
1 Bilinear Forms

A Review of Linear Algebra.

Definition 1.1. • A square matrix P of real components
is said to be an orthogonal matrix if tPP = P tP = I
holds, where tP denotes the transposition of P and I is
the identity matrix.

• A square matrix A is said to be (real) symmetric matrix
if tA = A holds.

Fact 1.2. • The eigenvalues of a real symmetric matrix are
real numbers, and the dimension of the corresponding eigenspace
coincides with the multiplicity of the eigenvalue.

• Real symmetric matrices can be diagonalized by orthogonal
matrices. In other words, for each real symmetric matrix
A, there exists an orthogonal matrix P satisfying

P−1AP = tPAP = diag(λ1, . . . , λn),

where diag(. . . ) denotes the diagonal matrix with diago-
nal components “. . . ”. In particular, {λ1, . . . , λn} are the
eigenvalues of A counted with their multiplicity.

In this section, V denotes an n-dimensional vector space over
R (n < ∞).
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Bilinear forms and quadratic forms.

Definition 1.3. A symmetric bilinear form on the vector space
V is a map q : V × V → R satisfying the following:

• For each fixed x ∈ V , both

q(x, ·) : V ∋ y 7→ q(x,y) ∈ R and

q(·,x) : V ∋ y 7→ q(y,x) ∈ R

are linear maps.

• For any x and y ∈ V , q(x,y) = q(y,x) holds.

The quadratic form associated to the symmetric bilinear form q
is a map q̃ : V ∋ x 7→ q(x,x) ∈ R.

Lemma 1.4. A quadratic form determines the symmetric bi-
linear form. In other words, two symmetric bilinear forms with
common quadratic form coincide with each other.

Proof. Let q be a symmetric bilinear form and q̃ the quadratic
form associated to it. Since

q̃(x+ y) = q(x+ y,x+ y)

= q(x,x) + q(x,y) + q(y,x) + q(y,y)

= q̃(x) + 2q(x,y) + q̃(y)

holds for each x, y ∈ V , we have

q(x,y) =
1

2

(
q̃(x+ y)− q̃(x)− q̃(y)

)
.

Hence the symmetric bilinear form q is determined by q̃.
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By virtue of Lemma 1.4, a symmetric bilinear form itself is
often called a quadratic form.

Example 1.5. For an n× n symmetric matrix A = (aij) with
real components and column vectors x̂, ŷ ∈ Rn, we set

(1.1) qA : Rn × Rn ∋ (x̂, ŷ) 7−→ tx̂Aŷ ∈ R,

where tx̂ the column vector obtained by transposing x̂. Then
qA is a symmetric bilinear form on Rn. In particular, qI is the
canonical inner product of Rn, where I is the identity matrix.

Conversely, for each symmetric bilinear form q in Rn, there
exists a symmetric matrix A such that q = qA. In fact, setting
aij := q(ei, ej), A = (aij) satisfies q = qA, where [ej ] is the
canonical basis of Rn.

Matrix representation of quadratic forms. Take a basis
[v1, . . . ,vn] of the vector space V . Then

(1.2) V ∋ x 7−→ x̂ =



x1

...
xn


 ∈ Rn,


x = x1v1 + · · ·+ xnvn = [v1, . . . ,vn]



x1

...
xn







gives an isomorphism of vector spaces. We call x̂ ∈ Rn the
component of x with respect to the basis [vj ].
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Lemma 1.6. For a symmetric bilinear form q on V , there exists
the unique n× n symmetric matrix A satisfying

q(x,y)

(
= qA(x̂, ŷ)

)
= tx̂Aŷ,

where x̂ and ŷ ∈ Rn are the components of x, y with respect to
[v1, . . . ,vn], respectively

Proof. Setting A = (aij) by aij := q(vi,vj), the conclusion
follows. In fact,

q(x,y) = q




n∑

i=1

xivi,
n∑

j=1

yjvj


 =

n∑

i,j=1

xiyjq(vi,vj)

=
n∑

i,j=1

xiyjaij =
tx̂Aŷ = qA(x̂, ŷ),

where x̂ =
t
(x1, . . . , xn) and ŷ =

t
(y1, . . . , yn).

We call the matrix A in Lemma 1.6 the representative matrix
of q with respect to the basis [vj ].

Lemma 1.7. Take two bases [v1, . . . ,vn], [w1, . . . ,wn] of V
and let U = (uij) ∈ GL(n,R) be the basis change matrix:

[w1, . . . ,wn] = [v1, . . . ,vn]U

i.e., wj =
n∑

i=1

uijvi (j = 1, . . . , n),
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where GL(n,R) denotes the general linear group, that is, the set
of n × n regular matrix of real components. Let A (resp. Ã) be
the representative matrix of a symmetric bilinear form q with
respect to the basis [vj ] (resp. [wj ]). Then it holds that

Ã = tUAU.

