5 Geodesics
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Orthogonal decomposition of the tangent space. Let
M C R7*! be a non-degenerate submanifold?. By non-degeneracy,
the restriction of the inner product of R?*! to each tangent
space Tp M is non-degenerate. Then by Theorem 2.9, the or-
thogonal decomposition

(5.1) R =TpRI = TpM & Np, (Np == (TpM)")

holds for each P € M. The restriction of the inner product
(, ) of R®! to Np is non-degenerate. We call Np the normal
space of M at P. According to this decomposition, each vector
v € TpR?! = R™*! can be decomposed uniquely as

(5.2) v=["+]" [T €eTpM, [v]" € Np.

We call [v]" (resp. [v]") the tangential part (vesp. normal part)
of v.

For the case that M is a hypersurface of R?T! (that is,
dim M = n), the normal space is spanned by the unit normal
vector, that is, Np = Rup, where vp is the unit normal vector
of M at P:

(5.3) R = TR = Tp M @ Rup.

14. May, 2019.
2Not necessarily of codimension one at this moment.
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In this case,
(5.4) WY =, vp)rp, 0] =v—[o]"
hold, where e = (vp,vp) € {—1,1}.

Vector fields along curves. A curve on a non-degenerate
submanifold M of R?*! is a map

y:J 3t y(t) € M C R?T!

where J C R is an interval. A curve -~ is said to be of class C"
if v is a C"-map as a map into R?*!. The following fact is a
direct conclusion of the definition of differentiability of maps:

Lemma 5.1. A map v: J — M C R*"! is of class C" as a
map into a differentiable manifold M if and only if it is of class
C" as a map into RV+1.

From now on, by a word smooth, we mean of class C*°. For
example, a smooth curve v means a curve 7y of class C'*°.

Definition 5.2. Let v: J — M C R?"! be a smooth curve on
M. A smooth vector field on M along v is a map

X:J3t— X(t) € T,yM C RI!
which is of class C* as a map from J to R?*1.

Example 5.3. Let v: J — M C R?"! be a smooth curve.
Then

. . d
A d Dt A(t) = d—Z(t) € TyyM
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is a smooth vector field along ~, called the velocity vector field
of the curve 7.

Definition 5.4. A smooth curve v: J — M is said to be regular
if 4(t) # 0 for all t € J. A regular curve «v is called non-
degenerate if (¥(t),5(t)) # 0, that is, 4(¢) is not a light-like
vector, for each t € J. When (%,%) > 0 (resp. (§,%) < 0), it is
said to be space-like (resp. time-like).

Example 5.5. Consider
Qi = {z € RY| (w,2) = 1}
as defined in (4.4) for n = 3 and s = 1. Then
() := (sinht,0,0,cosht),
Ya(t) := (O7cost,sint,0),
v3(t) := (¢,1,0,t)

are regular curves on ()1, which are time-like, space-like and
degenerate, respectively.

Lemma 5.6. Let v: J — M be a non-degenerate regular curve
on a non-degenerate submanifold M C R**1. Then there erists
a parameter change t = t(7) such that

d
|<’y’,7’>{ =1, where ' (1) = %(t(ﬂ)
Proof. Set

o(t) = / VG @), 3@ | du.
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Since « is non-degenerate, dr/dt = /| (¥,%) | > 0. Then there
exists the inverse function ¢ = ¢(7) of 7(¢), and the chain rule
yields the conclusion. O

We call the parameter 7 as in Lemma 5.6 the arc-length
parameter of the curve. The arc-length parameter of a time-
like curve in a Lorentzian manifold M is often called the proper
time.

Covariant derivative of vector fields along curves. Let
~v be a smooth regular curve on a non-degenerate submanifold
M C R and X a smooth vector field of M along 7. Then
we obtain a map

dX

which is not a vector field on M, in general.

Definition 5.7. The vector field

\Y . T
—X(t) = Vi X (1) = {X(t)} € TyyM
of M along ~ is called the covariant derivative of X along -,

where []" denotes the tangential component as in (5.2).

+1
eR?

