Revised: 21. May, 2019

Orthogonal decomposition of the tangent space. Let $M \subset \mathbb{R}^{n+1}_s$ be a non-degenerate submanifold². By non-degeneracy, the restriction of the inner product of \mathbb{R}^{n+1}_s to each tangent space $T_{\rm P}M$ is non-degenerate. Then by Theorem 2.9, the orthogonal decomposition

(5.1)
$$\mathbb{R}_s^{n+1} = T_{\mathrm{P}} \mathbb{R}_s^{n+1} = T_{\mathrm{P}} M \oplus N_{\mathrm{P}}, \left(N_{\mathrm{P}} := (T_{\mathrm{P}} M)^{\perp} \right)$$

holds for each $P \in M$. The restriction of the inner product \langle , \rangle of \mathbb{R}^{n+1}_s to N_P is non-degenerate. We call N_P the normal space of M at P. According to this decomposition, each vector $\boldsymbol{v} \in T_P \mathbb{R}^{n+1}_s = \mathbb{R}^{n+1}_s$ can be decomposed uniquely as

(5.2)
$$\boldsymbol{v} = [\boldsymbol{v}]^{\mathrm{T}} + [\boldsymbol{v}]^{\mathrm{N}} \qquad [\boldsymbol{v}]^{\mathrm{T}} \in T_{\mathrm{P}}M, \quad [\boldsymbol{v}]^{\mathrm{N}} \in N_{\mathrm{P}}.$$

We call $[\boldsymbol{v}]^{\mathrm{T}}$ (resp. $[\boldsymbol{v}]^{\mathrm{N}}$) the tangential part (resp. normal part) of \boldsymbol{v} .

For the case that M is a hypersurface of \mathbb{R}_s^{n+1} (that is, dim M = n), the normal space is spanned by the unit normal vector, that is, $N_{\rm P} = \mathbb{R}\nu_{\rm P}$, where $\nu_{\rm P}$ is the unit normal vector of M at P:

(5.3)
$$\mathbb{R}_s^{n+1} = T_{\mathrm{P}} \mathbb{R}_s^{n+1} = T_{\mathrm{P}} M \oplus \mathbb{R} \nu_{\mathrm{P}}.$$

14. May, 2019. ²Not necessarily of codimension one at this moment.

In this case,

(5.4)
$$[\boldsymbol{v}]^{\mathrm{N}} = \varepsilon \langle \boldsymbol{v}, \nu_{\mathrm{P}} \rangle \nu_{\mathrm{P}}, \quad [\boldsymbol{v}]^{\mathrm{T}} = \boldsymbol{v} - [\boldsymbol{v}]^{\mathrm{N}}$$

hold, where $\varepsilon = \langle \nu_{\rm P}, \nu_{\rm P} \rangle \in \{-1, 1\}.$

Vector fields along curves. A *curve* on a non-degenerate submanifold M of \mathbb{R}^{n+1}_s is a map

$$\gamma \colon J \ni t \longmapsto \gamma(t) \in M \subset \mathbb{R}^{n+1}_s$$

where $J \subset \mathbb{R}$ is an interval. A curve γ is said to be of class C^r if γ is a C^r -map as a map into \mathbb{R}^{n+1}_s . The following fact is a direct conclusion of the definition of differentiability of maps:

Lemma 5.1. A map $\gamma: J \to M \subset \mathbb{R}^{n+1}_s$ is of class C^r as a map into a differentiable manifold M if and only if it is of class C^r as a map into \mathbb{R}^{n+1}_s .

From now on, by a word *smooth*, we mean of class C^{∞} . For example, a smooth curve γ means a curve γ of class C^{∞} .

Definition 5.2. Let $\gamma: J \to M \subset \mathbb{R}^{n+1}_s$ be a smooth curve on M. A smooth vector field on M along γ is a map

$$X: J \ni t \longmapsto X(t) \in T_{\gamma(t)}M \subset \mathbb{R}^{n+1}_s$$

which is of class C^{∞} as a map from J to \mathbb{R}^{n+1}_s .

Example 5.3. Let $\gamma: J \to M \subset \mathbb{R}^{n+1}_s$ be a smooth curve. Then

$$\dot{\gamma} \colon J \ni t \longmapsto \dot{\gamma}(t) = \frac{d\gamma}{dt}(t) \in T_{\gamma(t)}M$$

is a smooth vector field along γ , called the *velocity* vector field of the curve γ .

