}}=\frac{\partial X}{\partial u^{k}} \Omega_{j}+X \frac{\partial \Omega_{j}}{\partial u^{k}}=X\left(\frac{\partial \Omega_{j}}{\partial u^{k}}+\Omega_{k} \Omega_{j}\right) .
$$

On the other hand, switching the roles of j and k, we get

$$
\frac{\partial^{2} X}{\partial u^{j} \partial u^{k}}=X\left(\frac{\partial \Omega_{k}}{\partial u^{j}}+\Omega_{j} \Omega_{k}\right) .
$$

Since X is of class C^{∞}, the left-hand sides of these equalities coincide, and so are the right-hand sides. Since $X \in \operatorname{GL}(n, \mathbb{R})$, the conclusion follows.

The equality (2.4) is called the integrability condition or compatibility condition of (2.2).

Lemma 2.4. Let $\Omega_{j}: U \rightarrow \mathrm{M}_{n}(\mathbb{R})(j=1, \ldots, m)$ be C^{∞}-maps defined on a domain $U \subset \mathbb{R}^{m}$ which satisfy (2.4). Then for each smooth map

$$
\sigma: D \ni(t, w) \longmapsto \sigma(t, w)=\left(u^{1}(t, w), \ldots, u^{m}(t, w)\right) \in U
$$

defined on a domain $D \subset \mathbb{R}^{2}$, it holds that

$$
\begin{equation*}
\frac{\partial T}{\partial w}-\frac{\partial W}{\partial t}-T W+W T=0 \tag{2.5}
\end{equation*}
$$

where
(2.6) $T:=\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}, \quad W:=\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial w} \quad\left(\widetilde{\Omega}_{j}:=\Omega_{j} \circ \sigma\right)$.

Proof. By the chain rule, we have

$$
\begin{aligned}
\frac{\partial T}{\partial w} & =\sum_{j, k=1}^{m} \frac{\partial \Omega_{j}}{\partial u^{k}} \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial w \partial t} \\
\frac{\partial W}{\partial t} & =\sum_{j, k=1}^{m} \frac{\partial \Omega_{j}}{\partial u^{k}} \frac{\partial u^{k}}{\partial t} \frac{\partial u^{j}}{\partial w}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial t \partial w} \\
& =\sum_{j, k=1}^{m} \frac{\partial \Omega_{k}}{\partial u^{j}} \frac{\partial u^{j}}{\partial t} \frac{\partial u^{k}}{\partial w}+\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial^{2} u^{j}}{\partial t \partial w} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{\partial T}{\partial w} & -\frac{\partial W}{\partial t}=\sum_{j, k=1}^{m}\left(\frac{\partial \Omega_{j}}{\partial u^{k}}-\frac{\partial \Omega_{k}}{\partial u^{j}}\right) \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} \\
& =\sum_{j, k=1}^{m}\left(\widetilde{\Omega}_{j} \widetilde{\Omega}_{k}-\widetilde{\Omega}_{k} \widetilde{\Omega}_{j}\right) \frac{\partial u^{k}}{\partial w} \frac{\partial u^{j}}{\partial t} \\
& =\left(\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}\right)\left(\sum_{k=1}^{m} \widetilde{\Omega}_{k} \frac{\partial u^{k}}{\partial w}\right)-\left(\sum_{k=1}^{m} \widetilde{\Omega}_{k} \frac{\partial u^{k}}{\partial w}\right)\left(\sum_{j=1}^{m} \widetilde{\Omega}_{j} \frac{\partial u^{j}}{\partial t}\right) \\
& =T W-W T . \quad \square
\end{aligned}
$$

Integrability of linear systems. In this section, we shall prove the following

Theorem 2.5. Let $\Omega_{j}: U \rightarrow \mathrm{M}_{n}(\mathbb{R})(j=1, \ldots, m)$ be C^{∞} functions defined on a simply connected domain $U \subset \mathbb{R}^{m}$ satisfying (2.4). Then for each $\mathrm{P}_{0} \in U$ and $X_{0} \in \mathrm{M}_{n}(\mathbb{R})$, there exists the unique $n \times n$-matrix valued function $X: U \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfying (2.2). Moreover,

- if $X_{0} \in \mathrm{GL}(n, \mathbb{R}), X(\mathrm{P}) \in \mathrm{GL}(n, \mathbb{R})$ holds on U,
- if $X_{0} \in \mathrm{SO}(n)$ and $\Omega_{j}(j=1, \ldots, m)$ are skew-symmetric matrices, $X \in \mathrm{SO}(n)$ holds on U.
Proof. The latter half is a direct conclusion of Proposition 2.2. We show the existence of X : Take a smooth path $\gamma:[0,1] \rightarrow U$ joining P_{0} and P . Then by Theorem 1.9, there exists a unique C^{∞}-map $\hat{X}:[0,1] \rightarrow \mathrm{M}_{n}(\mathbb{R})$ satisfying (2.3) with initial condition $\hat{X}(0)=X_{0}$.

We shall show that the value $\hat{X}(1)$ does not depend on choice of paths joining P_{0} and P . To show this, choose another smooth path $\tilde{\gamma}$ joining P_{0} and P . Since U is simply connected, there exists a homotopy between γ and $\tilde{\gamma}$, that is, there exists a continuous map $\sigma_{0}:[0,1] \times[0,1] \ni(t, w) \mapsto \sigma(t, w) \in U$ satisfying

$$
\begin{align*}
\sigma_{0}(t, 0) & =\gamma(t), & \sigma_{0}(t, 1) & =\tilde{\gamma}(t) \tag{2.7}\\
\sigma_{0}(0, w) & =\mathrm{P}_{0}, & \sigma_{0}(1, w) & =\mathrm{P}
\end{align*}
$$

Then, by Whitney's approximation theorem (Theorem 10.16 in [2-3]) again, there exists a smooth map $\sigma:[0,1] \times[0,1] \rightarrow U$ satisfying the same boundary conditions as (2.7). We set T and W as in (2.6). For each fixed $w \in[0,1]$, there exists $X_{w}:[0,1] \rightarrow$ $\mathrm{M}_{n}(\mathbb{R})$ such that

$$
\frac{d X_{w}}{d t}(t)=X_{w}(t) T(t, w), \quad X_{w}(0)=X_{0}
$$

Since $T(t, w)$ is smooth in t and w, the map

$$
\check{X}:[0,1] \times[0,1] \ni(t, w) \mapsto X_{w}(t) \in \mathrm{M}_{n}(\mathbb{R})
$$

is a smooth map. To show that $\hat{X}(1)=\check{X}(1,0)$ does not depend on choice of paths, it is sufficient to show that

$$
\begin{equation*}
\frac{\partial \check{X}}{\partial w}=\check{X} W \tag{2.8}
\end{equation*}
$$

holds on $[0,1] \times[0,1]$. In fact, by $(2.7), W(1, w)=0$ for all $w \in[0,1]$, and then (2.8) implies that $\check{X}(1, w)$ is constant.

We prove (2.8): By definition, it holds that

$$
\begin{equation*}
\frac{\partial \check{X}}{\partial t}=\check{X} T, \quad \check{X}(0, w)=X_{0} \tag{2.9}
\end{equation*}
$$

for each $w \in[0,1]$. Hence by (2.5),

$$
\begin{aligned}
\frac{\partial}{\partial t} \frac{\partial \check{X}}{\partial w} & =\frac{\partial^{2} \check{X}}{\partial t \partial w}=\frac{\partial^{2} \check{X}}{\partial w \partial t}=\frac{\partial}{\partial w} \check{X} T \\
& =\frac{\partial \check{X}}{\partial w} T+\check{X} \frac{\partial T}{\partial w}=\frac{\partial \check{X}}{\partial w} T+\check{X}\left(\frac{\partial W}{\partial t}+T W-W T\right) \\
& =\frac{\partial \check{X}}{\partial w} T+\check{X} \frac{\partial W}{\partial t}+\frac{\partial \check{X}}{\partial t} W-\check{X} W T \\
& =\frac{\partial}{\partial t}(\check{X} W)+\left(\frac{\partial \check{X}}{\partial w}-\check{X} W\right) T .
\end{aligned}
$$

So, the function $Y_{w}(t):=\partial \check{X} / \partial w-\check{X} W$ satisfies the ordinary differential equation

$$
\frac{d Y_{w}}{d t}(t)=Y_{w}(t) T(t, w), \quad Y_{w}(0)=O
$$

holds for each $w \in[0,1]$. Thus, by the uniqueness of the solution, $Y_{w}(t)=O$ holds on $[0,1] \times[0,1]$. Hence we have (2.8).

Thus, $\hat{X}(1)$ depends only the end point P of the path. Hence we can set $X(\mathrm{P}):=\hat{X}(1)$ for each $\mathrm{P} \in U$, and obtain a map $X: U \rightarrow \mathrm{M}_{m}(\mathbb{R})$. Finally we show that X is the desired solution. The initial condition $X\left(\mathrm{P}_{0}\right)=X_{0}$ is obviously satisfied. On the other hand, if we set

$$
Z(\delta):=X\left(u^{1}, \ldots, u^{j}+\delta, \ldots, u^{m}\right)-X\left(u^{1}, \ldots, u^{m}\right),
$$

$Z(\delta)$ satisfies the equation (2.3) for the path $\gamma(\delta):=\left(u^{1}, \ldots, u^{j}+\right.$ δ, \ldots, u^{m}) with $Z(0)=X(\mathrm{P})$. Since $\Omega_{\gamma}=\Omega_{j}$,

$$
\frac{\partial X}{\partial u^{j}}=\frac{d Z}{d \delta}=Z \Omega_{j}=X \Omega_{j}
$$

which completes the proof.

Application: Poincaré's lemma.

Theorem 2.6 (Poincaré's lemma). If a differential 1-form

$$
\omega=\sum_{j=1}^{m} \alpha_{j}\left(u^{1}, \ldots, u^{m}\right) d u^{j}
$$

defined on a simply connected domain $U \subset \mathbb{R}^{m}$ is closed, that is, $d \omega=0$ holds, then there exists a C^{∞}-function f on U such that $d f=\omega$. Such a function f is unique up to additive constants.
Proof. The assumption is equivalent to

$$
\begin{equation*}
\frac{\partial \alpha_{j}}{\partial u_{i}}-\frac{\partial \alpha_{i}}{\partial u_{j}}=0 \quad(1 \leqq i<j \leqq m) \tag{2.10}
\end{equation*}
$$

Consider a system of linear partial differential equations with unknown ξ, a 1×1-matrix valued function (i.e. a real-valued function), as
(2.11) $\quad \frac{\partial \xi}{\partial u^{j}}=\xi \alpha_{j} \quad(j=1, \ldots, m), \quad \xi\left(u_{0}^{1}, \ldots, u_{0}^{m}\right)=1$.

Then it satisfies (2.4) because of (2.10). Hence by Theorem 2.5, there exists a smooth function $\xi\left(u^{1}, \ldots, u^{m}\right)$ satisfying (2.11).

In particular, Proposition 1.3 yields $\xi=\operatorname{det} \xi$ never vanishes. Here, $\xi\left(u_{0}^{1}, \ldots, u_{0}^{m}\right)=1>0$ means that $\xi>0$ holds on U. Letting $f:=\log \xi$, we have the function f satisfying $d f=\omega$.

Next, we show the uniqueness: if two functions f and g satisfy $d f=d g=\omega$, it holds that $d(f-g)=0$. Hence by connectivity of $U, f-g$ must be constant.

Application: Conjugation of Harmonic functions. In this paragraph, we identify \mathbb{R}^{2} with the complex plane \mathbb{C}. It is well-known that a function

$$
\text { (2.12) } f: U \ni u+\mathrm{i} v \longmapsto \xi(u, v)+\mathrm{i} \eta(u, v) \in \mathbb{C} \quad(\mathrm{i}=\sqrt{-1})
$$

defined on a domain $U \subset \mathbb{C}$ is holomorphic if and only if it satisfies the following relation, called the Cauchy-Riemann equations:

$$
\begin{equation*}
\frac{\partial \xi}{\partial u}=\frac{\partial \eta}{\partial v}, \quad \frac{\partial \xi}{\partial v}=-\frac{\partial \eta}{\partial u} . \tag{2.13}
\end{equation*}
$$

Definition 2.7. A function $f: U \rightarrow \mathbb{R}$ defined on a domain $U \subset \mathbb{R}^{2}$ is said to be harmonic if it satisfies

$$
\Delta f=f_{u u}+f_{v v}=0 .
$$

The operator Δ is called the Laplacian.
Proposition 2.8. If function f in (2.12) is holomorphic, $\xi(u, v)$ and $\eta(u, v)$ are harmonic functions.

Proof. By (2.13), we have

$$
\xi_{u u}=\left(\xi_{u}\right)_{u}=\left(\eta_{v}\right)_{u}=\eta_{v u}=\eta_{u v}=\left(\eta_{u}\right)_{v}=\left(-\xi_{v}\right)_{v}=-\xi_{v v} .
$$

Hence $\Delta \xi=0$. Similarly,

$$
\eta_{u u}=\left(-\xi_{v}\right)_{u}=-\xi_{v u}=-\xi_{u v}=-\left(\xi_{u}\right)_{v}=-\left(\eta_{v}\right)_{v}=-\eta_{v v}
$$

Thus $\Delta \eta=0$.
Theorem 2.9. Let $U \subset \mathbb{C}=\mathbb{R}^{2}$ be a simply connected domain and $\xi(u, v)$ a C^{∞}-function harmonic on U^{4}. Then there exists a C^{∞} harmonic function η on U such that $\xi(u, v)+\mathrm{i} \eta(u, v)$ is holomorphic on U.

Proof. Let $\alpha:=-\xi_{v} d u+\xi_{u} d v$. Then by the assumption,

$$
d \alpha=\left(\xi_{v v}+\xi_{u u}\right) d u \wedge d v=0
$$

holds, that is, α is a closed 1 -form. Hence by simple connectivity of U and the Poincaré's lemma (Theorem 2.6), there exists a function η such that $d \eta=\eta_{u} d u+\eta_{v} d v=\alpha$. Such a function η satisfies (2.13) for given ξ. Hence $\xi+\mathrm{i} \eta$ is holomorphic in $u+\mathrm{i} v$.

