1 Bilinear Forms

A Review of Linear Algebra.

Definition 1.1. e A square matrix P of real components

Fact

is said to be an orthogonal matriz if ‘PP = P'P =T
holds, where ‘P denotes the transposition of P and I is
the identity matrix.

A square matrix A is said to be (real) symmetric matriz
if ‘A = A holds.

1.2. e The eigenvalues of a real symmetric matriz are
real numbers, and the dimension of the corresponding eigenspace
coincides with the multiplicity of the eigenvalue.

Real symmetric matrices can be diagonalized by orthogonal
matrices. In other words, for each real symmetric matriz
A, there exists an orthogonal matriz P satisfying

P7'AP ='PAP = diag(\1,..., \n),

where diag(...) denotes the diagonal matriz with diago-
nal components “..”. In particular, {\1,...,\,} are the

eigenvalues of A counted with their multiplicity.

In this section, V denotes an n-dimensional vector space over
R (n < 00).
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Bilinear forms and quadratic forms.

Definition 1.3. A symmetric bilinear form on the vector space
Visamap q: V x V — R satisfying the following:

e For each fixed € V, both
q(x,)): Voy—gq(x,y) € R and
q(x): V oy —q(y,z) eR
are linear maps.
e For any « and y € V, ¢q(x,y) = ¢q(y, =) holds.

The quadratic form associated to the symmetric bilinear form ¢
isamap ¢: Voxz— gq(x,z) €R.

Lemma 1.4. A quadratic form determines the symmetric bi-
linear form. In other words, two symmetric bilinear forms with
common quadratic form coincide with each other.

Proof. Let q be a symmetric bilinear form and ¢ the quadratic
form associated to it. Since
(z+y)=qlz+y,z+y)

=q(z,z) +q(z,y) +q(y,x) + q(y,y)

= q(x) + 2q(=,y) + q(y)
holds for each x, y € V', we have

1, . - -
a(@,y) = 5 (@(= +y) - d(@) - d(y)).

Hence the symmetric bilinear form ¢ is determined by . O
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By virtue of Lemma 1.4, a symmetric bilinear form itself is
often called a quadratic form.

Example 1.5. For an n x n symmetric matrix A = (a;;) with
real components and column vectors &, ¥ € R”, we set

(1.1) ga: R" xR" 3 (&,9) — '@Ay € R,

where ‘& the column vector obtained by transposing &. Then
qa is a symmetric bilinear form on R™. In particular, ¢; is the
canonical inner product of R™, where I is the identity matrix.

Conversely, for each symmetric bilinear form ¢ in R™, there
exists a symmetric matrix A such that ¢ = ¢4. In fact, setting
a;j = q(e;,e;), A = (a;;) satisfies ¢ = qa, where [e;] is the
canonical basis of R"™.

Matrix representation of quadratic forms. Take a basis

[v1,...,v,] of the vector space V. Then
T
(12) Vozxr—ax=|: | eR",
Ln
Ty
T=x101+ -+ TpUy = [U1,...,0,] |
Tp

gives an isomorphism of vector spaces. We call & € R" the
component of & with respect to the basis [v;].
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Lemma 1.6. For a symmetric bilinear form q on V', there exists
the unique n X n symmetric matriz A satisfying

q(z,y) <= qa (&, .@)) ="z Ay,
where & and Yy € R™ are the components of ¢, y with respect to
[v1,...,v,], respectively

Proof. Setting A = (a;j) by a;; = ¢(v;,v;), the conclusion
follows. In fact,

n n n
q(x,y) =q Z%vi,zyﬂj = Z 2:y4(vi, v;)
i=1 j=1

ij=1
n
=Y wyja; ="8AY = qa(,9),
i,j=1
Whereﬁs:t(xl,...wn) and'y:t(yl,...,yn). O

We call the matrix A in Lemma 1.6 the representative matriz
of ¢ with respect to the basis [v;].

Lemma 1.7. Take two bases [vy,...,v,], [w1,...,wy,] of V
and let U = (u”) € GL(n,R) be the basis change matriz:

[wi,...,w,] = [v1,...,0,]U

n
i.e., w; = E Us 5V (j:l,...,n),
i=1
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where GL(n,R) denotes the general linear group, that is, the set
of n X n regular matriz of real components. Let A (resp. ;1) be
the representative matriz of a symmetric bilinear form q with
respect to the basis [v;] (resp. [w;]). Then it holds that

A=tUAU.

