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Orthogonal decomposition of the tangent space. Let
M ⊂ Rn+1

s be a non-degenerate submanifold2. By non-degeneracy,
the restriction of the inner product of Rn+1

s to each tangent
space TPM is non-degenerate. Then by Theorem 2.9, the or-
thogonal decomposition

(5.1) Rn+1
s = TPRn+1

s = TPM ⊕NP,
(
NP := (TPM)⊥

)

holds for each P ∈ M . The restriction of the inner product
⟨ , ⟩ of Rn+1

s to NP is non-degenerate. We call NP the normal
space of M at P. According to this decomposition, each vector
v ∈ TPRn+1

s = Rn+1
s can be decomposed uniquely as

(5.2) v = [v]
T
+ [v]

N
[v]

T ∈ TPM, [v]
N ∈ NP.

We call [v]
T
(resp. [v]

N
) the tangential part (resp. normal part)

of v.
For the case that M is a hypersurface of Rn+1

s (that is,
dimM = n), the normal space is spanned by the unit normal
vector, that is, NP = RνP, where νP is the unit normal vector
of M at P:

(5.3) Rn+1
s = TPRn+1

s = TPM ⊕ RνP.

14. May, 2019.
2Not necessarily of codimension one at this moment.
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In this case,

(5.4) [v]
N
= ε ⟨v, νP⟩ νP, [v]

T
= v − [v]

N

hold, where ε = ⟨νP, νP⟩ ∈ {−1, 1}.

Vector fields along curves. A curve on a non-degenerate
submanifold M of Rn+1

s is a map

γ : J ∋ t 7−→ γ(t) ∈ M ⊂ Rn+1
s

where J ⊂ R is an interval. A curve γ is said to be of class Cr

if γ is a Cr-map as a map into Rn+1
s . The following fact is a

direct conclusion of the definition of differentiability of maps:

Lemma 5.1. A map γ : J → M ⊂ Rn+1
s is of class Cr as a

map into a differentiable manifold M if and only if it is of class
Cr as a map into Rn+1

s .

From now on, by a word smooth, we mean of class C∞. For
example, a smooth curve γ means a curve γ of class C∞.

Definition 5.2. Let γ : J → M ⊂ Rn+1
s be a smooth curve on

M . A smooth vector field on M along γ is a map

X : J ∋ t 7−→ X(t) ∈ Tγ(t)M ⊂ Rn+1
s

which is of class C∞ as a map from J to Rn+1
s .

Example 5.3. Let γ : J → M ⊂ Rn+1
s be a smooth curve.

Then

γ̇ : J ∋ t 7−→ γ̇(t) =
dγ

dt
(t) ∈ Tγ(t)M
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is a smooth vector field along γ, called the velocity vector field
of the curve γ.

Definition 5.4. A smooth curve γ : J → M is said to be regular
if γ̇(t) ̸= 0 for all t ∈ J . A regular curve γ is called non-
degenerate if ⟨γ̇(t), γ̇(t)⟩ ̸= 0, that is, γ̇(t) is not a light-like
vector, for each t ∈ J . When ⟨γ̇, γ̇⟩ > 0 (resp. ⟨γ̇, γ̇⟩ < 0), it is
said to be space-like (resp. time-like).

Example 5.5. Consider

Q1 := {x ∈ R4
1 | ⟨x,x⟩ = 1}

as defined in (4.4) for n = 3 and s = 1. Then

γ1(t) :=
(
sinh t, 0, 0, cosh t

)
,

γ2(t) :=
(
0, cos t, sin t, 0

)
,

γ3(t) :=
(
t, 1, 0, t

)

are regular curves on Q1, which are time-like, space-like and
degenerate, respectively.

Lemma 5.6. Let γ : J → M be a non-degenerate regular curve
on a non-degenerate submanifold M ⊂ Rn+1

s . Then there exists
a parameter change t = t(τ) such that

∣∣⟨γ′, γ′⟩
∣∣ = 1, where γ′(τ) =

dγ

dτ

(
t(τ)

)
.

Proof. Set

τ(t) :=

∫ t

t0

√
| ⟨γ̇(u), γ̇(u)⟩ | du.
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Since γ is non-degenerate, dτ/dt =
√

| ⟨γ̇, γ̇⟩ | > 0. Then there
exists the inverse function t = t(τ) of τ(t), and the chain rule
yields the conclusion.

We call the parameter τ as in Lemma 5.6 the arc-length
parameter of the curve. The arc-length parameter of a time-
like curve in a Lorentzian manifold M is often called the proper
time.

Covariant derivative of vector fields along curves. Let
γ be a smooth regular curve on a non-degenerate submanifold
M ⊂ Rn+1

s , and X a smooth vector field of M along γ3. Then
we obtain a map

Ẋ : J ∋ t 7−→ Ẋ(t) =
dX

dt
∈ Rn+1

s ,

which is not a vector field on M , in general.

Definition 5.7. The vector field

∇
dt

X(t) = ∇γ̇(t)X(t) :=
[
Ẋ(t)

]T
∈ Tγ(t)M

of M along γ is called the covariant derivative of X along γ,
where [∗]T denotes the tangential component as in (5.2).