Definition 2.10. The harmonic function η in Theorem 2.9 is called the conjugate harmonic function of ξ.

The fundamental theorem for Surfaces. Let $p: U \rightarrow \mathbb{R}^{3}$ be a parametrization of a regular surface defined on a domain $U \subset \mathbb{R}^{2}$. That is, $p=p(u, v)$ is a C^{∞}-map such that p_{u} and p_{v} are linearly independent at each point on U. Then $\nu:=$ $\left(p_{u} \times p_{v}\right) /\left|p_{u} \times p_{v}\right|$ is the unit normal vector field to the surface.

[^3]The matrix-valued function $\mathcal{F}:=\left(p_{u}, p_{v}, \nu\right): U \rightarrow \mathrm{M}_{3}(\mathbb{R})$ is called the Gauss frame of p. We set

$$
\begin{align*}
d s^{2} & :=E d u^{2}+2 F d u d v+G d v^{2} \\
I I & :=L d u^{2}+2 M d u d v+N d v^{2} \tag{2.14}
\end{align*}
$$

where

$$
\begin{array}{rlrlrl}
E & =p_{u} \cdot p_{u} & F & =p_{u} \cdot p_{v} & & =p_{v} \cdot p_{v} \\
L & =p_{u u} \cdot \nu & M & =p_{u v} \cdot \nu & & N
\end{array}=p_{v v} \cdot \nu .
$$

We call $d s^{2}$ (resp. II) the first (resp. second) fundamental form. Note that linear independence of p_{u} and p_{v} implies

$$
E>0
$$

$$
G>0
$$

and

$$
E G-F^{2}>0
$$

Set

$$
\begin{array}{ll}
\Gamma_{11}^{1}:=\frac{G E_{u}-2 F F_{u}+F E_{v}}{2\left(E G-F^{2}\right)}, & \Gamma_{11}^{2}:=\frac{2 E F_{u}-E E_{v}-F E_{u}}{2\left(E G-F^{2}\right)}, \\
\Gamma_{12}^{1}=\Gamma_{21}^{1}:=\frac{G E_{v}-F G_{u}}{2\left(E G-F^{2}\right)}, & \Gamma_{12}^{2}=\Gamma_{21}^{2}:=\frac{E G_{u}-F E_{v}}{2\left(E G-F^{2}\right)} \tag{2.16}\\
\Gamma_{22}^{1}:=\frac{2 G F_{v}-G G_{u}-F G_{v}}{2\left(E G-F^{2}\right)}, & \Gamma_{22}^{2}:=\frac{E G_{v}-2 F F_{v}+F G_{u}}{2\left(E G-F^{2}\right)} .
\end{array}
$$

and

$$
A=\left(\begin{array}{ll}
A_{1}^{1} & A_{2}^{1} \tag{2.17}\\
A_{1}^{2} & A_{2}^{2}
\end{array}\right):=\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right)^{-1}\left(\begin{array}{cc}
L & M \\
M & N
\end{array}\right) .
$$

The functions $\Gamma_{i j}^{k}$ and the matrix A are called the Christoffel symbols and the Weingarten matrix. We state the following the fundamental theorem for surfaces, and give a proof (for a special case) in the following section.

Theorem 2.11 （The Fundamental Theorem for Surfaces）．Let $p: U \ni(u, v) \mapsto p(u, v) \in \mathbb{R}^{3}$ be a parametrization of a regular surface defined on a domain $U \subset \mathbb{R}^{2}$ ．Then the Gauss frame $\mathcal{F}:=\left\{p_{u}, p_{v}, \nu\right\}$ satisfies the equations
（2．18）$\quad \frac{\partial \mathcal{F}}{\partial u}=\mathcal{F} \Omega, \quad \frac{\partial \mathcal{F}}{\partial v}=\mathcal{F} \Lambda$,

$$
\Omega:=\left(\begin{array}{ccc}
\Gamma_{11}^{1} & \Gamma_{12}^{1} & -A_{1}^{1} \\
\Gamma_{11}^{2} & \Gamma_{12}^{2} & -A_{1}^{2} \\
L & M & 0
\end{array}\right), \quad \Lambda:=\left(\begin{array}{ccc}
\Gamma_{21}^{1} & \Gamma_{22}^{1} & -A_{2}^{1} \\
\Gamma_{21}^{2} & \Gamma_{22}^{2} & -A_{2}^{2} \\
M & N & 0
\end{array}\right),
$$

where $\Gamma_{j k}^{i}(i, j, k=1,2), A_{l}^{k}(k, l=1,2)$ and L, M, N are the Christoffel symbols，the entries of the Weingarten matrix and the entries of the second fundamental form，respectively．

Theorem 2．12．Let $U \subset \mathbb{R}^{2}$ be a simply connected domain，E ， $F, G, L, M, N C^{\infty}$－functions satisfying（2．15），and $\Gamma_{i j}^{k}, A_{i}^{j}$ the functions defined by（2．16）and（2．17），respectively．If Ω and Λ satisfies

$$
\begin{equation*}
\Omega_{v}-\Lambda_{u}=\Omega \Lambda-\Lambda \Omega \tag{2.19}
\end{equation*}
$$

there exists a parameterization $p: U \rightarrow \mathbb{R}^{3}$ of regular surface whose fundamental forms are given by（2．14）．Moreover，such a surface is unique up to orientation preserving isometries of \mathbb{R}^{3} ．

References

［2－1］梅原雅顕•山田光太郎：曲線と曲面—微分幾何的アプローチ（改訂版），裳華房，2014．
［2－2］Masaaki Umehara and Kotaro Yamada，Differential Geometry of Curves and Surfaces，World Scientific， 2017.
［2－3］John M．Lee，Introduction to Smooth Manifolds，Graduate Texts in Mathematics 218，Springer－Verlag， 2013.
［2－4］Lars V．Ahlfors，Complex Analysis，Dover Publications， 1980.

Exercises

2－1 Let $\xi(u, v)=\log \sqrt{u^{2}+v^{2}}$ be a function defined on $U=$ $\mathbb{R}^{2} \backslash\{(0,0)\}$
（1）Show that ξ is harmonic on U ．
（2）Find the conjugate harmonic function η of ξ on

$$
V=\mathbb{R}^{2} \backslash\{(u, 0) \mid u \leqq 0\} \subset U
$$

（3）Show that there exists no conjugate harmonic func－ tion of ξ defined on U ．

2－2 Let $\theta=\theta(u, v)$ be a smooth function on a domain $U \subset \mathbb{R}^{2}$ such that $0<\theta<\pi$ ，and

$$
d s^{2}:=d u^{2}+2 \cos \theta d u d v+d v^{2}, \quad I I:=2 \sin \theta d u d v .
$$

Show that the condition（2．19）is equivalent to

$$
\theta_{u v}=\sin \theta
$$

3 Flatness.

Riemannian manifolds. A Riemannian manifold (resp. pseudo Riemannian manifold) is a pair (M, g) of a C^{∞}-manifold M and a Riemannian metric (resp. pseudo Riemannian metric) on M, that is, g is a collection $\left\{g_{\mathrm{P}} ; \mathrm{P} \in M\right\}$ of positive definite (resp. non-degenerate) inner products on $T_{\mathrm{P}} M$ such that, for each pair of C^{∞}-vector fields (X, Y) on M, the map

$$
M \ni \mathrm{P} \longmapsto g_{\mathrm{P}}\left(X_{\mathrm{P}}, Y_{\mathrm{P}}\right) \in \mathbb{R}
$$

is a C^{∞}-function, where X_{P} and Y_{P} are values of X and Y at P , respectively.
Example 3.1 ((Pseudo) Euclidean spaces.). Let \mathbb{R}_{s}^{n} be a pseudo Euclidean vector space with inner product \langle,$\rangle of signature$ $(n-s, s)$. Identifying the tangent space $T_{\mathrm{P}} \mathbb{R}_{s}^{n}$ of \mathbb{R}_{s}^{n} itself by translations, \langle,$\rangle gives a pseudo Riemannian metric of the man-$ ifold \mathbb{R}_{s}^{n}. Such a pseudo Riemannian manifold is called the pseudo Euclidean space of signature $(n-s, s)$. In particular, $\mathbb{R}^{n}:=\mathbb{R}_{0}^{n}$, which is a Riemannian manifold, is called the Euclidean space.

Example 3.2. Let M be a submanifold of the Euclidean space \mathbb{R}^{n}, that is, M is a subset of \mathbb{R}^{n} and has a structure of C^{∞} manifold such that the inclusion map $\iota: M \rightarrow \mathbb{R}^{n}$ is an immersion. Then $T_{\mathrm{P}} M$ is considered as a linear subspace of $\mathbb{R}^{n}(=$ $T_{\mathrm{P}} \mathbb{R}^{n}$), and then the restriction of the inner product \langle,$\rangle of \mathbb{R}^{n}$ gives a Riemannian metric on M. Such a Riemannian metric is called the induced metric.

[^4]Example 3.3 (Spheres). For positive real number k, a subset $S^{n}(k):=\left\{\boldsymbol{x} \in \mathbb{R}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=1 / k\right\}$ is an n-dimensional C^{∞} submanifold (hypersurface) ${ }^{5}$ of the Euclidean space \mathbb{R}^{n+1}, called the n-dimensional sphere of curvature ${ }^{6} k$.
Example 3.4. A linear subspace L of \mathbb{R}_{s}^{n} is said to be nondegenerate if the restriction of the inner product \langle,$\rangle of \mathbb{R}_{s}^{n}$ to L is non-degenerate. A submanifold $M \subset \mathbb{R}_{s}^{n}$ is said to be non-degenerate if $T_{\mathrm{P}} M$ is a non-degenerate subspace of \mathbb{R}_{s}^{n} for each $\mathrm{P} \in M$. In this case, the restriction of \langle,$\rangle on T_{\mathrm{P}} M$ is a (non-degenerate) inner product of $T_{\mathrm{P}} M$.
Example 3.5 (Hyperbolic spaces.). For positive real number k, a subset

$$
H^{n}(-k):=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-1 / k, x^{0}>0\right\}
$$

is a connected C^{∞}-hypersurface of the Lorentz-Minkowski space \mathbb{R}_{1}^{n+1}, where \langle,$\rangle is the inner product of signature (-,+, \ldots,+)$, and $\boldsymbol{x}={ }^{t}\left(x^{0}, x^{1}, \ldots, x^{n}\right)$. The tangent space $T_{\boldsymbol{x}} H^{n}(-k)=$ $\left\{\boldsymbol{v} \in \mathbb{R}_{1}^{n+1} ;\langle\boldsymbol{v}, \boldsymbol{x}\rangle=0\right\}=\boldsymbol{x}^{\perp}$ is non-degenerate subspace in \mathbb{R}_{1}^{n+1} and the restriction of \langle,$\rangle to T_{\boldsymbol{x}} H^{n}(-k)$ is positive definite. Thus, we obtain a Riemannian manifold $H^{n}(-k)$, which is called the hyperbolic space of curvature $-k$.

Geodesics. Let $M \subset \mathbb{R}_{s}^{n+1}$ be a non-degenerate submanifold of dimension m. By non-degeneracy, the orthogonal decompo-

[^5]sition
\[

$$
\begin{equation*}
\mathbb{R}_{s}^{n+1}=T_{\mathrm{P}} \mathbb{R}_{s}^{n+1}=T_{\mathrm{P}} M \oplus N_{\mathrm{P}},\left(N_{\mathrm{P}}:=\left(T_{\mathrm{P}} M\right)^{\perp}\right) \tag{3.1}
\end{equation*}
$$

\]

holds for each $\mathrm{P} \in M$. Take a curve γ on M, that is, γ is a C^{∞}-map

$$
\gamma: J \ni t \longmapsto \gamma(t) \in M \subset \mathbb{R}_{s}^{n+1}
$$

where $J \subset \mathbb{R}$ is an interval. From now on, by a word smooth, we mean "of class C^{∞} ".

Definition 3.6. Let $\gamma: J \rightarrow M \subset \mathbb{R}_{s}^{n+1}$ be a smooth curve on M. A smooth vector field on M along γ is a map

$$
X: J \ni t \longmapsto X(t) \in T_{\gamma(t)} M \subset \mathbb{R}_{s}^{n+1}
$$

which is of class C^{∞} as a map from J to \mathbb{R}_{s}^{n+1}.
Example 3.7. Let $\gamma: J \rightarrow M \subset \mathbb{R}_{s}^{n+1}$ be a smooth curve. Then

$$
\dot{\gamma}: J \ni t \longmapsto \dot{\gamma}(t)=\frac{d \gamma}{d t}(t) \in T_{\gamma(t)} M
$$

is a smooth vector field along γ, called the velocity vector field of the curve γ.
Definition 3.8. Let X be a smooth vector field along a smooth curve γ on M. Then the vector field

$$
\frac{\nabla}{d t} X(t):=\nabla_{\dot{\gamma}(t)} X(t):=[\dot{X}(t)]^{\mathrm{T}} \in T_{\gamma(t)} M
$$

of M along γ is called the covariant derivative of X along γ, where $[*]^{\mathrm{T}}$ denotes the tangential component as in (3.1).

Definition 3.9. The covariant derivative

$$
\begin{equation*}
\frac{\nabla}{d t} \dot{\gamma}(t)=\nabla_{\dot{\gamma}(t)} \dot{\gamma}(t):=[\ddot{\gamma}(t)]^{\mathrm{T}} \in T_{\gamma(t)} M \tag{3.2}
\end{equation*}
$$

of $\dot{\gamma}$ along γ is called the acceleration of the curve γ.
Definition 3.10. A curve γ on a non-degenerate submanifold $M \subset \mathbb{R}_{s}^{n+1}$ is called a geodesic if $\nabla_{\dot{\gamma}} \dot{\gamma}$ vanishes identically.