Definition 5.4. A smooth curve $\gamma: J \to M$ is said to be *regular* if $\dot{\gamma}(t) \neq \mathbf{0}$ for all $t \in J$. A regular curve γ is called *nondegenerate* if $\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle \neq 0$, that is, $\dot{\gamma}(t)$ is not a light-like vector, for each $t \in J$. When $\langle \dot{\gamma}, \dot{\gamma} \rangle > 0$ (resp. $\langle \dot{\gamma}, \dot{\gamma} \rangle < 0$), it is said to be *space-like* (resp. *time-like*).

Example 5.5. Consider

$$Q_1 := \{oldsymbol{x} \in \mathbb{R}^4_1 \mid \langle oldsymbol{x}, oldsymbol{x}
angle = 1\}$$

as defined in (4.4) for n = 3 and s = 1. Then

$$\begin{aligned} \gamma_1(t) &:= (\sinh t, 0, 0, \cosh t), \\ \gamma_2(t) &:= (0, \cos t, \sin t, 0), \\ \gamma_3(t) &:= (t, 1, 0, t) \end{aligned}$$

are regular curves on Q_1 , which are time-like, space-like and degenerate, respectively.

Lemma 5.6. Let $\gamma: J \to M$ be a non-degenerate regular curve on a non-degenerate submanifold $M \subset \mathbb{R}^{n+1}_s$. Then there exists a parameter change $t = t(\tau)$ such that

$$|\langle \gamma', \gamma' \rangle| = 1,$$
 where $\gamma'(\tau) = \frac{d\gamma}{d\tau}(t(\tau)).$

Proof. Set

$$\tau(t) := \int_{t_0}^t \sqrt{|\langle \dot{\gamma}(u), \dot{\gamma}(u) \rangle|} \, du$$

MTH.B405; Sect. 5

Since γ is non-degenerate, $d\tau/dt = \sqrt{|\langle \dot{\gamma}, \dot{\gamma} \rangle|} > 0$. Then there exists the inverse function $t = t(\tau)$ of $\tau(t)$, and the chain rule yields the conclusion.

We call the parameter τ as in Lemma 5.6 the *arc-length* parameter of the curve. The arc-length parameter of a timelike curve in a Lorentzian manifold M is often called the *proper* time.

Covariant derivative of vector fields along curves. Let γ be a smooth regular curve on a non-degenerate submanifold $M \subset \mathbb{R}^{n+1}_s$, and X a smooth vector field of M along γ^3 . Then we obtain a map

$$\dot{X}: J \ni t \longmapsto \dot{X}(t) = \frac{dX}{dt} \in \mathbb{R}^{n+1}_s$$

which is not a vector field on M, in general.

Definition 5.7. The vector field

$$\frac{\nabla}{dt}X(t) = \nabla_{\dot{\gamma}(t)}X(t) := \left[\dot{X}(t)\right]^{\mathrm{T}} \in T_{\gamma(t)}M$$

of M along γ is called the *covariant derivative* of X along γ , where $[*]^{\mathrm{T}}$ denotes the tangential component as in (5.2).

Definition 5.8. The covariant derivative

(5.5)
$$\frac{\nabla}{dt}\dot{\gamma}(t) = \nabla_{\dot{\gamma}(t)}\dot{\gamma}(t) := \left[\ddot{\gamma}(t)\right]^{\mathrm{T}} \in T_{\gamma(t)}M$$

 $^{^3\}mathrm{From}$ now on, we assume all objects are of class C^∞ and omit the word smooth.

of $\dot{\gamma}$ along γ is called the *acceleration* of the curve γ .

Lemma 5.9. For each curve γ on M, it holds that

$$\frac{d}{dt}\left\langle\dot{\gamma}(t),\dot{\gamma}(t)\right\rangle = 2\left\langle\nabla_{\dot{\gamma}(t)}\dot{\gamma}(t),\dot{\gamma}(t)\right\rangle.$$

Proof. Since $\dot{\gamma}(t) \in T_{\gamma(t)}M$,

$$\frac{d}{dt} \left\langle \dot{\gamma}(t), \dot{\gamma}(t) \right\rangle = 2 \left\langle \ddot{\gamma}(t), \dot{\gamma}(t) \right\rangle = 2 \left\langle \left[\ddot{\gamma}(t) \right]^{\mathrm{T}} + \left[\ddot{\gamma}(t) \right]^{\mathrm{N}}, \dot{\gamma}(t) \right\rangle$$
$$= 2 \left\langle \left[\ddot{\gamma}(t) \right]^{\mathrm{T}}, \dot{\gamma}(t) \right\rangle$$
$$= 2 \left\langle \nabla_{\dot{\gamma}(t)} \dot{\gamma}(t), \dot{\gamma}(t) \right\rangle. \qquad \Box$$

Geodesics and pre-geodesics.