Proof. Writing « and y as

T =[v1,...,0,]% = [wy,..., w,]E,
Yy = [vlw"?’vn]g = [w17"'awn}g7
we have
r=Uz, y=Ugy.
Hence q(x,y) = '@ Ay = ‘' UAUY. O

Non-degenerate quadratic forms.

Definition 1.8. A symmetric bilinear form (a quadratic form)
q on V is said to be

e positive definite (resp. positive semi definite) if ¢(x, ) > 0
(resp. 2 0) holds for all x € V'\ {0},

e negative definite if —q is positive definite,

e non-degenerate when “g(x,y) = 0 for all y € V7 implies
“m — 077 .

Example 1.9. An inner product (in the undergraduate Linear
Algebra course) is nothing but a positive definite quadratic form.
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Remark 1.10. A positive (resp. negative) quadratic form is non-
degenerate. In fact, if g(x,y) = 0 holds for all y, g(xz,z) =0
holds. On the other hand, ¢(x,x) > 0 (resp. < 0) when x # 0.
Hence = = 0.

Signature of non-degenerate quadratic forms.

Proposition 1.11. A quadratic form q on V' is positive definite
(resp. positive semi-definite, negative definite, non-degenerate)
if and only if all eigenvalues of the representative matrix of q are
positive (resp. non-negative, negative, non-zero). This condition
does not depend on choice of bases.

Proof. Let [v1,...,v,] be a basis of V and A the representative

matrix of ¢ with respect to it. Since A is a symmetric matrix,
there exists an orthogonal matrix P such that

Aro... O
'PAP=A, A:=|: R I
0 ... A\
'PP = I = the identity matrix,
where A1,..., A, are eigenvalues of A, which are real numbers.
Then, by setting (w1, ..., w,] := [v1,...,v,]|P, the representa-

tive matrix of ¢ with respect to [w;] is the diagonal matrix A.
Denoting the components of vectors &,y with respect to [w;] by
T = t(xl, co.,xy) and Yy = t(yl, .+, Yn), respectively,

a(@,y) =D Najy;.
j=1
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The conclusion is obtained by this equality. In fact, if ¢ is pos-
itive (resp. negative) definite, g(w;, w;) = A; is positive (resp.
negative) for each j = 1,...,n. Hence all eigenvalues of A are
positive (resp. negative). Conversely, if all eigenvalues are posi-
tive (resp. negative),
n
(@, @) = Aj(x5)°
j=1
is positive (resp. negative). The conclusion for positive semi-
definite case is obtained in the same way.
On the other hand, let ¢ be a non-degenerate quadratic form
and assume \; = 0 for some j =1,...,n. Then

q(wj, wj) = A; # 0,
contradiction to non-degeneracy. Conversely, assume A; # 0
(j=1,...,n), and ¢(x,y) =0 for all y € V. Then

0= q(:c,'wj) = )\jﬂ?j
holds, which implies z; = 0, for j = 1,...,n. Thus, £ = 0.b

Hence ¢ is non-degenerate. O

Let W be a linear subspace of the vector space V. Then a
symmetric bilinear form ¢: V xV — R on V induces a symmet-
ric bilinear form gl : W x W — R on W.

Definition 1.12. For a non-degenerate quadratic form q on V',
we define

ny := max{dim W ; g|w is positive definite},

n_ := max{dim W ; g|w is negative definite}.
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The pair (ny,n_) is called the signature of q.

Example 1.13. A positive (resp. negative) definite quadratic
form g on V has signature (n,0) (resp. (0,n)), where n = dim V.

Theorem 1.14. Let (n4,n_) be the signature of a non-degenerate
quadratic form q on V. Then ny (resp. n_) is the number of
positive (resp. negative) eigenvalues of the representative matriz
of q. In particular, ny +n_ =n =dimV holds.

Proof. As seen in the proof of Proposition 1.11 we may assume
that the matrix representative with respect to the basis [w;] is a
diagonal matrix A, without loss of generality. Since all diagonal
components of A are non-zero, we may assume that Aq,..., N\
are negative, and A\;11,..., A, are positive. Then ¢ is negative
definite on the subspace generated by {wq,...,w;}, and hence
n_ = t. On the other hand, ¢ is positive definite on the subspace
generated by {w¢41,...,w,}, and then np. =2 n — ¢

(1.3) n_ 2t, ny =Zn—t.