Local and intrinsic expressions. Let $M \subset \mathbb{R}_{s}^{n+1}$ be a nondegenerate submanifold and take a local coordinate neighborhood $\left(U ; u^{1}, \ldots, u^{m}\right)$ of M, where $m=\operatorname{dim} M$. Then the inclusion map $\iota: M \rightarrow \mathbb{R}_{s}^{n+1}$ induces an immersion
(3.3) $\quad f: U \ni\left(u^{1}, \ldots, u^{m}\right) \longmapsto f\left(u^{1}, \ldots, u^{m}\right) \in M \subset \mathbb{R}_{s}^{n+1}$,
here we identify the coordinate neighborhood $U \subset M$ with a region of \mathbb{R}^{m}. We call such an f a (local) parametrization of M. Under this parametrization, the canonical basis $\left\{\left(\partial / \partial u^{j}\right)_{\mathrm{P}}\right\}$ of $T_{\mathrm{P}} M$ (in the abstract way) is identified with

$$
\left\{\frac{\partial f}{\partial u^{1}}(\mathrm{P}), \ldots, \frac{\partial f}{\partial u^{m}}(\mathrm{P})\right\} \subset T_{\mathrm{P}} M \subset \mathbb{R}_{s}^{n+1}
$$

We set, for $i, j=1, \ldots, m$,

$$
\begin{equation*}
g_{i j}:=g\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}\right)=\left\langle\frac{\partial f}{\partial u^{i}}, \frac{\partial f}{\partial u^{j}}\right\rangle\left(=g_{j i}\right) \tag{3.4}
\end{equation*}
$$

which is a component of the induced metric $g:=\left.\langle\rangle\right|_{,T_{\mathrm{P}} M}$ with respect to the canonical basis $\left\{\partial / \partial u^{j}\right\}$. Since the induced metric
is non-degenerate, the $m \times m$-matrix $\left(g_{i j}\right)$ is a regular matrix at each point $\mathrm{P} \in M$. In particular, when the induced metric is positive definite, $\left(g_{i j}\right)$ is positive definite. We denote by $\left(g^{i j}\right)$ the inverse matrix of $\left(g_{i j}\right)$:

$$
\sum_{k=1}^{m} g_{i k} g^{k j}=\delta_{i}^{j}= \begin{cases}1 & (i=j) \tag{3.5}\\ 0 & (i \neq j)\end{cases}
$$

Then, as we have seen in Section 5 of "Advanced Topics in Geometry A1, 2019" (the previous quarter), we have
Lemma 3.11. Let γ is a curve in $U \subset M$ and express

$$
\gamma(t)=f\left(u^{1}(t), \ldots, u^{m}(t)\right),
$$

where $f: U \rightarrow M$ is a local parametrization of M as in (3.3).
(3.6) $\quad \dot{\gamma}=\sum_{j=1}^{m} \frac{d u^{j}}{d t} \frac{\partial f}{\partial u^{j}}$

$$
\begin{equation*}
\nabla_{\dot{\gamma}} \dot{\gamma}=\sum_{j=1}^{m}\left(\frac{d^{2} u^{j}}{d t^{2}}+\sum_{k, l=1}^{m} \Gamma_{k l}^{j} \frac{d u^{k}}{d t} \frac{d u^{l}}{d t}\right) \frac{\partial f}{\partial u^{j}} \tag{3.7}
\end{equation*}
$$

hold, where

$$
\begin{equation*}
\Gamma_{i j}^{k}=\frac{1}{2} \sum_{l=1}^{m} g^{k l}\left(\frac{\partial g_{i l}}{\partial u^{j}}+\frac{\partial g_{l j}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{l}}\right) . \tag{3.8}
\end{equation*}
$$

The functions $\Gamma_{i j}^{k}$ of (3.8) are called the Christoffel symbols with respect to the local coordinate system $\left(u^{1}, \ldots, u^{m}\right)$.

Christoffel symbols. By definition (3.8), the Christoffel symbols $\Gamma_{i j}^{k}$ are functions defined on the coordinate neighborhood U which are determined only by the coefficients $\left(g_{i j}\right)$ of the (pseudo) Riemannian metric. That is, the definition of $\Gamma_{i j}^{k}$ does not require the knowledge of γ.

Proposition 3.12. Let $M \subset \mathbb{R}_{s}^{n+1}$ be a non-degenerate submanifold with induced metric \langle,$\rangle , and take a local coordinate$ system $\left(U ; u^{1}, \ldots, u^{m}\right)$ of M. We write parametrization of M with respect to $\left(u^{j}\right)$ as (3.3). Then the Christoffel symbols $\Gamma_{i j}^{k}$ with respect to $\left(u^{j}\right)$ satisfy

$$
\begin{gather*}
\Gamma_{i j}^{k}=\Gamma_{j i}^{k} \tag{3.9}\\
\left\langle\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle=\sum_{k=1}^{m} g_{l k} \Gamma_{i j}^{k} \tag{3.10}\\
\frac{\partial g_{i j}}{\partial u^{l}}=\sum_{k=1}^{m}\left(g_{k j} \Gamma_{i l}^{k}+g_{i k} \Gamma_{j l}^{k}\right) \tag{3.11}
\end{gather*}
$$

where $g_{i j}$'s are the components of the induced metric defined in (3.4).

Proof. The first equality (3.9) is obvious from the definition
(3.8) and the symmetricity of $\left(g_{i j}\right)$. Next, we prove (3.10). Since

$$
\begin{aligned}
& \left\langle\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle=\frac{\partial}{\partial u^{i}}\left\langle\frac{\partial f}{\partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle-\left\langle\frac{\partial f}{\partial u^{j}}, \frac{\partial^{2} f}{\partial u^{i} \partial u^{l}}\right\rangle \\
& =\frac{\partial g_{j l}}{\partial u^{i}}-\left\langle\frac{\partial f}{\partial u^{j}}, \frac{\partial^{2} f}{\partial u^{l} \partial u^{i}}\right\rangle \\
& =\frac{\partial g_{l j}}{\partial u^{i}}-\frac{\partial}{\partial u^{l}}\left\langle\frac{\partial f}{\partial u^{j}}, \frac{\partial f}{\partial u^{i}}\right\rangle+\left\langle\frac{\partial^{2} f}{\partial u^{l} \partial u^{j}}, \frac{\partial f}{\partial u^{i}}\right\rangle \\
& =\frac{\partial g_{l j}}{\partial u^{i}}-\frac{\partial g_{j i}}{\partial u^{l}}+\left\langle\frac{\partial^{2} f}{\partial u^{j} \partial u^{l}}, \frac{\partial f}{\partial u^{i}}\right\rangle \\
& =\frac{\partial g_{l j}}{\partial u^{i}}-\frac{\partial g_{j i}}{\partial u^{l}}+\frac{\partial}{\partial u^{j}}\left\langle\frac{\partial f}{\partial u^{l}}, \frac{\partial f}{\partial u^{i}}\right\rangle-\left\langle\frac{\partial f}{\partial u^{l}}, \frac{\partial^{2} f}{\partial u^{j} \partial u^{i}}\right\rangle \\
& =\frac{\partial g_{l j}}{\partial u^{i}}-\frac{\partial g_{i j}}{\partial u^{l}}+\frac{\partial g_{l i}}{\partial u^{j}}-\left\langle\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle
\end{aligned}
$$

we have

$$
\begin{aligned}
& \left\langle\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}, \frac{\partial f}{\partial u^{l}}\right\rangle=\frac{1}{2}\left(\frac{\partial g_{l j}}{\partial u^{i}}+\frac{\partial g_{l i}}{\partial u^{j}}-\frac{\partial g_{i j}}{\partial u^{l}}\right) \\
& =\frac{1}{2} \sum_{p=1}^{m} \delta_{l}^{p}\left(\frac{\partial g_{p j}}{\partial u^{i}}+\frac{\partial g_{p i}}{\partial u^{j}}-\frac{\partial g_{i j}}{\partial u^{p}}\right) \\
& =\frac{1}{2} \sum_{k, p=1}^{m} g_{l p} g^{p k}\left(\frac{\partial g_{p j}}{\partial u^{i}}+\frac{\partial g_{p i}}{\partial u^{j}}-\frac{\partial g_{i j}}{\partial u^{p}}\right)=\sum_{k=1}^{m} g_{k l} \Gamma_{i j}^{k}
\end{aligned}
$$

Using this, we have

$$
\begin{aligned}
\frac{\partial g_{i j}}{\partial u^{l}} & =\frac{\partial}{\partial u^{l}}\left\langle\frac{\partial f}{\partial u^{i}}, \frac{\partial f}{\partial u^{j}}\right\rangle=\left\langle\frac{\partial^{2} f}{\partial u^{l} \partial u^{i}}, \frac{\partial f}{\partial u^{j}}\right\rangle+\left\langle\frac{\partial f}{\partial u^{i}}, \frac{\partial^{2} f}{\partial u^{l} \partial u^{j}}\right\rangle \\
& =\sum_{k=1}^{m} g_{k j} \Gamma_{l i}^{k}+\sum_{k=1}^{m} g_{i k} \Gamma_{l j}^{k},
\end{aligned}
$$

proving (3.11).

Flatness. We shall prove the following:
Theorem 3.13. Let (M, g) be a Riemannian manifold of dimension m (resp. pseudo Riemannian manifold of signature $(m-s, s))$, and $\left(U ; u^{1}, \ldots, u^{m}\right)$ a local coordinate system. Assume there exists an immersion $f: U \rightarrow \mathbb{R}^{m}$ (resp. \mathbb{R}_{s}^{m}) into the Euclidean space (resp. the pseudo Euclidean space) with the same dimension m as M whose induced metric is g. Then the Christoffel symbols $\Gamma_{i j}^{k}$ with respect to the coordinate system (u^{j}) satisfy

$$
\begin{equation*}
\frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}}-\frac{\partial \Gamma_{i k}^{l}}{\partial u^{j}}+\sum_{p=1}^{m}\left(\Gamma_{i j}^{p} \Gamma_{p k}^{l}-\Gamma_{i k}^{p} \Gamma_{p j}^{l}\right)=0 \tag{3.12}
\end{equation*}
$$

holds for $i, j, k, l=1, \ldots, m$. Conversely, when U is simply connected and (3.12) holds, there exists an immersion $f: U \rightarrow$ \mathbb{R}^{m} (resp. $\left.\mathbb{R}_{s}^{m}\right)$ such that the induced metric by f coincides with the metric g.

Lemma 3.14. Let $f: U \rightarrow \mathbb{R}^{m}$ (resp. \mathbb{R}_{s}^{m}) be an immersion of a domain $\left(U ; u^{1}, \ldots, u^{m}\right) \subset \mathbb{R}^{m}$, and set

$$
\mathcal{F}:=\left(\frac{\partial f}{\partial u^{1}}, \ldots, \frac{\partial f}{\partial u^{m}}\right): U \rightarrow \mathrm{M}_{m}(\mathbb{R})
$$

Then \mathcal{F} satisfies

$$
\frac{\partial \mathcal{F}}{\partial u^{j}}=\mathcal{F} \Omega_{j}, \quad \Omega_{j}:=\left(\begin{array}{ccc}
\Gamma_{1 j}^{1} & \ldots & \Gamma_{m j}^{1} \tag{3.13}\\
\vdots & \ddots & \vdots \\
\Gamma_{1 j}^{m} & \ldots & \Gamma_{m j}^{m}
\end{array}\right)
$$

for $j=1, \ldots, m$, where $\Gamma_{i j}^{k}$'s are the Christoffel symbols of the induced metric with respect to the coordinate system $\left(u^{j}\right)$. Moreover, the Christoffel symbols satisfy (3.12).
Proof. Problem 3-1.
Lemma 3.15. Let $A \in \mathrm{M}_{m}(\mathbb{R})$ be a symmetric matrix such that the quadratic form $\boldsymbol{x} \mapsto{ }^{t} \boldsymbol{x} A \boldsymbol{x}$ has a signature $(s, m-s)$. Then there exists a regular matrix P such that

$$
{ }^{t} P J_{s, m-s} P=A, \quad J_{s, m-s}=\left(\begin{array}{cc}
-\mathrm{id}_{s} & O \\
O & \operatorname{id}_{m-s}
\end{array}\right)
$$

where id_{k} is the $k \times k$ identity matrix and O 's are zero matrices. Proof. By the assumptions, A has $(m-s)$ positive eigenvalues and s negative eigenvalues, and A can be diagonalized by an orthogonal matrix Q :

$$
A={ }^{t} Q\left(\begin{array}{cc}
\Lambda_{-} & O \\
O & \Lambda_{+}
\end{array}\right) Q
$$

where $\Lambda_{-}:=\operatorname{diag}\left(-a_{1}^{2}, \ldots,-a_{s}^{2}\right), \Lambda_{+}:=\operatorname{diag}\left(a_{s+1}^{2}, \ldots, a_{m}^{2}\right)$ and a_{j} 's $(j=1, \ldots, m)$ are non-zero real numbers. Let $D:=$ $\operatorname{diag}\left(a_{1}, \ldots, a_{m}\right)$ and $P:=D Q$, we have the conclusion.

