XML

- Extensible Markup Language
 - Origin: SGML (Standard Generalized Markup Language)
 - Similar to HTML (Hyper Text Markup Language) for Web
 - XML 1.0: produced by W3C (World Wide Web Consortium): 1998
- Trends
 - Recently, more and more data are represented and exchanged by XML on the Internet
 A format for B2B data exchange
 - Store XML data as Database: XML-Database

 - Examples
 Bibliography data: DBLP, ACM SIGMOD Record,
 Bioinformatics data: TrEMBL, Swiss-Prot

Basic Syntax of XML · Enclosed with <start tag> and <end tag> - <title>Special Theory of Relativity</title> · Hierarchical Configuration (with attributes) – NG: <author>Einstein<title></author>Relativity</title> - Well formed : <article id="0123"> <title>Special Theory of Relativity</title> <author> <f.name>Albert</f.name> <l.name>Einstein</l.name> · Correspond to a tree structure

DTD

- Document Type Definition
 - To create rules for the elements in XML documents
- An example
- <!DOCTYPE journal-db [
- <!ELEMENT journal (article)+>
 <!ELEMENT article (title, authors)>
- <!ELEMENT title (#PCDATA)>
- <!ELEMENT authors (author)+>
- <!ELEMENT author (f.name, I.name)>
- <!ELEMENT f.name (#PCDATA)>
- <!ELEMENT I.name (#PCDATA)>
- <!ATTLIST article id IDREFS #REQUIRED>

XML-DB vs. RDB – Fixed Schema : Table • Every tuple has all attributes First Normal Form • Each element is atomic - Most common query language: SQL - Flexible Schema: semi-structured - Hierarchical Configuration - Query langate: Xpath, XQuery **XPath** • A language to navigate, and find data, within XML documents. - XPath 1.0 became a Recommendation 1999 by W3C XPath 2.0 is the current version Select one or more nodes to retrieve the data they contain Expressed by location step axis :: node-test [predicate] axis: child, descendant, parent, following-sibling, ... /child::journal/child::article/child::authors/child::author/child::l. name

XQuery

• A language for querying XML data

/journal/article/authors/author/l.name/journal//l.name[Einstein]//article[@id="0123"]

- Recommended by W3C
- The means to extract and manipulate data from XML documents
 - To XML what SQL is to database tables
- Use path expressions
- Provides new XML documents to be constructed
- Syntax

• RDB:

XML-DB

• Simplified

- FLWOR
 - FOR, LET, WHERE, ORDER BY, RETURN

Example of FLWOR of XQuery

for \$x in doc("journal-db.xml")//article let \$a := \$x/authors/author where \$x/year < 1930 order by \$x//I.name descending return <articles-before-1930> <title>{\$x/title}</title> <author>{\$a/I.name, \$a/f.name}</author> </articles-before-1930>

Answer Example for the Query

<articles-before-1930>

<title>Special Theory of Relativity</title>

<author>Einstein, Albert</author>

</articles-before-1930>

<articles-before-1930>

<title>Uncertainty Principle</title>

<author>Heizenberg, Werner</author>

</articles-before-1930>

How to store a large amount of XML

- Native XML DB
 - Keep XML Data as it is : Tamigo
 - It cannot use many functions developed for RDB
- · Combine with RDB
 - If there are a large number of XML data with other information
 - · Store an XML sentence as character strings in RDB - It cannot use structure information in XML data
 - If the target XML data is a large set
 - · Correspond each schema to an attribute of RDB
 - Less flexibility of the semi-structured configuration of XML It cannot use structure information in XML data
 - Divide each node of a XML tree with label and store as a tuple
 - It can use structure information analyzing the label

Advanced	Data	Engi	neering	2 (©H.	Yokota)

• To extract and reconstruct the structural information of XML data - Containment relationships, order of sibling, depth of nodes, etc. - Important for many applications such as XPath query, keyword search, etc.

Dewey Order Method • The node is expressed by

- (parent node's value) . (the order of sibling)
- XML labeling method using Dewey Order has been proposed [Igor et al., 2002]

Storing XML into RDB with Labels

Node	Pre	Post	Node	Dewey
journal	1	11	journal	1
article id=01234	2	5	article id=01234	1.1
author	3	2	author	1.1.1
Einstein	4	1	Einstein	1.1.1.1
title	5	4	title	1.1.2
Special	6	3	Special	1.1.2.1
article id=56789	7	10	article id=56789	1.2
author	8	7	author	1.2.1
Heizenberg	9	6	Heizenberg	1.2.1.1
title	10	9	title	1.2.2
Uncertainty	11	8	Uncertainty	1.2.2.1

Both "Einstein" and "Special ..." are descendant of "article id=01234" ("2 < 4 and 5>1" and "2<6 and 5>3" / 1.1.1.1 and 1.1.2.1 include 1.1)