Definition 5.8. The covariant derivative

(5.5)
∇
dt

γ̇(t) = ∇γ̇(t)γ̇(t) := [γ̈(t)]
T ∈ Tγ(t)M

3From now on, we assume all objects are of class C∞ and omit the word
smooth.
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of γ̇ along γ is called the acceleration of the curve γ.

Lemma 5.9. For each curve γ on M , it holds that

d

dt
⟨γ̇(t), γ̇(t)⟩ = 2

⟨
∇γ̇(t)γ̇(t), γ̇(t)

⟩
.

Proof. Since γ̇(t) ∈ Tγ(t)M ,

d

dt
⟨γ̇(t), γ̇(t)⟩ = 2 ⟨γ̈(t), γ̇(t)⟩ = 2

⟨
[γ̈(t)]

T
+ [γ̈(t)]

N
, γ̇(t)

⟩

= 2
⟨
[γ̈(t)]

T
, γ̇(t)

⟩

= 2
⟨
∇γ̇(t)γ̇(t), γ̇(t)

⟩
.

Geodesics and pre-geodesics.

Definition 5.10. A regular curve γ on a non-degenerate sub-
manifold M ⊂ Rn+1

s is called a pre-geodesic if ∇γ̇ γ̇ is propor-
tional to γ̇, and called a geodesic if ∇γ̇ γ̇ = 0 holds.

Lemma 5.11. Let γ be a pre-geodesic on a non-degenerate sub-
manifold M ⊂ Rn+1

s . Then there exists a parameter change
t = t(τ) such that γ̃(τ) := γ

(
t(τ)

)
is a geodesic.

Proof. Problem 5-1.

Lemma 5.12. Let γ be a geodesic of a non-degenerate subman-
ifold M ⊂ Rn+1

s . Then ⟨γ̇(t), γ̇(t)⟩ does not depend on t.

Proof. A direct conclusion of Lemma 5.9.
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Local expressions. Here, we give an expression of geodesics
in the local coordinate system. Let M ⊂ Rn+1

s be a non-
degenerate submanifold and take a local coordinate neighbor-
hood (U ;u1, . . . , um) of M , where m = dimM4. Then the in-
clusion map ι : M → Rn+1

s induces an immersion

(5.6) f : U ∋ (u1, . . . , um) 7−→ f(u1, . . . , um) ∈ M ⊂ Rn+1
s ,

here we identify the coordinate neighborhood U ⊂ M with a
region of Rm. We call such an f a (local) parametrization of M .
Set

(5.7) gij :=

⟨
∂f

∂ui
,
∂f

∂uj

⟩(
= gji

)
(i, j = 1, . . . ,m),

which is a component of the induced metric g := ⟨ , ⟩ |TPMw
with respect to the basis

{(
∂

∂u1

)

P

, . . . ,

(
∂

∂um

)

P

}

of TPM for each P ∈ U . Since the induced metric is non-
degenerate, the m×m-matrix (gij) is a regular matrix at each
point P. We denote by (gij) the inverse matrix of (gij):

(5.8)

m∑

k=1

gikg
kj = δji =

{
1 (i = j)

0 (i ̸= j)

4Here we adopt the classical notation of indices, that is, we use the
superscript as uj , instead of uj . In this context, we distinguish superscripts
and subscripts.
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Lemma 5.13. Let γ is a curve in U ⊂ M and express

γ(t) = f
(
u1(t), . . . , um(t)

)
,

where f : U → M is a local parametrization of M as in (5.6).
Then

γ̇ =
m∑

j=1

duj

dt

∂f

∂uj
(5.9)

∇γ̇ γ̇ =

m∑

j=1


d2uj

dt2
+

m∑

k,l=1

Γ j
kl

duk

dt

dul

dt


 ∂f

∂uj
(5.10)

hold, where

(5.11) Γ k
ij =

1

2

m∑

l=1

gkl
(
∂gil
∂uj

+
∂glj
∂ui

− ∂gij
∂ul

)
.

Proof. Problem 5-2.

The functions Γ k
ij of (5.11) are called the Christoffel symbols

with respect to the local coordinate system (u1, . . . , um).

Theorem 5.14. Let M ⊂ Rn+1
s be a non-degenerate subman-

ifold and fix P ∈ M . Then for each v ∈ TPM , there exists a
unique geodesic γv : (−ε, ε) → M satisfying

γv(0) = P, γ̇v(0) = v.
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Proof. Take a local coordinate system (U ;u1, . . . , um) ofM around
P. Then a curve γ(t) = f(u1(t), . . . , un(t)) (in the parametriza-
tion as in (5.6)) is geodesic if and only if

(5.12)
d2uj

dt2
+

m∑

k,l=1

Γ j
kl

duk

dt

dul

dt
= 0 (j = 1, . . . ,m)

because of(5.10). Let (u1
0, . . . , u

n
0 ) be the coordinates of the

point P and

v = v1
(

∂

∂u1

)

P

+ · · ·+ vn
(

∂

∂un

)

P

.