Definition 5.10. A regular curve γ on a non-degenerate submanifold $M \subset \mathbb{R}^{n+1}_s$ is called a *pre-geodesic* if $\nabla_{\dot{\gamma}}\dot{\gamma}$ is proportional to $\dot{\gamma}$, and called a *geodesic* if $\nabla_{\dot{\gamma}}\dot{\gamma} = \mathbf{0}$ holds.

Lemma 5.11. Let γ be a pre-geodesic on a non-degenerate submanifold $M \subset \mathbb{R}^{n+1}_s$. Then there exists a parameter change $t = t(\tau)$ such that $\tilde{\gamma}(\tau) := \gamma(t(\tau))$ is a geodesic.

Proof. Problem 5-1.

Lemma 5.12. Let γ be a geodesic of a non-degenerate submanifold $M \subset \mathbb{R}^{n+1}_s$. Then $\langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle$ does not depend on t.

Proof. A direct conclusion of Lemma 5.9. \Box

Local expressions. Here, we give an expression of geodesics in the local coordinate system. Let $M \subset \mathbb{R}^{n+1}_s$ be a nondegenerate submanifold and take a local coordinate neighborhood $(U; u^1, \ldots, u^m)$ of M, where $m = \dim M^4$. Then the inclusion map $\iota: M \to \mathbb{R}^{n+1}_s$ induces an immersion

(5.6)
$$f: U \ni (u^1, \dots, u^m) \longmapsto f(u^1, \dots, u^m) \in M \subset \mathbb{R}^{n+1}_s,$$

here we identify the coordinate neighborhood $U \subset M$ with a region of \mathbb{R}^m . We call such an f a (local) parametrization of M. Set

(5.7)
$$g_{ij} := \left\langle \frac{\partial f}{\partial u^i}, \frac{\partial f}{\partial u^j} \right\rangle (= g_{ji}) \qquad (i, j = 1, \dots, m),$$

which is a component of the induced metric $g := \langle , \rangle |_{T_{\rm P}M} w$ with respect to the basis

$$\left\{ \left(\frac{\partial}{\partial u^1}\right)_{\mathbf{P}}, \dots, \left(\frac{\partial}{\partial u^m}\right)_{\mathbf{P}} \right\}$$

of $T_{\rm P}M$ for each ${\rm P} \in U$. Since the induced metric is nondegenerate, the $m \times m$ -matrix (g_{ij}) is a regular matrix at each point P. We denote by (g^{ij}) the inverse matrix of (g_{ij}) :

(5.8)
$$\sum_{k=1}^{m} g_{ik} g^{kj} = \delta_i^j = \begin{cases} 1 & (i=j) \\ 0 & (i\neq j) \end{cases}$$

⁴Here we adopt the classical notation of indices, that is, we use the superscript as u^j , instead of u_j . In this context, we distinguish superscripts and subscripts.

Lemma 5.13. Let γ is a curve in $U \subset M$ and express

$$\gamma(t) = f(u^1(t), \dots, u^m(t)),$$

where $f: U \to M$ is a local parametrization of M as in (5.6). Then

(5.9)
$$\dot{\gamma} = \sum_{j=1}^{m} \frac{du^{j}}{dt} \frac{\partial f}{\partial u^{j}}$$
(5.10)
$$\nabla_{\dot{\gamma}} \dot{\gamma} = \sum_{j=1}^{m} \left(\frac{d^{2}u^{j}}{dt^{2}} + \sum_{k,l=1}^{m} \Gamma_{kl}^{j} \frac{du^{k}}{dt} \frac{du^{l}}{dt} \right) \frac{\partial f}{\partial u^{j}}$$

hold, where

(5.11)
$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{l=1}^{m} g^{kl} \left(\frac{\partial g_{il}}{\partial u^{j}} + \frac{\partial g_{lj}}{\partial u^{i}} - \frac{\partial g_{ij}}{\partial u^{l}} \right).$$

Proof. Problem 5-2.

The functions Γ_{ij}^k of (5.11) are called the *Christoffel symbols* with respect to the local coordinate system (u^1, \ldots, u^m) .