)

Definition 5.8. The covariant derivative

(65 A1) = Vi) = ) € Ty M

3From now on, we assume all objects are of class C° and omit the word
smooth.
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of 4 along ~ is called the acceleration of the curve ~.
Lemma 5.9. For each curve v on M, it holds that

L 650,4(0) = 2(T 50730, 70)

Proof. Since (t) € Ty4)M,

2B 4
=2(Vsw¥(t),%(1)) - O

Geodesics and pre-geodesics.

Definition 5.10. A regular curve v on a non-degenerate sub-
manifold M C R?T! is called a pre-geodesic if V.7 is propor-
tional to ¥, and called a geodesic if V44 = 0 holds.

Lemma 5.11. Let v be a pre-geodesic on a non-degenerate sub-
manifold M C R, Then there evists a parameter change
t =t(7) such that (1) := y(t(1)) is a geodesic.

Proof. Problem 5-1. O

Lemma 5.12. Let v be a geodesic of a non-degenerate subman-
ifold M C R?*1. Then (%(t),%(t)) does not depend on t.

Proof. A direct conclusion of Lemma 5.9. O
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Local expressions. Here, we give an expression of geodesics
in the local coordinate system. Let M C RZT! be a non-
degenerate submanifold and take a local coordinate neighbor-
hood (U;ut,...,u™) of M, where m = dim M*. Then the in-
clusion map ¢: M — R?*! induces an immersion

(5.6) f:U . ..,u™) — f(u',...,u™) e M C RIT,

here we identify the coordinate neighborhood U C M with a
region of R™. We call such an f a (local) parametrization of M.
Set

of 0
(57) Ggij ‘= <6’l‘1];’(91.1¢f-.7> (: gjl) (Zaj =1,... ﬂm)7

which is a component of the induced metric g := (, ) |rpmw
with respect to the basis

an), (o).}

of TpM for each P € U. Since the induced metric is non-
degenerate, the m x m-matrix (g;;) is a regular matrix at each
point P. We denote by (¢*/) the inverse matrix of (g;;):

- 1 (i=17)
ki ) =
(58) > gng? =0l = o
k=1 0 (i #J)
4Here we adopt the classical notation of indices, that is, we use the

superscript as u7, instead of uj. In this context, we distinguish superscripts
and subscripts.
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Lemma 5.13. Let vy is a curve in U C M and express

where f: U — M s a local parametrization of M as in (5.6).
Then

" dul Of
(9) =L ow

" d2uj jduF dul \ Of
(5.10) =25 2 T | o
hold, where

1l Ogi | 991 0Ogij

(5:11) Il = T2 z:: <8u3 out oul )’
Proof. Problem 5-2. O

The functions I} of (5.11) are called the Christoffel symbols
with respect to the local coordinate system (ul,...,u™).

Theorem 5.14. Let M C R™™! be a non-degenerate subman-
ifold and fit P € M. Then for each v € TpM, there exists a
unique geodesic Yy : (—e,e) = M satisfying

Y (0) =P, v (0) = v.
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Proof. Take alocal coordinate system (U; u?, u™) of M around
P. Then a curve y(t) = f(ul(t),...,u"(t)) (1n the parametriza-
tion as in (5.6)) is geodesic if and only if

vl i j du® du!

5.12 —
(5-12) dt? klUqr dt

=0 (j=1,...,m)
kl=1

because of(5.10). Let (uj,...,ud) be the coordinates of the

point P and
v =l i 4" i
B out ) oum ) p

Then the initial condition v(0) = P, 4(0) = v corresponds to

du?

(5.13) W (0) =u),  ——(0) ="

dt
Since the Christoffel symbols FZE are functions in (u!,..., u"),
(5.12) is a normal form of an ordinary differential equation of
second order with respect to the unkowns u/(t) (j = 1,...,m).

Hence by the fundamental theorem for ordinary differential equa-
tions, we have the unique solution of (5.12) under the initial
condition (5.13). O

Definition 5.15. A geodesic v on M is said to be complete if
the domain of definition of «(t) is (can be extended to) R.