Proof. Writing x and y as

x = [v1, . . . ,vn]x̂ = [w1, . . . ,wn]x̃,

y = [v1, . . . ,vn]ŷ = [w1, . . . ,wn]ỹ,

we have
x̂ = U x̃, ŷ = U ỹ.

Hence q(x,y) = tx̂Aŷ = tx̃tUAU ỹ.

Non-degenerate quadratic forms.

Definition 1.8. A symmetric bilinear form (a quadratic form)
q on V is said to be

• positive definite (resp. positive semi definite) if q(x,x) > 0
(resp. ≧ 0) holds for all x ∈ V \ {0},

• negative definite if −q is positive definite,

• non-degenerate when “q(x,y) = 0 for all y ∈ V ” implies
“x = 0”.

Example 1.9. An inner product (in the undergraduate Linear
Algebra course) is nothing but a positive definite quadratic form.
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Remark 1.10. A positive (resp. negative) quadratic form is non-
degenerate. In fact, if q(x,y) = 0 holds for all y, q(x,x) = 0
holds. On the other hand, q(x,x) > 0 (resp. < 0) when x ̸= 0.
Hence x = 0.

Signature of non-degenerate quadratic forms.

Proposition 1.11. A quadratic form q on V is positive definite
(resp. positive semi-definite, negative definite, non-degenerate)
if and only if all eigenvalues of the representative matrix of q are
positive (resp. non-negative, negative, non-zero). This condition
does not depend on choice of bases.

Proof. Let [v1, . . . ,vn] be a basis of V and A the representative
matrix of q with respect to it. Since A is a symmetric matrix,
there exists an orthogonal matrix P such that

tPAP = Λ, Λ :=



λ1 . . . 0
...

. . .
...

0 . . . λn


 ,

tPP = I = the identity matrix,

where λ1,. . . , λn are eigenvalues of A, which are real numbers.
Then, by setting [w1, . . . ,wn] := [v1, . . . ,vn]P , the representa-
tive matrix of q with respect to [wj ] is the diagonal matrix Λ.
Denoting the components of vectors x,y with respect to [wj ] by

x̂ =
t
(x1, . . . , xn) and ŷ =

t
(y1, . . . , yn), respectively,

q(x,y) =

n∑

j=1

λjxjyj .
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The conclusion is obtained by this equality. In fact, if q is pos-
itive (resp. negative) definite, q(wj ,wj) = λj is positive (resp.
negative) for each j = 1, . . . , n. Hence all eigenvalues of A are
positive (resp. negative). Conversely, if all eigenvalues are posi-
tive (resp. negative),

q(x,x) =
n∑

j=1

λj(xj)
2

is positive (resp. negative). The conclusion for positive semi-
definite case is obtained in the same way.

On the other hand, let q be a non-degenerate quadratic form
and assume λj = 0 for some j = 1, . . . , n. Then

q(wj ,wj) = λj ̸= 0,

contradiction to non-degeneracy. Conversely, assume λj ̸= 0
(j = 1, . . . , n), and q(x,y) = 0 for all y ∈ V . Then

0 = q(x,wj) = λjxj

holds, which implies xj = 0, for j = 1, . . . , n. Thus, x = 0.b
Hence q is non-degenerate.

Let W be a linear subspace of the vector space V . Then a
symmetric bilinear form q : V ×V → R on V induces a symmet-
ric bilinear form q|W : W ×W → R on W .

Definition 1.12. For a non-degenerate quadratic form q on V ,
we define

n+ := max{dimW ; q|W is positive definite},
n− := max{dimW ; q|W is negative definite}.
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The pair (n+, n−) is called the signature of q.

Example 1.13. A positive (resp. negative) definite quadratic
form q on V has signature (n, 0) (resp. (0, n)), where n = dimV .

Theorem 1.14. Let (n+, n−) be the signature of a non-degenerate
quadratic form q on V . Then n+ (resp. n−) is the number of
positive (resp. negative) eigenvalues of the representative matrix
of q. In particular, n+ + n− = n = dimV holds.

Proof. As seen in the proof of Proposition 1.11 we may assume
that the matrix representative with respect to the basis [wj ] is a
diagonal matrix Λ, without loss of generality. Since all diagonal
components of Λ are non-zero, we may assume that λ1, . . . , λt

are negative, and λt+1, . . . , λn are positive. Then q is negative
definite on the subspace generated by {w1, . . . ,wt}, and hence
n− ≧ t. On the other hand, q is positive definite on the subspace
generated by {wt+1, . . . ,wn}, and then n+ ≧ n− t:

(1.3) n− ≧ t, n+ ≧ n− t.