Here, by definition, there exists a subspace W, (resp. W_)
of V' such that qlw, (resp. ¢lw_) is positive (resp. negative)
definite and dim Wy = ny (resp. dim W_ = n_). Take a vector
x e Wy NW_. Then ¢(z,z) £ 0 and ¢(x, ) = 0 hold, that is,
q(x,x) = 0. Noticing g|w, is positive definite, x = 0. Hence
W, NW_ = {0}, and then we have

ny +n_ =dimWy +dimW_ < dimV =n.
Therefore (1.3) yields

n_ > t, n—n_2=n-—t n—ny 2t, ny =2n-—t,
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that is, n_ =¢t, ny =n—t. O

Remark 1.15. By Theorem 1.14, the number of positive (resp.
negative) eigenvalues of the matrix representative does not de-
pend on choice of bases. This fact is equivalent to “the number
of positive (negative) eigenvalues of a symmetric matrix A is
invariant to the transformation A — ‘UAU (U is a regular ma-
trix)”.

Definition 1.16. An inner product on a finite dimensional vec-
tor space V is a non-degenerate quadratic (symmetric bilinear)
form. A vector space with fixed inner product is called an inner
product space or a metric space.

Pseudo Euclidean vector spaces. Let s =2 0, t = 0 be

integers satisfying n := s + ¢ = 2. Then a quadratic form

s s+t
(14)  (vw), == D vw; | + [ 3 vewr
j=1 k=s+1
(%1 w1
v = , W =
Up, Wy,

gives an inner product on R™ with signature (¢, s). We denote by
R7” such an inner product space, and call the pseudo Euclidean
vector space of signature (s,t). The inner product (1.4) can be
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expressed as

-1, O
(1.5) (v,w),, = foJs w Jst i= ( 0 It> .

In particular, the case of signature (n,0), R™ := Rf is called
the Fuclidean vector space, and when the signature is (n —1,1),
the space R7 is called the Minkowski vector space.

Orthonormal basis In this paragraph, we fix an inner prod-
uct (, )on V.

Definition 1.17. A vector v € V is said to be orthogonal to
w € V if (v, w) =0 holds.

Definition 1.18. An n-tuple {ej,...,e,} of V is called an
orthonormal basis of V' if

|(ei,ej) | =di; (1=,

A

n)
holds.
Lemma 1.19. An orthonormal basis is a basis of V.

Proof. 1t is sufficient to show linear independency. O

Theorem 1.20. There exists an orthonormal basis for an arbi-
trary inner product space. In particular, if the signature of the
inner product is (t,s), one can take a basis [e;] satisfying

(ei,e;) =0 (i #J),

-1 =1,...
<€i,€i>= (Z ) 75)
1 (i=s+1,...,5+1).
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Proof. As seen in the proof of Proposition 1.11, there exists a
basis [w;] such that the matrix representative of ( , ) is an diag-
onal matrix A = diag(\1,...,A,). Since the number of positive
(resp. negative) eigenvalues is ¢ (resp. s), we may assume

). <0 (G=1,...,9)
“1>0 (j=s541,...,n)

without loss of generality. We set

U := diag (1/\/W,...,1/\/m>.

Then it holds that

. (I, ©
> var - (4 9)

where I, is the m x m identity matrix, and O denotes the zero
matrix of an appropriate size. Hence by Lemma 1.7, the matrix
representative of (, ) with respect to the basis [ey,...,e,] =
[w1,...,w,]U is the matrix in (1.6). Hence [e;] satisfies the
desired property. O
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Exercises
1-1 For an m x n matrix C, we set A := *CC, which is an

n X n-symmetric matrix. Let ¢4 be the quadratic form on
R™ as in Example 1.5 induced from A.

(1) Prove that g4 is positive semi-definite.

(2) Find a condition of C for g4 to be positive definite.
1-2 Let M3(R) be the set of 2 x 2 real matrices, and
Sym(2,R) := {A € My(R); ‘A = A},
Sym, (2,R) := {A € Sym(2,R); q4 is positive definite},

where ¢4 is the quadratic form as defined in Example 1.5.
Is the subset Sym , (2, R) a smooth submanifold of M3 (R) =
R*?