Proof of Theorem 3.13. The first assertion has been proved in Lemma 3.14. We assume (3.12) holds for each $i, j, k, l=$ $1, \ldots, m$, and fix $\mathrm{P}_{0} \in U$. We let $A=\left(g_{i j}\left(\mathrm{P}_{0}\right)\right)$, which is a symmetric matrix such that the corresponding quadratic form is of signature $(m-s, s)$. Then there exists a regular matrix P as in Lemma 3.15. Then by Theorem 2.5, there exists $\mathcal{F}: U \rightarrow$ $\mathrm{M}_{m}(\mathbb{R})$ satisfying (3.13) with initial condition $\mathcal{F}\left(\mathrm{P}_{0}\right)=P$. We set

$$
\omega:=\sum_{j=1}^{m} \boldsymbol{f}_{j} d u^{j}, \quad \text { where } \quad \mathcal{F}=\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) .
$$

Then by (3.9), we know that ω is a vector-valued closed one form. Hence by Poincaré's Lemma (Theorem 2.6), there exists a C^{∞}-function $f: M \rightarrow \mathbb{R}_{s}^{m}$ such that $d f=\omega$, that is,

$$
\frac{\partial f}{\partial u^{j}}=\boldsymbol{f}_{j} \quad(j=1, \ldots, m)
$$

We shall prove that this f is the desired immersion, that is, our goal is to prove

$$
g_{i j}=\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle \quad(i, j=1, \ldots, m) .
$$

To do it, we set

$$
\kappa_{i j}:=g_{i j}-\left\langle\boldsymbol{f}_{i}, \boldsymbol{f}_{j}\right\rangle \quad(i, j=1, \ldots, m)
$$

So, by a choice of the initial condition, we have
(3.14)

$$
\kappa_{i j}\left(\mathrm{P}_{0}\right)=0
$$

$$
(i, j=1, \ldots, m)
$$

Then, by (3.13) and (3.11), it holds that
(3.15) $\quad \frac{\partial \kappa_{i j}}{\partial u^{l}}=\sum_{k=1}^{m}\left(\kappa_{i k} \Gamma_{j l}^{k}+\kappa_{k j} \Gamma_{i l}^{k}\right) \quad(i, j, l=1, \ldots, m)$.

Let $\mathrm{P} \in U$ and take a path $\gamma(t)(0 \leqq t \leqq 1)$ in U satisfying $\gamma(0)=\mathrm{P}_{0}$ and $\gamma(1)=\mathrm{P}$. Then the functions $\tilde{\kappa}_{i j}(t)$ satisfy a system of ordinary differential equations
$\frac{d \tilde{\kappa}_{i j}}{d t}=\sum_{l=1}^{m} \sum_{k=1}^{m}\left(\tilde{\kappa}_{i k} \Gamma_{j l}^{k} \circ \gamma+\tilde{\kappa}_{k j} \Gamma_{i l}^{k} \circ \gamma\right) \frac{d u^{l}}{d t} \quad(i, j=1, \ldots, m)$,
where $\gamma(t)=\left(u^{1}(t), \ldots, u^{m}(t)\right)$. Since $\tilde{\kappa}_{i j}(t)=0(i, j=1, \ldots, m)$ satisfy the equation with initial condition (3.14), uniqueness theorem implies that $\tilde{\kappa}_{i j}(1)=\kappa_{i j}(\mathrm{P})=0$, proving the theorem.
Remark 3.16. As we see in the following section, the condition (3.12) does not depend on choice of local coordinate systems. We say a (pseudo) Riemmanian manifold (M, g) to be flat if (3.12) holds on M.

Exercises
3-1 Show Lemma 3.14.
3-2 Let $M:=\mathbb{R}_{+} \times \mathbb{R}=\left\{\left(u^{1}, u^{2}\right) ; u^{1}>0\right\}$, and consider a Riemannian metric g on M whose components are

$$
g_{11}=1, \quad g_{12}=0, \quad g_{22}=\left\{\varphi\left(u^{1}\right)\right\}^{2}
$$

where $\varphi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is a smooth function.

- Find a function φ satisfying (3.12) and $\lim _{t \rightarrow 0+} \varphi(t)=0$.
- Under the situation above, find $f: U \rightarrow \mathbb{R}^{2}$ on an appropriate domain U on M such that the induced metric coincides with g.

4 The Curvature Tensor.

Change of Coordinate Systems. Throughout this section, we let (M, g) be a (pseudo) Riemannian m-manifold and take a local coordinate system $\left(U ; u^{1}, \ldots, u^{m}\right)$ on a neighborhood of $\mathrm{P} \in U$. Choose another coordinate system $\left(V ; x^{1}, \ldots, x^{m}\right)$ on a neighborhood V of P . Then the coordinate change

$$
\text { (4.1) } \begin{aligned}
\boldsymbol{x}= & \left(x^{1}, \ldots, x^{m}\right) \\
& \mapsto \boldsymbol{u}(\boldsymbol{x})=\left(u^{1}\left(x^{1}, \ldots, x^{m}\right), \ldots, u^{m}\left(x^{1}, \ldots, x^{m}\right)\right)
\end{aligned}
$$

is defined as a C^{∞}-map between certain domains in \mathbb{R}^{m}. Since the transformation (4.1) is a diffeomorphism, the inverse

$$
\text { (4.2) } \quad \begin{aligned}
\boldsymbol{u}= & \left(u^{1}, \ldots, u^{m}\right) \\
& \mapsto \boldsymbol{x}(\boldsymbol{u})=\left(x^{1}\left(u^{1}, \ldots, u^{m}\right), \ldots, x^{m}\left(u^{1}, \ldots, u^{m}\right)\right)
\end{aligned}
$$

is also C^{∞}. Thus, the Jacobian matrix

$$
J:=\left(\begin{array}{ccc}
\frac{\partial u^{1}}{\partial x^{1}} & \cdots & \frac{\partial u^{1}}{\partial x^{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial u^{m}}{\partial x^{1}} & \cdots & \frac{\partial u^{m}}{\partial x^{m}}
\end{array}\right)=\left(\frac{\partial u^{i}}{\partial x^{a}}\right)_{i, a=1, \ldots, m}
$$

[^6]is invertible on each point of the domain of $\boldsymbol{u}(\boldsymbol{x})$, and the Jacobian matrix of the inverse map $\boldsymbol{x}=\boldsymbol{x}(\boldsymbol{u})$ is obtained as
\[

\left($$
\begin{array}{ccc}
\frac{\partial x^{1}}{\partial u^{1}} & \cdots & \frac{\partial x^{1}}{\partial u^{m}} \\
\vdots & \ddots & \vdots \\
\frac{\partial x^{m}}{\partial u^{1}} & \cdots & \frac{\partial x^{m}}{\partial u^{m}}
\end{array}
$$\right)=\left(\frac{\partial x^{a}}{\partial u^{i}}\right)_{a, i=1, ···, m}=J^{-1}
\]

where the inverse matrix of the right-hand side is evaluated at $\boldsymbol{u}(\boldsymbol{x})$, that is,
(4.3) $\quad \sum_{i=1}^{m} \frac{\partial x^{a}}{\partial u^{i}} \frac{\partial u^{i}}{\partial x^{b}}=\delta_{b}^{a}, \quad$ and $\quad \sum_{a=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial x^{a}}{\partial u^{j}}=\delta_{j}^{i}$
hold, where δ denotes Kronecker's delta.
Components of Vector fields and Differential forms. Let X be a vector field on M. Then it can be expressed on coordinate neighborhoods $(U ; \boldsymbol{u})$ and $(V ; \boldsymbol{x})$ as

$$
X=\sum_{i=1}^{m} X^{i} \frac{\partial}{\partial u^{i}}=\sum_{a=1}^{m} \widetilde{X}^{a} \frac{\partial}{\partial x^{a}} .
$$

Since

$$
\begin{equation*}
\frac{\partial}{\partial u^{i}}=\sum_{a=1}^{m} \frac{\partial x^{a}}{\partial u^{i}} \frac{\partial}{\partial x^{a}} \quad \text { and } \quad \frac{\partial}{\partial x^{a}}=\sum_{i=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial}{\partial u^{i}} \tag{4.4}
\end{equation*}
$$

we have the following transformation formula for the components of X :

$$
\begin{equation*}
\widetilde{X}^{a}=\sum_{i=1}^{m} \frac{\partial x^{a}}{\partial u^{i}} X^{i}, \quad X^{i}=\sum_{a=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \widetilde{X}^{a} . \tag{4.5}
\end{equation*}
$$

Thus,
Lemma 4.1. The components $\left(g_{i j}\right)$ and $\left(\tilde{g}_{a b}\right)$ of the (pseudo) Riemannian metric g with respect to the coordinates $\left(u^{1}, \ldots, u^{m}\right)$ and $\left(x^{1}, \ldots, x^{m}\right)$, respectively, are related as

$$
\begin{equation*}
\tilde{g}_{a b}=\sum_{i, j=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} g_{i j} . \tag{4.6}
\end{equation*}
$$

Moreover, the inverse matrices $\left(g^{i j}\right)$ and $\left(\tilde{g}^{a b}\right)$ of $\left(g_{i j}\right)$ and $\left(\tilde{g}_{a b}\right)$, respectively, satisfy

$$
g^{i j}=\sum_{a, b=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} \tilde{g}^{a b} .
$$

Proof. By (4.4), we have

$$
\begin{aligned}
\tilde{g}_{a b}:=g\left(\frac{\partial}{\partial x^{a}}, \frac{\partial}{\partial x^{b}}\right) & =\sum_{i, j=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} g\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}\right) \\
& =\sum_{i, j=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} g_{i j}
\end{aligned}
$$

proving the first assertion. The second assertion follows from (4.3).

Corollary 4.2. The Christoffel symbols $\Gamma_{i j}^{k}$ as in (3.8) with respect to the coordinate system $\left(u^{1}, \ldots, u^{m}\right)$ and the Christoffel symbols $\widetilde{\Gamma}_{a b}^{c}$ with respect to $\left(x^{1}, \ldots, x^{m}\right)$ are related as

$$
\widetilde{\Gamma}_{a b}^{c}=\sum_{k=1}^{m} \frac{\partial x^{c}}{\partial u^{k}}\left[\frac{\partial^{2} u^{k}}{\partial x^{a} \partial x^{b}}+\sum_{i, j=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} \Gamma_{i j}^{k}\right] .
$$

Proof. The definition (3.8) and Lemma 4.1 yields the conclusion through a direct computation.

The following corollary is essentially a rephrasing of Theorem 3.13. Namely the proof of the corollary gives an alternative proof of Theorem 3.13.
Corollary 4.3. Let (M, g) be an m-dimensional (pseudo) Riemannian manifold. Then, for each P , there exists a coordinate neighborhood $\left(U ; u^{1}, \ldots, u^{m}\right)$ of P such that the components $\left(g_{i j}\right)$ of the metric g satisfy $g_{i j}= \pm \delta_{i j}$ if and only if the Christoffel symbols $\widetilde{\Gamma}_{a b}^{c}$ of any coordinate system $\left(x^{1}, \ldots, x^{m}\right)$ satisfy (3.12).
Proof. Let $\left(V ; x^{1}, \ldots, x^{m}\right)$ be a coordinate system at P , and denote the Christoffel symbol with respect to $\left(x^{a}\right)$ by $\widetilde{\Gamma}_{a b}^{c}$. Consider a system of partial differential equations

$$
\begin{equation*}
\frac{\partial \mathcal{F}}{\partial x^{a}}=\mathcal{F} \Omega_{a} \tag{4.7}
\end{equation*}
$$

where Ω_{a} 's are matrices defined by (3.13) for $\left\{\widetilde{\Gamma}_{a b}^{c}\right\}$ and $\mathcal{F}=$ $\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{m}\right)$. Then the integrability condition of (4.7) is equivalent to (3.12) for the Christoffel symbols $\left\{\widetilde{\Gamma}_{a b}^{c}\right\}$ satisfies (3.12).

That is, if $\left\{\widetilde{\Gamma}_{a b}^{c}\right\}$ satisfies (3.12), there exists a solution \mathcal{F} (4.7) with the initial value $\mathcal{F}(\mathrm{P})=F_{0}$. In addition, if F_{0} is a regular matrix, \mathcal{F} is valued in $\operatorname{GL}(m, \mathbb{R})$.

Moreover, noticing $\widetilde{\Gamma}_{a b}^{c}=\widetilde{\Gamma}_{b a}^{c}$, there exists a vector-valued function $\boldsymbol{u}=\boldsymbol{u}(\boldsymbol{x})$ such that

$$
d \boldsymbol{u}=\sum_{a=1}^{m} \boldsymbol{v}_{a} d x^{a}
$$

because the right-hand side is a closed one form. Since \mathcal{F} is the Jacobian matrix of $\boldsymbol{x} \mapsto \boldsymbol{u}$, which is valued in $\mathrm{GL}(m, \mathbb{R})$, $\boldsymbol{u}=\left(u^{1}, \ldots, u^{m}\right)$ is a new coordinate system around P .

By Corollary 4.2, the Christoffel symbols with respect to $\left(u^{1}, \ldots, u^{m}\right)$ vanishes identically. This means that $g_{i j}$'s are constants because of (3.11). Since $\left(g_{i j}\right)$ is a constant matrix, a linear transformation of the coordinate system yields the conclusion.

The Curvature Tensor. Set
(4.8)

$$
R_{i j k l}:=\sum_{q=1}^{m} g_{q l}\left(\frac{\partial \Gamma_{k i}^{q}}{\partial u^{j}}-\frac{\partial \Gamma_{k j}^{q}}{\partial u^{i}}+\sum_{p=1}^{m}\left(\Gamma_{i k}^{p} \Gamma_{p j}^{q}-\Gamma_{k j}^{p} \Gamma_{p i}^{q}\right)\right)
$$

for $i, j, k, l=1, \ldots, m$, where $\Gamma_{i j}^{k}$,s are the Christoffel symbols. Obviously, it holds that

Lemma 4.4. The (pseudo) Riemannian manifold (M, g) is flat if and only if, for each point $\mathrm{P} \in M$, there exists a coordinate
system (u^{j}) around P such that $R_{i j k l}(i, j, k, l=1, \ldots, m)$ vanish identically.

Here, the condition "there exists a coordinate system" in Lemma 4.4 can be replaced by "for any coordinate systems", because of the following lemma:

Lemma 4.5. Let $\left(x^{1}, \ldots, x^{m}\right)$ be another coordinate system, and define $\widetilde{R}_{a b c d}$ by (4.8) replacing Γ with $\widetilde{\Gamma}$, u with x. Then

$$
\begin{equation*}
\widetilde{R}_{a b c d}=\sum_{i, j, k, l=1}^{m} \frac{\partial u^{i}}{\partial x^{a}} \frac{\partial u^{j}}{\partial x^{b}} \frac{\partial u^{k}}{\partial x^{c}} \frac{\partial u^{l}}{\partial x^{d}} R_{i j k l} \tag{4.9}
\end{equation*}
$$

holds for each $a, b, c, d=1, \ldots, m$.
Proof. By tedious but simple computation, the conclusion follows.