Hopf Rinow’s theorem. In this subsection, we consider a
connected Riemannian manifolds, that is, the metrics are as-
sumed to be positive definite. For a curve v: J — M in a
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Riemannian manifold M, we define the length of v by

Gay  L)= [ G0 az o).

We denote by Cp q the set of piecewise smooth curves joining
points P and Q in M, and define

(5.15) d(P,Q) := inf L(y).

YECP,Q

Since M is assumed to be connected, the function d: M x M —
R is well-defined. We can prove the following, which can be
found in textbooks on Riemannian geometry:

Fact 5.16. Let d be a function defined in (5.15). Then
e d is a distance function on M,

e the topology on M induced by the distance d coincides with
the topology of M as a manifold.

Moreover, if the length L(7y) of the curve v: J — M is equal to
d(v(a),v(b)), v is a pre-geodesic.

We call the function d the distance function on M induced
from the Riemannian metric.

Fact 5.17 (The Hopf-Rinow theorem). Let M be a connected
Riemannian manifold. Then the following conditions are equiv-
alent:

o All geodesics in M are complete.
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All geodesics starting at a point P € M are complete.

The distance function d induced from the Riemannian met-
ric is complete (as a distance function).

All divergent path on MP®have infinite lengths.

All bounded set on M with respect to d are relatively com-
pact.

Moreover, if these properties are satisfied, then, for each P, Q €
M, there exists a geodesic joining P and Q € M, whose length

is d(P, Q).
Examples

Example 5.18 ((Pseudo) Euclidean spaces). Consider R? be
the submanifold of itself. Taking the canonical coordinate sys-

tem (x!,...,2™), the coefficients g;; in (5.7) are constants. Hence
all the Christoffel symbols vanish, and (5.12) turns to be d?v/ /dt* =
0(j=1,...,n). Hence a curve (u'(t),...,u™(t)) is a geodesic

if and only if all u/(¢)’s are a linear functions in ¢, that is, a
geodesic is expressed as

v(t) = tv + p,

that is, a straight line with constant velocity v. Since this is
defined on R, R} is complete. In particular, when s = 0, the

5A curve v: [0,00) — M is called a divergent path if for an arbitrary
compact set K in M, there exists a number ¢x such that ~y([tg,00)) C
M\ K.
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distance d(P, Q) is the length of the line segment joining P and
Q.

Example 5.19 (The spheres.). Consider S™ = S"(1) C R"*!
in the Euclidean (n + 1)-space, which coincides with @ in (4.4)
for s = 0. Let p € S™ and identify it with its position vector,
and take a unit vector v € T,5™. Set

Yo (t) = (cost)p + (sint)v.
Then we have
o (Yu(t),w(t)) =1, that is, v, (¢) is a curve on S™,

o Yyu(t) = —(¢), that is, 44 (t) is perpendicular to the tan-
gent space of S™ at vy (t),

hd 7’0(0) =D rY’U(O) =, a’nd

e the image v, (R) of 4 is the intersection of S™ and the
plane spanned by {p, v} passing through the origin.

A circle obtained as the intersection of the sphere and a plane
passing through the origin is called the great circle. Since all
geodesics are defined on R, S™ is a complete Riemannian man-
ifold.

Example 5.20 (The hyperbolic spaces.). Consider Q_; as in
(4.4) for s = 1. Since this is disconnected, we write a connected
component of it by

H" = {& ="(x0,...,2,) € R?L: (x,2) = —1,20 > 0}.
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Let p € H™ and take a unit vector v € TpH". We set
Yo (t) = (cosht)p + (sinh t)v.
Then
o (yu(t),vw(t)) = —1, that is, 74 (¢) is a curve on H™,

e Yyu(t) = Yo (t), that is, ¥, (t) is perpendicular to the tan-
gent space of H™ at 7, (1),

b ’YU(O) =D 71)(0) =0,

e the image 7, (R) is the intersection of H™ and the plane
spanned by {p, v} passing through the origin.

Ezxercises

5-1 Prove Lemma 5.11.
5-2 Prove Lemma 5.13.

5-3 Verify Example 5.20.