Theorem 5.14. Let $M \subset \mathbb{R}^{n+1}_s$ be a non-degenerate submanifold and fix $P \in M$. Then for each $\boldsymbol{v} \in T_P M$, there exists a unique geodesic $\gamma_{\boldsymbol{v}} : (-\varepsilon, \varepsilon) \to M$ satisfying

$$\gamma_{\boldsymbol{v}}(0) = \mathbf{P}, \qquad \dot{\gamma}_{\boldsymbol{v}}(0) = \boldsymbol{v}.$$

MTH.B405; Sect. 5

Proof. Take a local coordinate system $(U; u^1, \ldots, u^m)$ of M around P. Then a curve $\gamma(t) = f(u^1(t), \ldots, u^n(t))$ (in the parametrization as in (5.6)) is geodesic if and only if

(5.12)
$$\frac{d^2 u^j}{dt^2} + \sum_{k,l=1}^m \Gamma^j_{kl} \frac{du^k}{dt} \frac{du^l}{dt} = 0 \qquad (j = 1, \dots, m)$$

because of (5.10). Let (u_0^1, \ldots, u_0^n) be the coordinates of the point P and

$$\boldsymbol{v} = v^1 \left(\frac{\partial}{\partial u^1}\right)_{\mathrm{P}} + \dots + v^n \left(\frac{\partial}{\partial u^n}\right)_{\mathrm{P}}.$$

Then the initial condition $\gamma(0) = P$, $\dot{\gamma}(0) = \boldsymbol{v}$ corresponds to

(5.13)
$$u^{j}(0) = u_{0}^{j}, \qquad \frac{du^{j}}{dt}(0) = v^{j}.$$

Since the Christoffel symbols Γ_{ij}^k are functions in (u^1, \ldots, u^n) , (5.12) is a normal form of an ordinary differential equation of second order with respect to the unkowns $u^j(t)$ $(j = 1, \ldots, m)$. Hence by the fundamental theorem for ordinary differential equations, we have the unique solution of (5.12) under the initial condition (5.13).

Definition 5.15. A geodesic γ on M is said to be *complete* if the domain of definition of $\gamma(t)$ is (can be extended to) \mathbb{R} .

Hopf Rinow's theorem. In this subsection, we consider a connected *Riemannian* manifolds, that is, the metrics are assumed to be positive definite. For a curve $\gamma: J \to M$ in a

Riemannian manifold M, we define the *length* of γ by

(5.14)
$$\mathcal{L}(\gamma) := \int_{a}^{b} \langle \dot{\gamma}(t), \dot{\gamma}(t) \rangle^{1/2} dt (\geq 0).$$

We denote by $\mathcal{C}_{\mathbf{P},\mathbf{Q}}$ the set of piecewise smooth curves joining points P and Q in M, and define

(5.15)
$$d(\mathbf{P},\mathbf{Q}) := \inf_{\gamma \in \mathcal{C}_{\mathbf{P},\mathbf{Q}}} \mathcal{L}(\gamma).$$

Since M is assumed to be connected, the function $d: M \times M \rightarrow \mathbb{R}$ is well-defined. We can prove the following, which can be found in textbooks on Riemannian geometry:

Fact 5.16. Let d be a function defined in (5.15). Then

- d is a distance function on M,
- the topology on M induced by the distance d coincides with the topology of M as a manifold.

Moreover, if the length $\mathcal{L}(\gamma)$ of the curve $\gamma \colon J \to M$ is equal to $d(\gamma(a), \gamma(b)), \gamma$ is a pre-geodesic.

We call the function d the distance function on M induced from the Riemannian metric.

Fact 5.17 (The Hopf-Rinow theorem). Let *M* be a connected Riemannian manifold. Then the following conditions are equivalent:

• All geodesics in M are complete.

- All geodesics starting at a point $P \in M$ are complete.
- The distance function d induced from the Riemannian metric is complete (as a distance function).
- All divergent path on M^5 have infinite lengths.
- All bounded set on M with respect to d are relatively compact.

Moreover, if these properties are satisfied, then, for each P, $Q \in M$, there exists a geodesic joining P and $Q \in M$, whose length is d(P, Q).