The relation (4.9) looks similar to (4.6), where the metric g is a notion which is independent of choice of coordinates. In fact, by (4.5) and (4.3), we have

Corollary 4.6. Let $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ and $\boldsymbol{w} \in T_{\mathrm{P}} M$ and write them by

$$
\begin{aligned}
\boldsymbol{x} & =\sum_{i=1}^{m} x^{i}\left(\frac{\partial}{\partial u^{i}}\right)_{\mathrm{P}}, & \boldsymbol{y} & =\sum_{j=1}^{m} y^{j}\left(\frac{\partial}{\partial u^{j}}\right)_{\mathrm{P}} \\
\boldsymbol{z} & =\sum_{k=1}^{m} z^{k}\left(\frac{\partial}{\partial u^{k}}\right)_{\mathrm{P}}, & \boldsymbol{w} & =\sum_{l=1}^{m} w^{l}\left(\frac{\partial}{\partial u^{l}}\right)_{\mathrm{P}} .
\end{aligned}
$$

Then

$$
\begin{equation*}
R(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}, \boldsymbol{w}):=\sum_{i, j, k, l=1}^{m} x^{i} y^{j} z^{k} w^{l} R_{i j k l} \tag{4.10}
\end{equation*}
$$

does not depend on choice of coordinates.
Thus, we can define a 4-linear map

$$
R: T_{\mathrm{P}} M \times T_{\mathrm{P}} M \times T_{\mathrm{P}} M \times T_{\mathrm{P}} M \longrightarrow \mathbb{R}
$$

and

$$
R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \longrightarrow C^{\infty}(M)
$$

where $C^{\infty}(M)$ is the commutative ring consists of C^{∞}-functions on M, and $\mathfrak{X}(M)$ is the $C^{\infty}(M)$-module consists of smooth vector fields on M. In fact, for X, Y, Z, W, we define

$$
R(X, Y, Z, W): M \ni \mathrm{P} \mapsto R\left(X_{\mathrm{P}}, Y_{\mathrm{P}}, Z_{\mathrm{P}}, W_{\mathrm{P}}\right) \in \mathbb{R}
$$

Then R is $C^{\infty}(M)$-linear in each entry, namely, for X, Y, Z ,$W \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$,

$$
\text { (4.11) } \begin{aligned}
R(f X, Y, Z, W) & =R(X, f Y, Z, W)
\end{aligned}=R(X, Y, f Z, W) ~ 子 ~(X, Y, Z, f W)=f R(X, Y, Z, W)
$$

holds. We call this R the curvature tensor of (M, g). Theorem 3.13 can be restated as following "coordinate free" form.
Corollary 4.7. The Riemannian manifold is flat if and only if its curvature tensor vanishes identically.

Covariant Derivatives. To define the curvature tensor in the coordinate-free form, we introduce the notion of covariant derivatives of vector fields.

For a vector field Y and tangent vector $\boldsymbol{v} \in T_{\mathrm{P}} M$, we define

$$
\begin{equation*}
\nabla_{\boldsymbol{v}} Y:=\sum_{j=1}^{m}\left[\sum_{k=1}^{m} v^{k}\left(\frac{\partial Y^{j}}{\partial u^{k}}+\sum_{l=1}^{m} \Gamma_{l k}^{j} Y^{l}\right)\right]\left(\frac{\partial}{\partial u^{j}}\right)_{\mathrm{P}} \tag{4.12}
\end{equation*}
$$

where $Y=\sum_{i=1}^{m} Y^{i}\left(\partial / \partial u^{i}\right)$ and $\boldsymbol{v}=\sum_{i=1}^{m} v^{i}\left(\partial / \partial u^{i}\right)_{\mathrm{P}}$, and $\Gamma_{i j}^{k}$'s are the Christoffel symbols defined in (3.8).
Proposition 4.8. Assume M is a (non-degenerate) submanifold of the (pseudo) Euclidean space \mathbb{R}_{s}^{n+1}, and take a vector field X on M defined on a neighborhood of $\mathrm{P} \in M$. Then

$$
\nabla_{\boldsymbol{v}} X=\left[D_{\boldsymbol{v}} X\right]^{\mathrm{T}}
$$

holds, where $D \boldsymbol{v} X$ is a directional derivative of \mathbb{R}_{s}^{n+1}-valued function with respect to \boldsymbol{v}, and $[*]^{\mathrm{T}}$ denotes the tangential component of it, as in (3.1).

Proof. Let $f=f\left(u^{1}, \ldots, u^{m}\right)$ be a parametrization of M with respect to the local coordinate system $\left(u^{j}\right)$ and we let

$$
\left[\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}\right]^{\mathrm{T}}=\sum_{k=1}^{m} G_{i j}^{k} \frac{\partial f}{\partial u^{k}}
$$

Then by (3.10) and (3.4), we have

$$
\sum_{k=1}^{m} g_{k l} G_{i j}^{k}=\sum_{k=1}^{m} g_{k l} \Gamma_{i j}^{k}
$$

Since $\left(g_{i j}\right)$ is a regular matrix, we have $G_{i j}^{k}=\Gamma_{i j}^{k}$. In other words,

$$
\begin{equation*}
\left[\frac{\partial^{2} f}{\partial u^{i} \partial u^{j}}\right]^{\mathrm{T}}=\sum_{k=1}^{m} \Gamma_{i j}^{k} \frac{\partial f}{\partial u^{k}} \tag{4.13}
\end{equation*}
$$

holds. Thus, identifying $\partial / \partial u^{j}$ with $\partial f / \partial u^{j}$, we have

$$
\left[D_{\partial / \partial u^{i}} \frac{\partial f}{\partial u^{j}}\right]^{\mathrm{T}}=\left[\frac{\partial^{2} f}{\partial u^{i} \partial u^{k}}\right]^{\mathrm{T}}=\sum_{k=1}^{m} \Gamma_{i j}^{k} \frac{\partial f}{\partial u^{k}}=\nabla_{\partial / \partial u^{i}} \frac{\partial f}{\partial u^{j}} .
$$

Applying this, the conclusion follows.
Using covariant derivative, we obtain the bilinear

$$
\text { (4.14) } \quad \nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \mapsto \nabla_{X} Y \in \mathfrak{X}(M),
$$

which is also called the covariant derivative, alternatively, the Riemannian connection or the Levi-Civita connection.

Proposition 4.9. For each $X, Y \in \mathfrak{X}(M)$ and $f \in C^{\infty}(M)$,

$$
\begin{align*}
\nabla_{f X} Y & =f \nabla_{X} Y, \tag{4.15}\\
\nabla_{X} f Y & =(X f) Y+f \nabla_{X} Y, \tag{4.16}\\
\nabla_{X} Y-\nabla_{Y} X & =[X, Y] \tag{4.17}\\
X g(Y, Z) & =g\left(\nabla_{X} Y, Z\right)+g\left(Y, \nabla_{X} Z\right), \tag{4.18}
\end{align*}
$$

where [,] denotes the Lie-bracket for vector fields.

Proof. The first two assertions are direct conclusion of the definition of ∇. The third assertion follows because $\Gamma_{i j}^{k}=\Gamma_{j i}^{k}$ (cf. (3.9)) The last assertion can be proved by

$$
\frac{\partial g_{i j}}{\partial u^{l}}=\sum_{k=1}^{m}\left(g_{k j} \Gamma_{i l}^{k}+g_{i k} \Gamma_{j l}^{k}\right)
$$

as seen in (3.11).

Proposition 4.10. For X, Y, Z and $W \in \mathfrak{X}(M)$, it holds that (4.19) $R(X, Y, Z, W)=g\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, W\right)$, where R is the curvature tensor as in (4.10).

Proof. Denote the right-hand side of (4.19) by $S(X, Y, Z, W)$. Then by Proposition 4.9, it holds that

$$
\text { (4.19a) } \begin{array}{r}
S(f X, Y, Z, W)= \\
S(X, f Y, Z, W)=S(X, Y, f Z, W) \\
\\
S(X, Y, Z, f W)=f S(X, Y, Z, W) .
\end{array}
$$

Then by (4.19a) it is sufficient to show the conclusion for

$$
\begin{equation*}
X=\frac{\partial}{\partial u^{i}}, \quad Y=\frac{\partial}{\partial u^{j}}, \quad Z=\frac{\partial}{\partial u^{k}}, \quad W=\frac{\partial}{\partial u^{l}} . \tag{4.20}
\end{equation*}
$$

In fact,

$$
\begin{aligned}
\nabla_{\partial / \partial u^{j}} \frac{\partial}{\partial u^{i}} & =\sum_{l=1}^{m} \Gamma_{i j}^{l} \frac{\partial}{\partial u^{k}}, \\
\nabla_{\partial / \partial u^{k}} \nabla_{\partial / \partial u^{j}} \frac{\partial}{\partial u^{i}} & =\sum_{l=1}^{m}\left[\frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}} \frac{\partial}{\partial u^{l}}+\Gamma_{i j}^{l} \nabla_{\partial / \partial u^{k}} \frac{\partial}{\partial u^{l}}\right] \\
& =\left[\frac{\partial \Gamma_{i j}^{l}}{\partial u^{k}}+\Gamma_{i j}^{p} \Gamma_{p k}^{l}\right] \frac{\partial}{\partial u^{l}},
\end{aligned}
$$

and

$$
\left[\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}\right]=0
$$

yield the conclusion.

Exercises
4-1 Prove Corollary 4.2.
4-2 We consider a Riemannian metric g on a domain $U \subset \mathbb{R}^{2}$ with

$$
g_{11}=g_{22}=e^{2 \sigma}, \quad g_{12}=g_{21}=0
$$

with respect to the canonical coordinate system $\left(u^{1}, u^{2}\right)$, where σ is a smooth function on U.
(1) Show that (U, g) is flat if and only if σ is a harmonic function, that is, it satisfies

$$
\frac{\partial^{2} \sigma}{\left(\partial u^{1}\right)^{2}}+\frac{\partial^{2} \sigma}{\left(\partial u^{2}\right)^{2}}=0
$$

(2) Compute $R_{i j k l}$ for

$$
e^{2 \sigma}=\frac{4}{\left(1+k\left(u^{2}+v^{2}\right)\right)^{2}}
$$

where k is a constant and $(u, v)=\left(u^{1}, u^{2}\right)$ is the canonical coordinate system on \mathbb{R}^{2}.

5 Sectional Curvature.

Throughout this section, we let (M, g) an m-dimensional (pseudo) Riemannian manifold, and ∇ the covariant derivative defined in (4.12).

Tensors. A correspondence $S: M \ni \mathrm{P} \mapsto S_{\mathrm{P}}$ of a point P and a multi-linear map $S_{\mathrm{P}}:\left(T_{\mathrm{P}} M\right)^{k} \rightarrow \mathbb{R}$ is called a (k-th order covariant) tensor field or a tensor on M. For such a tensor field S trivially induces a map
(5.1) $\quad \hat{S}:(\mathfrak{X}(M))^{p} \ni\left(X_{1}, \ldots, X_{p}\right) \mapsto S\left(X_{1}, \ldots, X_{p}\right) \in \mathcal{F}(M)$
where $\mathfrak{X}(M)$ is the set $\left(C^{\infty}(M)\right.$-module) of C^{∞}-vector fields of M, and $\mathcal{F}(M)$ is the set of real-valued function on M. The tensor field S is said to be smooth of class C^{∞} if $S\left(X_{1}, \ldots, X_{p}\right)$ as in (5.1) is of class C^{∞} for an arbitrary X_{1}, \ldots, X_{p}.

Example 5.1. The (pseudo) Riemannian metric g is a smooth tensor field.

Example 5.2. A smooth 1-form on M is a smooth, first-order covariant tensor field on M.

We denote by

$$
\text { (5.2) } \quad \Gamma\left(\otimes^{p} T^{*} M\right)=\Gamma\left(T^{*} M \otimes \cdots \otimes T^{*} M\right)
$$

[^7]the set of p-th order covariant tensor fields on $M .{ }^{7}$ The set $\Gamma\left(\otimes^{p} T^{*} M\right)$ is a vector space over \mathbb{R}. Moreover, for each $S \in$ $\Gamma\left(\otimes^{p} T^{*} M\right)$ and $f \in C^{\infty}(M), f S:=\left(\mathrm{P} \mapsto f(\mathrm{P}) S_{\mathrm{P}}\right)$ is also an element of $\Gamma\left(\otimes^{p} T^{*} M\right)$. That is, $\Gamma\left(\otimes^{p} T^{*} M\right)$ is a $C^{\infty}(M)$ module.

Lemma 5.3. Let S be a p-th covariant tensor field on M and $\hat{S}: \mathfrak{X}(M)^{p} \rightarrow C^{\infty}(M)$ the map induced by S as in (5.1) Then for an arbitrary $f \in C^{\infty}(M)$, it holds that
(5.3) $\hat{S}\left(X_{1}, \ldots, f X_{j}, \ldots, X_{p}\right)=f \hat{S}\left(X_{1}, \ldots, X_{j}, \ldots, X_{p}\right)$,
where $X_{1}, \ldots, X_{p} \in \mathfrak{X}(M)$.
Proof. For each $\mathrm{P} \in M$,

$$
\begin{aligned}
S\left(X_{1}, \ldots, f\right. & \left.X_{j}, \ldots, X_{p}\right)(\mathrm{P}) \\
& =S_{\mathrm{P}}\left(\left(X_{1}\right)_{\mathrm{P}}, \ldots, f(\mathrm{P})\left(X_{j}\right)_{\mathrm{P}}, \ldots,\left(X_{p}\right)_{\mathrm{P}}\right) \\
& =f(\mathrm{P}) S_{\mathrm{P}}\left(\left(X_{1}\right)_{\mathrm{P}}, \ldots,\left(X_{j}\right)_{\mathrm{P}}, \ldots,\left(X_{p}\right)_{\mathrm{P}}\right) \\
& =(f S)\left(X_{1}, \ldots, X_{p}\right)(\mathrm{P}) .
\end{aligned}
$$

Proposition 5.4. A multi-linear map $\hat{S}:(\mathfrak{X}(M))^{p} \rightarrow C^{\infty}(M)$ is induced from a certain $S \in \Gamma\left(\otimes^{p} T^{*} M\right)$ as in (5.1) if \hat{S} is $C^{\infty}(M)$-multi-linear, that is, (5.3) holds for any $f \in C^{\infty}(M)$ and $X_{1}, \ldots, X_{p} \in \mathfrak{X}(M)$.