Then the initial condition γ(0) = P, γ̇(0) = v corresponds to

(5.13) uj(0) = uj
0,

duj

dt
(0) = vj .

Since the Christoffel symbols Γ k
ij are functions in (u1, . . . , un),

(5.12) is a normal form of an ordinary differential equation of
second order with respect to the unkowns uj(t) (j = 1, . . . ,m).
Hence by the fundamental theorem for ordinary differential equa-
tions, we have the unique solution of (5.12) under the initial
condition (5.13).

Definition 5.15. A geodesic γ on M is said to be complete if
the domain of definition of γ(t) is (can be extended to) R.

Hopf Rinow’s theorem. In this subsection, we consider a
connected Riemannian manifolds, that is, the metrics are as-
sumed to be positive definite. For a curve γ : J → M in a
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Riemannian manifold M , we define the length of γ by

(5.14) L(γ) :=
∫ b

a

⟨γ̇(t), γ̇(t)⟩1/2 dt
(
≧ 0

)
.

We denote by CP,Q the set of piecewise smooth curves joining
points P and Q in M , and define

(5.15) d(P,Q) := inf
γ∈CP,Q

L(γ).

Since M is assumed to be connected, the function d : M ×M →
R is well-defined. We can prove the following, which can be
found in textbooks on Riemannian geometry:

Fact 5.16. Let d be a function defined in (5.15). Then

• d is a distance function on M ,

• the topology on M induced by the distance d coincides with
the topology of M as a manifold.

Moreover, if the length L(γ) of the curve γ : J → M is equal to
d(γ(a), γ(b)), γ is a pre-geodesic.

We call the function d the distance function on M induced
from the Riemannian metric.

Fact 5.17 (The Hopf-Rinow theorem). Let M be a connected
Riemannian manifold. Then the following conditions are equiv-
alent:

• All geodesics in M are complete.
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• All geodesics starting at a point P ∈ M are complete.

• The distance function d induced from the Riemannian met-
ric is complete (as a distance function).

• All divergent path on M5have infinite lengths.

• All bounded set on M with respect to d are relatively com-
pact.

Moreover, if these properties are satisfied, then, for each P, Q ∈
M , there exists a geodesic joining P and Q ∈ M , whose length
is d(P,Q).

Examples

Example 5.18 ((Pseudo) Euclidean spaces). Consider Rn
s be

the submanifold of itself. Taking the canonical coordinate sys-
tem (x1, . . . , xn), the coefficients gij in (5.7) are constants. Hence
all the Christoffel symbols vanish, and (5.12) turns to be d2uj/dt2 =
0 (j = 1, . . . , n). Hence a curve (u1(t), . . . , un(t)) is a geodesic
if and only if all uj(t)’s are a linear functions in t, that is, a
geodesic is expressed as

γ(t) = tv + p,

that is, a straight line with constant velocity v. Since this is
defined on R, Rn

s is complete. In particular, when s = 0, the

5A curve γ : [0,∞) → M is called a divergent path if for an arbitrary
compact set K in M , there exists a number tK such that γ([tk,∞)) ⊂
M \K.
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distance d(P,Q) is the length of the line segment joining P and
Q.

Example 5.19 (The spheres.). Consider Sn = Sn(1) ⊂ Rn+1

in the Euclidean (n+1)-space, which coincides with Q1 in (4.4)
for s = 0. Let p ∈ Sn and identify it with its position vector,
and take a unit vector v ∈ TpS

n. Set

γv(t) = (cos t)p+ (sin t)v.

Then we have

• ⟨γv(t), γv(t)⟩ = 1, that is, γv(t) is a curve on Sn,

• γ̈v(t) = −γ(t), that is, γ̈v(t) is perpendicular to the tan-
gent space of Sn at γv(t),

• γv(0) = p, γ̇v(0) = v, and

• the image γv(R) of γv is the intersection of Sn and the
plane spanned by {p,v} passing through the origin.

A circle obtained as the intersection of the sphere and a plane
passing through the origin is called the great circle. Since all
geodesics are defined on R, Sn is a complete Riemannian man-
ifold.

Example 5.20 (The hyperbolic spaces.). Consider Q−1 as in
(4.4) for s = 1. Since this is disconnected, we write a connected
component of it by

Hn = {x =
t
(x0, . . . , xn) ∈ Rn+1

1 ; ⟨x,x⟩ = −1, x0 > 0}.
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Let p ∈ Hn and take a unit vector v ∈ TpH
n. We set

γv(t) = (cosh t)p+ (sinh t)v.

Then

• ⟨γv(t), γv(t)⟩ = −1, that is, γv(t) is a curve on Hn,

• γ̈v(t) = γv(t), that is, γ̈v(t) is perpendicular to the tan-
gent space of Hn at γv(t),

• γv(0) = p, γ̇v(0) = v,

• the image γv(R) is the intersection of Hn and the plane
spanned by {p,v} passing through the origin.

Exercises

5-1 Prove Lemma 5.11.

5-2 Prove Lemma 5.13.

5-3 Verify Example 5.20.