Advance Data Engineering (EH.Yokota)

Problem of insertion (PP)

- When an insertion operation occurs, labels of many nodes must be changed
 - Because of using sequential numeric numbers

Problem of insertion (DO) When an insertion operation occurs, labels of many nodes must be changed

- Because of using sequential numeric numbers

To Solve the Problem

- A number of methods have been proposed
- Prepare intervals between the numbers
 - SPARSE [Eda et al. 2002]
 - QRS (Use float numbers) [Amagasa et al. 2002]
 - Above methods require relabeling of many nodes once the prepared space is used up
- · Methods without limitation
 - ORDPATH [O'Neil et al. 2004]
 - DO-VLEI Code [ICDE 2005]

2019/8/8

Advance Data Engineering (©H.Yokota)

ORDPATH [SIGMOD 2004]

- Use only positive odd numbers for initial labeling
 Based on Dewey-Order numbers
- Negative integers and even numbers are used for insertion operations
- Used in Microsoft SQL Server 2005

VLEI Code [ICDE2005]

- Variable Length Endless Insertable code
- Definition
 - A bit sequence beginning with 1
 - Satisfy the following condition $v \cdot 0 \cdot \{0 \mid 1\}^* < v < v \cdot 1 \cdot \{0 \mid 1\}^*$
 - Examples
 - 10<1<11 100<10<101<1<110<11<111
- For any two adjacent VLEI codes v_l and v_r , a new code v between them can be generated by the following equation IF $l(v_l) \leq l(v_r)$ then $v = v_l \cdot 1$ else $v = v_r \cdot 0$ (l(v) is v's length) Example: $l < lI \rightarrow l < lI0 < lI$

DO-VLEI [ICDE2005, IEICE2009] • Apply VLEI code to Dewey Order Labeling

- It does not require change of labels for other nodes
- It can convert into bit-strings by a mapping of

Keyword Search in XML-DB

- Keyword search is important to query XML data
 - XML databases tend to contain text data
 - Users do not know the structure
- Important point of the keyword search in XML database
 - Which sub-tree should be returned as the answer
- Sub-trees containing all keywords are the search target
 - When multiple search keywords are given
- Lowest Common Ancestor (LCA) would be the root of the sub-tree
 - There will be a number of candidate sub-tree for a set of multiple keywords

Distance Metric for Ordered Labeled Tree • Tree Edit Distance (TED) [K. Zhang and D. Shasha, 1997] — Traditional metric for measuring the edit distance between ordered labeled trees — The minimum cost edit operations (insertions, deletions and changes) that transforms one tree to the other Delete D→ Delete E→ Change C to I→ Insert G→ TED=4 Advance Data Engineering (CH-Yokota) 349

Problem of TED

- Expensive computational cost
 - Worst case: O(n4) operation
 - Inapplicable for large-scale Data
- For the documents with similar structure
 - It is difficult for TED to distinguish the similarity differences between them
- To tackle the problem, a number of methods have been proposed
 - Tag similarity based method [Butter, 2004]
 - Entropy based method [Helmer, 2007]
 - LAX: Leaf clustering based method [Liang&Yokota 2005]

2010/8/8

Advance Data Engineering (©H Vokota)

LAX (1/3) • Subtree Similarity Degree (SSD) • The percentage of matched leaf nodes (n) out of total leaf nodes (n_{bi}) in the base subtree $SSD(t_{bi}, t_{ij}) = \frac{n}{n_{bi}} \times 100(\%)$ T_{b} $SSD(t_{bi}, t_{ij}) = \frac{2}{3} \times 100\% = 66.7\%$ Advance Data Engineering (SH Yokota) 351

LAX (2/3) ■ Matched Subtree (T_M) & Hit Subtree (T_H) • T_M : The pair of subtrees t_M and t_M that has the maximum subtree similarity degree • T_M : The matched subtree T_M is a hit subtee, iff the similarity degree of T_M is greater than or equal to a user defined threshold τ (0 < τ ≤ 1) SSD(t_{b1} , t_{t1})=2/3*100%=66.7% SSD(t_{b1} , t_{t1})=66.7%>= τ ? Advance Data Engineering (PH Viocia)

Summary of this course

- Data Engineering: A research area managing Data
 How to store, search for, retrieve and process data efficiently
- Data Warehousing
 - Stock up data of operational transaction processing
 - Apply OLAP (Data Cube) and data mining methods
- Devices to store a large amount data reliably
- Indexing methods to search for target data in storages
- Cost estimation of relational database operations
- Parallel relational database operations / Skew handling
- Distributed databases / B2B connections
- Data engineering for Cloud environment
 - $-\,$ HDFS, KVS, Semantic Web, Security, RDF DB, XML DB

2010/9/9