Here, by definition, there exists a subspace W+ (resp. W−)
of V such that q|W+

(resp. q|W−) is positive (resp. negative)
definite and dimW+ = n+ (resp. dimW− = n−). Take a vector
x ∈ W+ ∩W−. Then q(x,x) ≦ 0 and q(x,x) ≧ 0 hold, that is,
q(x,x) = 0. Noticing q|W+ is positive definite, x = 0. Hence
W+ ∩W− = {0}, and then we have

n+ + n− = dimW+ + dimW− ≦ dimV = n.

Therefore (1.3) yields

n− ≧ t, n− n− ≧ n− t n− n+ ≧ t, n+ ≧ n− t,
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that is, n− = t, n+ = n− t.

Remark 1.15. By Theorem 1.14, the number of positive (resp.
negative) eigenvalues of the matrix representative does not de-
pend on choice of bases. This fact is equivalent to “the number
of positive (negative) eigenvalues of a symmetric matrix A is
invariant to the transformation A 7→ tUAU (U is a regular ma-
trix)”.

Definition 1.16. An inner product on a finite dimensional vec-
tor space V is a non-degenerate quadratic (symmetric bilinear)
form. A vector space with fixed inner product is called an inner
product space or a metric space.

Pseudo Euclidean vector spaces. Let s ≧ 0, t ≧ 0 be
integers satisfying n := s+ t ≧ 2. Then a quadratic form

(1.4) ⟨v,w⟩s,t := −




s∑

j=1

vjwj


+




s+t∑

k=s+1

vkwk





v =



v1
...
vn


 ,w =



w1

...
wn







gives an inner product on Rn with signature (t, s). We denote by
Rn

s such an inner product space, and call the pseudo Euclidean
vector space of signature (s, t). The inner product (1.4) can be
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expressed as

(1.5) ⟨v,w⟩s,t = tvJs,tw Js,t :=

(
−Is O
O It

)
.

In particular, the case of signature (n, 0), Rn := Rn
0 is called

the Euclidean vector space, and when the signature is (n−1, 1),
the space Rn

1 is called the Minkowski vector space.

Orthonormal basis In this paragraph, we fix an inner prod-
uct ⟨ , ⟩ on V .

Definition 1.17. A vector v ∈ V is said to be orthogonal to
w ∈ V if ⟨v,w⟩ = 0 holds.

Definition 1.18. An n-tuple {e1, . . . , en} of V is called an
orthonormal basis of V if

| ⟨ei, ej⟩ | = δij (1 ≦ i, j ≦ n)

holds.

Lemma 1.19. An orthonormal basis is a basis of V .

Proof. It is sufficient to show linear independency.

Theorem 1.20. There exists an orthonormal basis for an arbi-
trary inner product space. In particular, if the signature of the
inner product is (t, s), one can take a basis [ej ] satisfying

⟨ei, ej⟩ = 0 (i ̸= j),

⟨ei, ei⟩ =
{
−1 (i = 1, . . . , s)

1 (i = s+ 1, . . . , s+ t).
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Proof. As seen in the proof of Proposition 1.11, there exists a
basis [wj ] such that the matrix representative of ⟨ , ⟩ is an diag-
onal matrix Λ = diag(λ1, . . . , λn). Since the number of positive
(resp. negative) eigenvalues is t (resp. s), we may assume

λj

{
< 0 (j = 1, . . . , s)

> 0 (j = s+ 1, . . . , n)

without loss of generality. We set

U := diag
(
1/

√
|λ1|, . . . , 1/

√
|λn|

)
.

Then it holds that

(1.6) tUΛU =

(
−Is O
O It

)
,

where Im is the m×m identity matrix, and O denotes the zero
matrix of an appropriate size. Hence by Lemma 1.7, the matrix
representative of ⟨ , ⟩ with respect to the basis [e1, . . . , en] :=
[w1, . . . ,wn]U is the matrix in (1.6). Hence [ej ] satisfies the
desired property.

MTH.B405; Sect. 1 (20190416) 12

Exercises

1-1 For an m × n matrix C, we set A := tCC, which is an
n×n-symmetric matrix. Let qA be the quadratic form on
Rn as in Example 1.5 induced from A.

(1) Prove that qA is positive semi-definite.

(2) Find a condition of C for qA to be positive definite.

1-2 Let M2(R) be the set of 2× 2 real matrices, and

Sym(2,R) := {A ∈ M2(R) ; tA = A},
Sym+(2,R) := {A ∈ Sym(2,R) ; qA is positive definite},

where qA is the quadratic form as defined in Example 1.5.
Is the subset Sym+(2,R) a smooth submanifold of M2(R) =
R4?