[^8] notations.

Proof. Assume that (5.1) holds. We fix $\mathrm{P} \in M$ and take a local coordinate system $\left(U ; u^{1}, \ldots, u^{m}\right)$ of M around P. According to this coordinate system, we set $X_{j}=\sum_{l=1}^{m} \xi_{j}^{l}\left(\partial / \partial u^{l}\right)(j=$ $1, \ldots, p$), where ξ_{j}^{l} 's are C^{∞}-functions on U. Then by (5.1),

$$
\hat{S}\left(X_{1}, \ldots, X_{p}\right)=\sum \xi_{1}^{i_{1}} \ldots \xi_{p}^{i_{p}} \hat{S}\left(\frac{\partial}{\partial u^{i_{1}}}, \ldots, \frac{\partial}{\partial u^{i_{p}}}\right)
$$

holds, where the sum in the right-hand side is taken over $i_{j}=$ $1, \ldots, m(j=1, \ldots, p)$. This means the value of the left-hand side at P is determined by $\xi_{j}^{i_{l}}(\mathrm{P})$, which depend only on $\left(X_{j}\right)_{\mathrm{P}}$. Hence, for each $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p} \in T_{\mathrm{P}} M$, we can define

$$
S_{\mathrm{P}}\left(\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}\right):=\hat{S}\left(X_{1}, \ldots, X_{m}\right)(\mathrm{P})
$$

where X_{j} is an arbitrary vector field on M such that $X_{j}(\mathrm{P})=$ \boldsymbol{v}_{j}. Then $S: \mathrm{P} \mapsto S_{\mathrm{P}}$ is the desired one.

If \hat{S} is induced from a tensor field S, we say that \hat{S} itself is a tensor field. From now on, we denote \hat{S} in (5.1) by S for a simplicity. Then, for each $S \in \Gamma\left(\otimes^{p} T^{*} M\right)$, the C^{∞}-multi-linear map

$$
\begin{equation*}
S:(\mathfrak{X}(M))^{p} \longrightarrow C^{\infty}(M) \tag{5.4}
\end{equation*}
$$

is induced.
Taking a local coordinate system $\left(U ; u^{1}, \ldots, u^{m}\right)$ on M, we set
(5.5) $S_{i_{1}, \ldots, i_{p}}:=S\left(\frac{\partial}{\partial u^{i_{1}}}, \ldots \frac{\partial}{\partial u^{i_{p}}}\right) \quad\left(i_{1}, \ldots, i_{p}=1, \ldots, m\right)$,
which are called the components of S with respect to the local coordinate system $\left(u^{j}\right)$. Let $\left\{S_{a_{1}, \ldots, a_{p}}\right\}$ be the components of S with respect to another coordinate system $\left(x^{a}\right)$. Then it holds that

$$
\begin{equation*}
S_{a_{1}, \ldots, a_{p}}=\sum_{i_{1}, \ldots, i_{p}=1}^{m} \frac{\partial u^{i_{1}}}{\partial x^{a^{1}}} \ldots \frac{\partial u^{i_{p}}}{\partial x^{a^{p}}} S_{i_{1}, \ldots, i_{p}} \tag{5.6}
\end{equation*}
$$

Proposition 5.5. Let $S:(\mathfrak{X}(M))^{p} \rightarrow C^{\infty}(M)$ be a multi-linear map, and set $S_{i_{1}, \ldots, i_{p}}$ by (5.5). Then S is a tensor field on M if and only if it satisfy (5.6) for an arbitrary coordinate change $\left(x^{a}\right) \mapsto\left(u^{j}\right)$.
Proof. Problem 5-1.
The Curvature Tensor. Let ∇ be the covariant derivative on (M, g), as defined in (4.12), which is considered as

$$
\nabla: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Y) \longmapsto \nabla_{X} Y \in \mathfrak{X}(M)
$$

Remark 5.6. The tri-linear map

$$
D:(\mathfrak{X}(M))^{3} \ni(X, Y, Z) \mapsto g\left(\nabla_{X} Y, Z\right) \in C^{\infty}(M)
$$

is not a tensor field. In fact, (4.16) means that $D(X, f Y, Z)$ and $f D(X, Y, Z)$ may not coincide. But for a fixed $Y \in \mathfrak{X}(M)$,

$$
D Y: \mathfrak{X}(M) \times \mathfrak{X}(M) \ni(X, Z) \mapsto g\left(\nabla_{X} Y, Z\right) \in C^{\infty}(M)
$$

is a tensor because of (4.15).

As seen in the proof in Proposition 4.10, the 4-linear map $R:(\mathfrak{X}(M))^{4} \rightarrow C^{\infty}(M)$ defined by
(5.7) $R(X, Y, Z, W):=g\left(\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z, W\right)$,
where $[X, Y]$ denotes the Lie bracket of the vector fields, is a tensor field, which we call the curvature tensor, or the RiemannChristoffel curvature tensor of (M, g).

Proposition 5.7. The curvature tensor R has the following symmetricity:
(1) $R(Y, X, Z, W)=-R(X, Y, Z, W)$.
(2) $R(X, Y, W, Z)=-R(X, Y, Z, W)$.
(3) $R(X, Y, Z, W)=R(Z, W, X, Y)$.
(4) $R(X, Y, Z, W)+R(Y, Z, X, W)+R(Z, X, Y, W)=0$,
where X, Y, Z and W are vector fields.
Proof. The equality (1) follows from the property of the Lie bracket $[Y, X]=-[X, Y]$. The equality (4) can be proved by the property (4.17) and the Jacobi identity

$$
[[X, Y], Z]+[[Y, Z], X]+[[Z, X], Y]=0
$$

for the Lie bracket. The property (2) can be shown by applying (4.18) and (4.17) (Problem 5-2). The property (3) follows from
(4), (1) and (2). In fact, summing up

$$
\begin{array}{r}
R(X, Y, Z, W)+R(Y, Z, X, W)+R(Z, X, Y, W)=0 \\
R(Y, Z, W, X)+R(Z, W, Y, X)+R(W, Y, Z, X)=0 \\
R(Z, W, X, Y)+R(W, X, Z, Y)+R(X, Z, W, Y)=0 \\
R(W, X, Y, Z)+R(X, Y, W, Z)+R(Y, W, X, Z)=0
\end{array}
$$

(3) follows.

Proposition 5.8. Assume two tensors R_{1} and $R_{2} \in \Gamma\left(\otimes^{4} T^{*} M\right)$ satisfy the symmetricity as in Proposition 5.7. If

$$
R_{1}(X, Y, Y, X)=R_{2}(X, Y, Y, X)
$$

holds for all $X, Y \in \mathfrak{X}(M)$, then $R_{1}=R_{2}$.
Proof. Expanding

$$
\begin{aligned}
& R_{1}(X+s Z, Y+t W, Y+t W, X+s Z) \\
& \quad=R_{2}(X+s Z, Y+t W, Y+t W, X+s Z)
\end{aligned}
$$

we have the conclusion from the coefficients of st.

Sectional Curvature

Lemma 5.9. Let R be the curvature tensor of a (pseudo) Riemannian manifold (M, g). Then, for each $\mathrm{P} \in M$,

$$
\frac{R(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{w}, \boldsymbol{v})}{g(\boldsymbol{v}, \boldsymbol{v}) g(\boldsymbol{w}, \boldsymbol{w})-g(\boldsymbol{v}, \boldsymbol{w})^{2}} \quad\left(\boldsymbol{v}, \boldsymbol{w} \in T_{\mathrm{P}} M\right)
$$

depends only on the 2 -dimensional subspace of $T_{\mathrm{P}} M$ spanned by $\{\boldsymbol{v}, \boldsymbol{w}\}$ whenever

$$
\begin{equation*}
g(\boldsymbol{v}, \boldsymbol{v}) g(\boldsymbol{w}, \boldsymbol{w})-g(\boldsymbol{v}, \boldsymbol{w})^{2} \neq 0 \tag{5.8}
\end{equation*}
$$

Proof. Set

$$
(\boldsymbol{x}, \boldsymbol{y})=(\boldsymbol{v}, \boldsymbol{w}) A
$$

where $A \in \mathrm{GL}(2, \mathbb{R})$. Then

$$
R(\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{y}, \boldsymbol{x})=(\operatorname{det} A)^{2} R(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{w}, \boldsymbol{v})
$$

$g(\boldsymbol{x}, \boldsymbol{x}) g(\boldsymbol{y}, \boldsymbol{y})-g(\boldsymbol{x}, \boldsymbol{y})^{2}=(\operatorname{det} A)^{2}\left(g(\boldsymbol{v}, \boldsymbol{v}) g(\boldsymbol{w}, \boldsymbol{w})-g(\boldsymbol{v}, \boldsymbol{w})^{2}\right)$.
Hence the conclusion follows.
Remark 5.10. When g is positive definite (i.e., (M, g) is a Riemannian manifold), (5.8) holds if and only if \boldsymbol{v} and \boldsymbol{w} are linearly independent. On the other hand, when g is indefinite, the left-hand side of (5.8) may vanish even if \boldsymbol{v} and \boldsymbol{w} are linearly independent. In this case, (5.8) holds if and only if $\operatorname{Span}\{\boldsymbol{v}, \boldsymbol{w}\}$ is a non-degenerate subspace of $T_{\mathrm{P}} M$.

Definition 5.11. For a 2-dimensional non-degenerate subspace $\Pi_{\mathrm{P}} \subset T_{\mathrm{P}} M$, we set

$$
K\left(\Pi_{\mathrm{P}}\right):=\frac{R(\boldsymbol{v}, \boldsymbol{w}, \boldsymbol{w}, \boldsymbol{v})}{\left.g(\boldsymbol{v}, \boldsymbol{v}) g(\boldsymbol{w}, \boldsymbol{w})-g(\boldsymbol{v}, \boldsymbol{w})^{2}\right)},
$$

where $\{\boldsymbol{v}, \boldsymbol{w}\}$ is a basis of Π_{P}. We call it the sectional curvature at Π_{P}.

Remark 5.12. The set of 2-dimensional subspaces on an n-dimensional vector space V can be endowed with the structure of a compact ($2 n-4$)-dimensional manifold, denoted by $\operatorname{Gr}_{2}(V)$, which is called the 2-Grassmanian manifold over V. So, when (M, g) is a Riemannian, the sectional curvature can be considered as a smooth map

$$
K: \operatorname{Gr}_{2}(T M):=\bigcup_{\mathrm{P} \in M} \operatorname{Gr}_{2}\left(T_{\mathrm{P}} M\right) \rightarrow \mathbb{R}
$$

Example 5.13. Let (M, g) be a 2 -dimensional Riemannian manifold. Since $\mathrm{Gr}_{2}\left(T_{\mathrm{P}} M\right)$ consists of one point, the sectional curvature K can be regarded as a function defined on M itself. In this case, the sectional curvature is written as

$$
\begin{aligned}
K= & \frac{E\left(E_{v} G_{v}-2 F_{u} G_{v}+G_{u}^{2}\right)}{4\left(E G-F^{2}\right)^{2}} \\
+ & \frac{F\left(E_{u} G_{v}-E_{v} G_{u}-2 E_{v} F_{v}-2 F_{u} G_{u}+4 F_{u} F_{v}\right)}{4\left(E G-F^{2}\right)^{2}} \\
& +\frac{G\left(E_{u} G_{u}-2 E_{u} F_{v}+E_{v}^{2}\right)}{4\left(E G-F^{2}\right)^{2}}-\frac{E_{v v}-2 F_{u v}+G_{u u}}{2\left(E G-F^{2}\right)},
\end{aligned}
$$

where $\left(u^{1}, u^{2}\right)=(u, v)$ is a local coordinate system and

$$
E=g_{11}, \quad F=g_{12}=g_{21}, \quad G=g_{22}
$$

Constant Sectional Curvature. A Riemannian manifold (M, g) is said to be a space of constant sectional curvature if K is constant everywhere.

Proposition 5.14. A (pseudo) Riemannian manifold (M, g) has constant sectional curvature k if and only if its curvature tensor R satisfies
(5.9) $\quad R(X, Y, Z, W)=k(g(X, W) g(Y, Z)-g(X, Z) g(Y, W))$.

Proof. If R satisfies (5.9), $K=k$ is constant obviously. Conversely, assume $K=k$ is constant. Then (5.9) holds for $Z=Y$, $W=X$. Since the right-hand side has the symmetric property as in Proposition 5.7, Proposition 5.8 yields (5.9).

Example 5.15. The curvature tensor of the Euclidean space \mathbb{R}^{n} vanishes identically, because R vanishes identically. The covariant derivative of \mathbb{R}^{n} is identified with the directional derivative D. This means that

$$
D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z=O
$$

holds for vector fields X, Y and Z.
Example 5.16. Let $k>0$ and

$$
S^{n}(k):=\left\{\boldsymbol{x} \in \mathbb{R}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=\frac{1}{k}\right\}
$$

As seen in Example 3.3, this is an n-dimensional submanifold of \mathbb{R}^{n+1}, and then is a Riemannian manifold with the induced metric from \mathbb{R}^{n+1}.