Examples

Example 5.18 ((Pseudo) Euclidean spaces). Consider \mathbb{R}^n_s be the submanifold of itself. Taking the canonical coordinate system (x^1, \ldots, x^n) , the coefficients g_{ij} in (5.7) are constants. Hence all the Christoffel symbols vanish, and (5.12) turns to be $d^2u^j/dt^2 = 0$ $(j = 1, \ldots, n)$. Hence a curve $(u^1(t), \ldots, u^n(t))$ is a geodesic if and only if all $u^j(t)$'s are a linear functions in t, that is, a geodesic is expressed as

$$\gamma(t) = t\boldsymbol{v} + \boldsymbol{p},$$

that is, a straight line with constant velocity v. Since this is defined on \mathbb{R} , \mathbb{R}^n_s is complete. In particular, when s = 0, the

⁵A curve $\gamma: [0, \infty) \to M$ is called a *divergent path* if for an arbitrary compact set K in M, there exists a number t_K such that $\gamma([t_k, \infty)) \subset M \setminus K$.

distance $d(\mathbf{P}, \mathbf{Q})$ is the length of the line segment joining \mathbf{P} and \mathbf{Q} .

Example 5.19 (The spheres.). Consider $S^n = S^n(1) \subset \mathbb{R}^{n+1}$ in the Euclidean (n+1)-space, which coincides with Q_1 in (4.4) for s = 0. Let $\mathbf{p} \in S^n$ and identify it with its position vector, and take a unit vector $\mathbf{v} \in T_p S^n$. Set

$$\gamma_{\boldsymbol{v}}(t) = (\cos t)\boldsymbol{p} + (\sin t)\boldsymbol{v}.$$

Then we have

- $\langle \gamma_{\boldsymbol{v}}(t), \gamma_{\boldsymbol{v}}(t) \rangle = 1$, that is, $\gamma_{\boldsymbol{v}}(t)$ is a curve on S^n ,
- $\ddot{\gamma}_{\boldsymbol{v}}(t) = -\gamma(t)$, that is, $\ddot{\gamma}_{\boldsymbol{v}}(t)$ is perpendicular to the tangent space of S^n at $\gamma_{\boldsymbol{v}}(t)$,
- $\gamma_{\boldsymbol{v}}(0) = \boldsymbol{p}, \, \dot{\gamma}_{\boldsymbol{v}}(0) = \boldsymbol{v}, \text{ and }$
- the image $\gamma_{\boldsymbol{v}}(\mathbb{R})$ of $\gamma_{\boldsymbol{v}}$ is the intersection of S^n and the plane spanned by $\{\boldsymbol{p}, \boldsymbol{v}\}$ passing through the origin.

A circle obtained as the intersection of the sphere and a plane passing through the origin is called the *great circle*. Since all geodesics are defined on \mathbb{R} , S^n is a complete Riemannian manifold.

Example 5.20 (The hyperbolic spaces.). Consider Q_{-1} as in (4.4) for s = 1. Since this is disconnected, we write a connected component of it by

$$H^{n} = \{ \boldsymbol{x} = {}^{t}(x_{0}, \dots, x_{n}) \in \mathbb{R}_{1}^{n+1} ; \langle \boldsymbol{x}, \boldsymbol{x} \rangle = -1, x_{0} > 0 \}.$$

Let $\boldsymbol{p} \in H^n$ and take a unit vector $\boldsymbol{v} \in T_{\boldsymbol{p}}H^n$. We set

$$\gamma_{\boldsymbol{v}}(t) = (\cosh t)\boldsymbol{p} + (\sinh t)\boldsymbol{v}$$

Then

- $\langle \gamma_{\boldsymbol{v}}(t), \gamma_{\boldsymbol{v}}(t) \rangle = -1$, that is, $\gamma_{\boldsymbol{v}}(t)$ is a curve on H^n ,
- $\ddot{\gamma}_{\boldsymbol{v}}(t) = \gamma_{\boldsymbol{v}}(t)$, that is, $\ddot{\gamma}_{\boldsymbol{v}}(t)$ is perpendicular to the tangent space of H^n at $\gamma_{\boldsymbol{v}}(t)$,
- $\gamma_{\boldsymbol{v}}(0) = \boldsymbol{p}, \, \dot{\gamma}_{\boldsymbol{v}}(0) = \boldsymbol{v},$
- the image $\gamma_{\boldsymbol{v}}(\mathbb{R})$ is the intersection of H^n and the plane spanned by $\{\boldsymbol{p}, \boldsymbol{v}\}$ passing through the origin.

Exercises

- **5-1** Prove Lemma 5.11.
- **5-2** Prove Lemma 5.13.
- **5-3** Verify Example 5.20.