We compute the sectional curvature $S^{n}(k)$: The unit normal vector of $S^{n}(k)$ at \boldsymbol{x} is $\boldsymbol{n}:=\boldsymbol{x} / \sqrt{k}$. Then, regarding vector field
on $S^{n}(k)$ as a vector field of \mathbb{R}^{n+1} along $S^{n}(k)$, we have by Proposition 4.8

$$
\begin{aligned}
\nabla_{Y} Z & =\left[D_{Y} Z\right]^{\mathrm{T}}=D_{Y} Z-\frac{1}{\sqrt{k}}\left\langle D_{Y} Z, \boldsymbol{x}\right\rangle \boldsymbol{x} \\
& =D_{Y} Z-\frac{1}{\sqrt{k}} Y\langle Z, \boldsymbol{x}\rangle \boldsymbol{x}+\frac{1}{\sqrt{k}}\left\langle Z, D_{Y} \boldsymbol{x}\right\rangle \boldsymbol{x} \\
& =D_{Y} Z-\frac{1}{\sqrt{k}} Y\langle Z, \boldsymbol{x}\rangle \boldsymbol{x}+\frac{1}{\sqrt{k}}\langle Z, Y\rangle \boldsymbol{x} \\
& =D_{Y} Z+\frac{1}{\sqrt{k}}\langle Z, Y\rangle \boldsymbol{x}
\end{aligned}
$$

where we used the relation $D_{Y} \boldsymbol{x}=Y$. Using this relation, we can show that the curvature tensor R satisfy

$$
\begin{aligned}
& R(X, Y, Z, W) \\
& \qquad \begin{array}{l}
\left\langle D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z, W\right\rangle \\
\quad+k(g(X, W) g(Y, Z)-g(X, Z) g(Y, T))
\end{array}
\end{aligned}
$$

Hence by Proposition 5.14, we obtain that the sectional curvature of $S^{n}(k)$ is k.

Example 5.17. Let k is a positive constant and

$$
H^{n}(-k):=\left\{\boldsymbol{x} \in \mathbb{R}_{1}^{n+1} ;\langle\boldsymbol{x}, \boldsymbol{x}\rangle=-\frac{1}{k}, x^{0}>0\right\}
$$

where $\boldsymbol{x}=\left(x^{0}, \ldots, x^{n}\right)$. Then $H^{n}(-k)$ is a space-like hypersurface in the Lorentz-Minkowski space \mathbb{R}_{1}^{n+1}, as seen in Example 3.5, called the hyperbolic space. Since $H^{n}(-k)$ is a space-like
hypersurface, the induced metric gives a Riemannian metric, and then $H^{n}(-k)$ is a Riemannian manifold.

By the completely same method as in the previous example, one can show that $H^{n}(-k)$ has constant sectional curvature $-k$.

Exercises
5-1 Prove Proposition 5.5.
5-2 Show (2) in Proposition 5.7.
5-3 Compute the sectional curvature of a Riemannian 2-manifold (M, g) with

$$
g_{11}=g_{22}=\frac{4}{\left(1+k\left(u^{2}+v^{2}\right)\right)^{2}}, \quad g_{12}=g_{21}=0
$$

where $(u, v)=\left(u^{1}, u^{2}\right)$ is a local coordinate system.

6 Spaces of Constant Sectional Curvature.

Orthonormal Frame and Connection Forms. Let (M, g) be an orientable Riemannian m-manifold, and $\left(U ; u^{1}, \ldots, u^{m}\right)$ a local coordinate neighborhood.

Lemma 6.1. There exists a m-tuple of vector fields $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right\}$ on M which forms a positively-oriented orthonormal basis of $T_{\mathrm{P}} M$ for each $\mathrm{P} \in U$.

Proof. The procedure of the Gram-Schmidt orthogonalization works for the m-tuple of vector fields $\left\{\partial / \partial u^{j}\right\}_{j=1}^{m}$ on U.

We call such a m-tuple $\left\{\boldsymbol{e}_{j}\right\}_{j=1}^{m}$ a positively-oriented orthonormal frame field, or a frame field for short, on U.

Lemma 6.2. Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right\}$ be an orthonormal frame field on $U \subset M$. Then there exist C^{∞}-differential 1 -forms $\omega_{i}^{j}(i, j=$ $1, \ldots, m)$ satisfying
(6.1) $\quad \nabla_{X} \boldsymbol{e}_{i}=\sum_{j=1}^{m} \omega_{i}^{j}(X) \boldsymbol{e}_{i} \quad(i=1, \ldots, m)$,
(6.2) $\quad \omega_{i}^{j}=-\omega_{j}^{i} \quad(i, j=1, \ldots, m)$
for an arbitrary vector field X on U, where ∇ denotes the covariant derivative (4.12).

Proof. We set

$$
\omega_{i}^{j}(X):=g\left(\nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)
$$

23. July, 2019.
for $X \in \mathfrak{X}(U)$. So by (4.15), $\omega_{i}^{j}(f X)=f \omega_{i}^{j}(X)$ holds for $f \in C^{\infty}(U)$. Hence $\omega_{i}^{j}(X)(\mathrm{P})$ depends only on X_{P} because of Lemma 5.3. Then each ω_{i}^{j} defines a 1-form on U. Smoothness of ω_{i}^{j} is obvious. Since $\left\{\boldsymbol{e}_{j}\right\}$ is an orthonormal basis, (6.1) follows.

Moreover, since $g\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=\delta_{i j}$ is constant for each i and j, (4.18) implies

$$
\begin{aligned}
0 & =X g\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=g\left(\nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)+g\left(\boldsymbol{e}_{i}, \nabla_{X} \boldsymbol{e}_{j}\right) \\
& =g\left(\sum_{k=1}^{m} \omega_{i}^{k}(X) \boldsymbol{e}_{k}, \boldsymbol{e}_{j}\right)+g\left(\boldsymbol{e}_{i}, \sum_{k=1}^{m} \omega_{j}^{k}(X) \boldsymbol{e}_{k}\right) \\
& =\sum_{k=1}^{m}\left(\omega_{i}^{k}(X) \delta_{k j}+\omega_{j}^{k}(X) \delta_{i k}\right)=\omega_{i}^{j}(X)+\omega_{j}^{i}(X) .
\end{aligned}
$$

Hence (6.2) follows.
We call $\left\{\omega_{i}^{j}\right\}$ in Lemma 6.2 the connection forms with respect to the frame $\left\{\boldsymbol{e}_{j}\right\}$.

By (6.2),

$$
\boldsymbol{\omega}:=\left(\begin{array}{ccc}
\omega_{1}^{1} & \ldots & \omega_{m}^{1} \tag{6.3}\\
\vdots & \ddots & \vdots \\
\omega_{1}^{m} & \ldots & \omega_{m}^{m}
\end{array}\right) \quad \text { satisfies } \quad \boldsymbol{\omega}+{ }^{t} \boldsymbol{\omega}=O
$$

in other words, $\boldsymbol{\omega}$ is a skew-symmetric matrix-valued 1-form.
Gauge transformations and the Curvature Form. Let $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right\}$ and $\left\{\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right\}$ be two positively-oriented or-
thonormal frames on $U \subset M$. Then there exists a smooth map $G=\left(G_{i j}\right): U \rightarrow \mathrm{SO}(m)$ such that ${ }^{8}$
(6.4) $\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right)=\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) G$

$$
=\left(\sum_{a=1}^{m} G_{1 a} \boldsymbol{f}_{a}, \ldots, \sum_{a=1}^{m} G_{m a} \boldsymbol{f}_{a}\right) .
$$

Let $\boldsymbol{\omega}=\left(\omega_{i}^{j}\right)$ (resp. $\left.\widetilde{\boldsymbol{\omega}}=\left(\tilde{\omega}_{a}^{b}\right)\right)$ be the connection forms with respect to the orthonormal frame $\left\{\boldsymbol{e}_{j}\right\}$ (resp. $\left\{\boldsymbol{f}_{a}\right\}$). The

Lemma 6.3. Under the situation above, it holds that

$$
\begin{equation*}
\widetilde{\boldsymbol{\omega}}=G^{-1} d G+G^{-1} \boldsymbol{\omega} G . \tag{6.5}
\end{equation*}
$$

Proof. By definition,

$$
\begin{aligned}
\nabla\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) & =\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) \boldsymbol{\omega}, \\
\nabla\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) & =\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) \widetilde{\boldsymbol{\omega}}
\end{aligned}
$$

hold. Hence, by (4.16), it holds that

$$
\begin{aligned}
\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) \widetilde{\boldsymbol{\omega}} & =\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) G \widetilde{\boldsymbol{\omega}} \\
\left(\boldsymbol{f}_{1}, \ldots, \boldsymbol{f}_{m}\right) \widetilde{\boldsymbol{\omega}} & =\nabla\left(\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) G\right) \\
& =\left(\nabla\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right)\right) G+\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) d G
\end{aligned}
$$

[^9]\[

$$
\begin{aligned}
& =\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) \boldsymbol{\omega} G+\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right) d G \\
& =\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right)(\boldsymbol{\omega} G+d G)
\end{aligned}
$$
\]

where $\nabla \boldsymbol{v}$ means a 1-form $X \mapsto \nabla_{X} \boldsymbol{v}$. Since $\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}$ are linearly independent, the conclusion follows.

The formula (6.5) is called the Gauge transformation of the connection forms.

Definition 6.4. The curvature form with respect to the frame field $\left\{\boldsymbol{e}_{j}\right\}$ is a skew-symmetric matrix-valued 2 -form

$$
\begin{equation*}
\boldsymbol{\Omega}:=d \boldsymbol{\omega}+\boldsymbol{\omega} \wedge \boldsymbol{\omega}=\left(d \omega_{i}^{j}+\sum_{k=1}^{m} \omega_{i}^{k} \omega_{k}^{j}\right)_{i, j=1, \ldots, m} \tag{6.6}
\end{equation*}
$$

Lemma 6.5. Under the transformation as in (6.4), the curvature form $\boldsymbol{\Omega}$ and $\widetilde{\boldsymbol{\Omega}}$ with respect to the frame field $\left\{\boldsymbol{e}_{j}\right\}$ and $\left\{\boldsymbol{f}_{a}\right\}$, respectively, satisfy

$$
\widetilde{\Omega}=G^{-1} \Omega G
$$

Proof. Problem 6-1.
Lemma 6.6. The curvature form $\boldsymbol{\Omega}=\left(\Omega_{i}^{j}\right)$ with respect to the frame field $\left\{\boldsymbol{e}_{j}\right\}$ satisfies

$$
\Omega_{i}^{j}(X, Y)=R\left(X, Y, \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right),
$$

where R is the Riemann-Christoffel curvature tensor, and X, Y are vector fields.

Proof. Since $\left\{\boldsymbol{e}_{j}\right\}$ is an orthonormal basis, it holds that

$$
g\left(\nabla_{X} \boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)=X g\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right)-g\left(\boldsymbol{e}_{j}, \nabla_{X} \boldsymbol{e}_{k}\right)=-g\left(\boldsymbol{e}_{j}, \nabla_{X} \boldsymbol{e}_{k}\right)
$$

holds for $j, k=1, \ldots, m$. Then we have

$$
\begin{aligned}
& \Omega_{i}^{j}(X, Y)=d \omega_{i}^{j}(X, Y)+\sum_{k=1}^{m}\left(\omega_{i}^{k}(X) \omega_{k}^{j}(Y)-\omega_{i}^{k}(Y) \omega_{k}^{j}(Y)\right) \\
&= X \omega_{i}^{j}(Y)-Y \omega_{i}^{j}(X)-\omega_{i}^{j}([X, Y]) \\
& \sum_{k=1}^{m}\left(\omega_{i}^{k}(X) \omega_{k}^{j}(Y)-\omega_{i}^{k}(Y) \omega_{k}^{j}(Y)\right) \\
&= X g\left(\nabla_{Y} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)-Y g\left(\nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)-g\left(\nabla_{[X, Y]} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right) \\
&+\sum_{k=1}^{m}\left(g\left(\nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right) g\left(\nabla_{Y} \boldsymbol{e}_{k}, \boldsymbol{e}_{j}\right)-g\left(\nabla_{Y} \boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right) g\left(\nabla_{X} \boldsymbol{e}_{k}, \boldsymbol{e}_{j}\right)\right) \\
&= g\left(\nabla_{X} \nabla_{Y} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)+g\left(\nabla_{Y} \boldsymbol{e}_{i}, \nabla_{X} \boldsymbol{e}_{j}\right) \\
& \quad-g\left(\nabla_{Y} \nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)-g\left(\nabla_{X} \boldsymbol{e}_{i}, \nabla_{Y} \boldsymbol{e}_{j}\right)-g\left(\nabla_{[X, Y]} \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right) \\
& \quad-\sum_{k=1}^{m}\left(g\left(\nabla_{X} \boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right) g\left(\boldsymbol{e}_{k}, \nabla_{Y} \boldsymbol{e}_{j}\right)-g\left(\nabla_{Y} \boldsymbol{e}_{i}, \boldsymbol{e}_{k}\right) g\left(\boldsymbol{e}_{k}, \nabla_{X} \boldsymbol{e}_{j}\right)\right) \\
&= R\left(X, Y, \boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right),
\end{aligned}
$$

where we used the relation

$$
\sum_{k=1}^{m} g\left(\boldsymbol{v}, \boldsymbol{e}_{k}\right) g\left(\boldsymbol{w}, \boldsymbol{e}_{k}\right)=g(\boldsymbol{v}, \boldsymbol{w})
$$

Space of Constant Sectional Curvature. The goal of this lecture is to prove the following

Theorem 6.7. Let $U \subset \mathbb{R}^{m}$ be a simply connected domain and let g be a Riemannian metric on U with constant sectional curvature k. Then there exists a local diffeomorphism

$$
f: U \longrightarrow M^{m}(k)
$$

such that the Riemannian metric g coincide with the metric on U induced from $M^{m}(k)$ by f, where

$$
M^{m}(k):= \begin{cases}S^{m}(k) & (\text { when } k>0, \text { cf. Example } 5.16), \\ \mathbb{R}^{m} & (\text { when } k=0, \text { the Euclidean } m \text {-space }), \\ H^{m}(k) & (\text { when } k<0, \text { cf. Example } 5.17)\end{cases}
$$

Remark 6.8. The theorem can be generalized for simply connected Riemannian manifolds (M, g) of constant sectional curvature. Moreover, one can show that f is injective. Hence, we can say that a simply connected Riemannian m-manifold (M, g) can be identified as a subset of $M^{m}(k)$. In particular, if (M, g) is complete, it coincides with $M^{m}(k)$.

Proof of Theorem 6.7 (for the case $k=0$): This is an alternative proof of Theorem 3.13 in Section 3. Take an orthonormal frame field $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right\}$ on U, and let $\boldsymbol{\omega}$ be the connection form with respect to the basis. Fix a base point $\mathrm{P}_{0} \in U$, and consider the system of differential equations
(6.7) $\quad \frac{\partial \mathcal{F}}{\partial u^{j}}=\mathcal{F} \boldsymbol{\omega}_{j}, \quad \mathcal{F}\left(\mathrm{P}_{0}\right)=\mathrm{id} \quad(j=1, \ldots, m)$,
where

$$
\begin{equation*}
\boldsymbol{\omega}_{j}:=\boldsymbol{\omega}\left(\frac{\partial}{\partial u^{j}}\right) . \tag{6.8}
\end{equation*}
$$

By Lemma 6.6, the assumption $k=0$ implies

$$
\begin{aligned}
O & =\left(R\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}, \boldsymbol{e}_{k}, \boldsymbol{e}_{l}\right)\right)_{k, l=1, \ldots, m} \\
& =(d \boldsymbol{\omega}+\boldsymbol{\omega} \wedge \boldsymbol{\omega})\left(\frac{\partial}{\partial u^{i}}, \frac{\partial}{\partial u^{j}}\right)=\frac{\partial \boldsymbol{\omega}_{j}}{\partial u^{i}}-\frac{\partial \boldsymbol{\omega}_{i}}{\partial u^{j}}+\boldsymbol{\omega}_{i} \boldsymbol{\omega}_{j}-\boldsymbol{\omega}_{j} \boldsymbol{\omega}_{i} .
\end{aligned}
$$

Hence by Theorem 2.5, there exists a unique solution \mathcal{F} of (6.7). Moreover, since $\boldsymbol{\omega}_{j}$ is skew-symmetric because of (6.3), the solution gives a smooth map $\mathcal{F}: U \rightarrow \mathrm{SO}(m)$. Decompose \mathcal{F} into the column vectors as $\mathcal{F}=\left(\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{n}\right)$. Since \mathcal{F} is an orthogonal matrix, $\left\{\boldsymbol{x}_{j}(\mathrm{P})\right\}$ is an orthonormal basis at each P .

Define an \mathbb{R}^{m}-valued 1-form

$$
\varphi:=\sum_{i=1}^{m}\left(\sum_{k=1}^{m} g_{i}^{k} \boldsymbol{x}_{k}\right) d u^{i}, \quad g_{i}^{k}=g\left(\frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right)
$$

where $\left\{\boldsymbol{e}_{j}\right\}$ is the orthonormal frame on U we took in the beginning of the proof. Then φ is a closed on U. In fact, by (4.18) and (4.17), we have

$$
\begin{aligned}
& \frac{\partial}{\partial u^{j}}\left(\sum_{k=1}^{m} g_{i}^{k} \boldsymbol{x}_{k}\right)=\sum_{k=1}^{m}\left(\frac{\partial}{\partial u^{j}} g\left(\frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right)+g_{i}^{k} \boldsymbol{x}_{k}\right) \\
& =\sum_{k=1}^{m}\left[\left(g\left(\nabla \frac{\partial}{\partial u^{j}} \frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right)+g\left(\frac{\partial}{\partial u^{i}}, \nabla \frac{\partial}{\partial u^{j}} \boldsymbol{e}_{k}\right)\right) \boldsymbol{x}_{k}+g_{i}^{k} \frac{\partial \boldsymbol{x}_{k}}{\partial u^{j}}\right] \\
& =\sum_{k=1}^{m} g\left(\nabla_{\frac{\partial}{\partial u^{j}}} \frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right) \boldsymbol{x}_{k}+\sum_{k=1}^{m} g\left(\frac{\partial}{\partial u^{i}}, \sum_{l=1}^{m} \omega_{k}^{l}\left(\frac{\partial}{\partial u^{j}}\right) \boldsymbol{e}_{l}\right) \boldsymbol{x}_{k}
\end{aligned}
$$

$$
\begin{aligned}
&+\sum_{k, l=1}^{m} g_{i}^{k} \omega_{k}^{l}\left(\frac{\partial}{\partial u^{j}}\right) \boldsymbol{x}_{l} \\
&= \sum_{k=1}^{m}\left[g\left(\nabla_{\frac{\partial}{\partial u^{j}}} \frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right)+\sum_{l=1}^{m}\left(\omega_{k}^{l}+\omega_{l}^{k}\right)\left(\frac{\partial}{\partial u^{j}}\right) g_{i}^{l}+\right] \boldsymbol{x}_{k} \\
&= \sum_{k=1}^{m}\left[g\left(\nabla_{\frac{\partial}{\partial u^{j}}} \frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right)\right] \boldsymbol{x}_{k} \\
& \frac{\partial}{\partial u^{i}}\left(\sum_{k=1}^{m} g_{j}^{k} \boldsymbol{x}_{k}\right)=\sum_{k=1}^{m}\left[g\left(\nabla_{\frac{\partial}{\partial u^{i}}} \frac{\partial}{\partial u^{j}}, \boldsymbol{e}_{k}\right)\right] \boldsymbol{x}_{k}
\end{aligned}
$$

Hence by (4.17), we have

$$
\frac{\partial}{\partial u^{j}}\left(\sum_{k=1}^{m} g_{i}^{k} \boldsymbol{x}_{k}\right)=\frac{\partial}{\partial u^{i}}\left(\sum_{k=1}^{m} g_{j}^{k} \boldsymbol{x}_{k}\right)
$$

that is, $d \varphi=0$. Hence by Poincaré's lemma, there exists $f: U \rightarrow \mathbb{R}^{m}$ satisfying $d f=\varphi$. This f is desired one. To show this, it is sufficient to show
(6.9)

$$
d f\left(\boldsymbol{e}_{j}\right)=\boldsymbol{x}_{j}, \quad(j=1, \ldots, m)
$$

In fact, if (6.9) holds,

$$
g\left(\boldsymbol{e}_{i}, \boldsymbol{e}_{j}\right)=\delta_{i j}=\left\langle\boldsymbol{x}_{i}, \boldsymbol{x}_{j},=\right\rangle\left\langle d f\left(\boldsymbol{e}_{i}\right), d f\left(\boldsymbol{e}_{j}\right),,\right\rangle
$$

and then the induced metric coincides with g. We show (6.9):
$d f\left(\boldsymbol{e}_{j}\right)=\varphi\left(\boldsymbol{e}_{j}\right)=\sum_{i=1}^{m}\left(\sum_{k=1}^{m} g_{i}^{k} \boldsymbol{x}_{k}\right) d u^{i}\left(\boldsymbol{e}_{j}\right)$

$$
\begin{aligned}
& =\sum_{i, k=1}^{m} g\left(\frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right) d u^{i}\left(\boldsymbol{e}_{j}\right) \boldsymbol{x}_{k} \\
& =\sum_{k=1}^{m} g\left(\sum_{i=1}^{m} d u^{i}\left(\boldsymbol{e}_{j}\right) \frac{\partial}{\partial u^{i}}, \boldsymbol{e}_{k}\right) \boldsymbol{x}_{k}=\sum_{k=1}^{m} g\left(\boldsymbol{e}_{j}, \boldsymbol{e}_{k}\right) \boldsymbol{x}_{k}=\boldsymbol{x}_{j} .
\end{aligned}
$$

Here, we used the formula

$$
\sum_{i=1}^{m} d u^{i}(\boldsymbol{v}) \frac{\partial}{\partial u^{i}}=\boldsymbol{v}
$$

Proof of Theorem 6.7 (for the case $k>0$): Since $k>0$, there exists a real number c such that $k=c^{2}$. Taking the orthonormal frame field $\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right)$ on U, we set
(6.10)

$$
\hat{\boldsymbol{\omega}}_{j}:=\left(\begin{array}{cc}
0 & -c^{t} \boldsymbol{g}_{j} \\
c \boldsymbol{g}_{j} & \boldsymbol{\omega}_{j}
\end{array}\right)
$$

for each $j=1, \ldots, m$, which is an $(n+1) \times(n+1)$-skew symmetric matrix-valued function, here

$$
\boldsymbol{g}_{j}:=\binom{g_{j}^{1}}{\vdots g_{j}^{m}}=\left(\begin{array}{c}
g\left(\partial / \partial u^{j}, \boldsymbol{e}_{1}\right) \tag{6.11}\\
\vdots \\
g\left(\partial / \partial u^{j}, \boldsymbol{e}_{m}\right)
\end{array}\right)
$$

and $\boldsymbol{\omega}_{j}$ is as in (6.8). By the assumption, (5.9) holds. Hence one can show easily that

$$
\frac{\partial \hat{\boldsymbol{\omega}}_{j}}{\partial u^{i}}-\frac{\partial \hat{\boldsymbol{\omega}}_{i}}{\partial u^{j}}+\hat{\boldsymbol{\omega}}_{i} \hat{\boldsymbol{\omega}}_{j}-\hat{\boldsymbol{\omega}}_{j} \hat{\boldsymbol{\omega}}_{i}=O
$$

for each $i, j=1, \ldots, m$. Hence there exists a smooth map

$$
\mathcal{F}=\left(\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}\right): U \rightarrow \mathrm{SO}(m+1)
$$

satisfying

$$
\frac{\partial \mathcal{F}}{\partial u^{j}}=\mathcal{F} \hat{\boldsymbol{\omega}}_{j} \quad(j=1, \ldots, m)
$$

with $\mathcal{F}\left(\mathrm{P}_{0}\right)=\mathrm{id}$. Then

$$
f:=\frac{1}{c} \boldsymbol{x}_{0}
$$

is the desired map. In fact,

$$
d f\left(\boldsymbol{e}_{j}\right)=\boldsymbol{x}_{j} \quad(j=1, \ldots, m)
$$

holds.

Proof of Theorem 6.7 (for the case $k<0$): Since $k<0$, there exists a real number c such that $k=-c^{2}$. Taking the orthonormal frame field $\left(\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right)$ on U, we set

$$
\hat{\boldsymbol{\omega}}_{j}:=\left(\begin{array}{cc}
0 & c^{t} \boldsymbol{g}_{j} \tag{6.12}\\
c \boldsymbol{g}_{j} & \boldsymbol{\omega}_{j}
\end{array}\right)
$$

for each $j=1, \ldots, m$, which is an $(n+1) \times(n+1)$-matrix-valued function, here

$$
\boldsymbol{g}_{j}:=\binom{g_{j}^{1}}{\vdots g_{j}^{m}}=\left(\begin{array}{c}
g\left(\partial / \partial u^{j}, \boldsymbol{e}_{1}\right) \tag{6.13}\\
\vdots \\
g\left(\partial / \partial u^{j}, \boldsymbol{e}_{m}\right)
\end{array}\right)
$$

and $\boldsymbol{\omega}_{j}$ is as in (6.8). Since

$$
Y \boldsymbol{\omega}_{j}-{ }^{t} \omega_{j} Y=0 \quad(j=1, \ldots, m)
$$

holds, where $Y:=\operatorname{diag}(-1,1, \ldots, 1)$. This implies that there
exists

$$
\mathcal{F}: U \rightarrow \mathrm{SO}(m+1,1)
$$

where

$$
\mathrm{SO}(m+1,1)=
$$

$$
\left\{a=\left(a_{i j}\right)_{i, j=0, \ldots, m} \in \mathrm{M}_{n}(\mathbb{R}) ;{ }^{t} a Y a=Y, \operatorname{det} a=1, a_{00}>0 .\right\}
$$

Then there exists $\mathcal{F}: U \rightarrow \mathrm{SO}(m+1)$ satisfying

$$
\frac{\partial \mathcal{F}}{\partial u^{j}}=\mathcal{F} \hat{\boldsymbol{\omega}}_{j} \quad(j=1, \ldots, m)
$$

with $\mathcal{F}\left(\mathrm{P}_{0}\right)=$ id. Then

$$
f:=\frac{1}{c} \boldsymbol{x}_{0}
$$

is the desired map.

Exercises
6-1 Prove Lemma 6.5.
6-2 Prove Theorem 6.7

[^0]: 18. June, 2019. Revised: 25. June, 2019
[^1]: ${ }^{1} \mathrm{GL}(n, \mathbb{R})=\left\{A \in \mathrm{M}_{n}(\mathbb{R}) ; \operatorname{det} A \neq 0\right\}:$ the general linear group.

[^2]: 25. June, 2019. (Revised: 02. July, 2018)
[^3]: ${ }^{4}$ The theorem holds under the assumption of C^{2}-differentiablity

[^4]: 2. July, 2019. Revised: 09. July, 2019
[^5]: ${ }^{5} \mathrm{An} n$-dimensional submanifold of ($n+1$)-dimensional manifold (i.e., a submanifold of codimension one) is called a hypersurface.
 ${ }^{6}$ The word curvature is undefined at the moment.

[^6]: 9. July, 2019. Revised: 16. July, 2019
[^7]: 16. July, 2019. Revised: 23. July, 2019
[^8]: ${ }^{7}$ The symbol " \otimes " in (5.2) means the tensor product. For example, $T^{*} M \otimes T^{*} M$ is a tensor product of the cotangent bundles, which is a certain vector bundle over M. The notion $\Gamma(*)$ means the set of sections of the vector bundle "*". Anyway, we do not give a precise meaning of these

[^9]: ${ }^{8}$ As defined in Section $1, \mathrm{SO}(m)=\left\{A \in \mathrm{M}_{m}(\mathbb{R}) ;{ }^{t} A A=A^{t} A=\right.$ id, $\operatorname{det} A=1\}$ denotes the special orthogonal group. A map $G: U \rightarrow \mathrm{SO}(m)$ is said to be smooth (of class C^{∞}) if it is of class C^{∞} as a map into $\mathrm{M}_{m}(\mathbb{R})$, the set of $m \times m$-real matrices, which is identified with $\mathbb{R}^{n^{2}}$.

