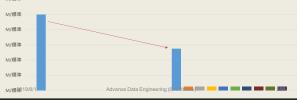
Skews in a Join Operation

- If there are skews in parallel processing,
 - We cannot obtain enough scalability
 - Speed-up is restricted by the slowest PE


2019/8/1

Advance Data Engineering (©H.Yokota)

Image of skews

- Suppose you have 100 jobs and 10 members
- If the jobs are evenly distributed to 9 members (5 jobs for each), but one member takes 55 jobs, then speed up is less than twice.

– You have to wait till the last member is finished.

Skews in a Join Operation

- If there are skews in parallel processing,
 - We cannot obtain enough scalability
 - Speed-up is restricted by the slowest PE
- Consider GRACE Hash Join
 - There are several reasons for skews
- Assumptions
 - Selection Operations are executed before the Join Operation
 - Results can be output from each PE

Advanced Data Engineering (©H. Yokota)

2019/8/1

Advance Data Engineering (©H. Yokota)

Types of Skews in a Join Operation

- Tuple Placement Skew
 - Tuple distribution skew before starting the query
- · Selectivity Skew
 - Skew in the results of the selection before join
- Redistribution Skew
 - Bucket size skew in distribution phase of join operation
- Join Product Skew
 - Skew in the results of join phase

2019/8/1

Advance Data Engineering (©H.Yokota)

290

Handling of Skews in a Join

- Tuple Placement Skew:
 - Adjustment of tuple placement
 - Round-Robin partitioning, Hash partitioning, others
- Selectivity Skew / Redistribution Skew:
- Fine Bucket Method (will be described soon)
- Join Product Skew:
 - Dynamic bucket allocation / output tuple allocation
- · Focus on the Fine Bucket Method

2019/8/1

Advance Data Engineering (©H.Yokota)

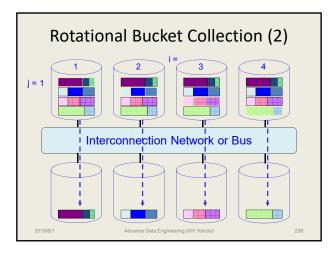
291

Fine Bucket Method (1) • If the number of PEs N_p is equal to the number of buckets N_b – Skews cannot be removed with any placement strategies Bucket#: N_b $N_b = N_p$ PE1 PE2 PE3 PE4 PE#: N_p

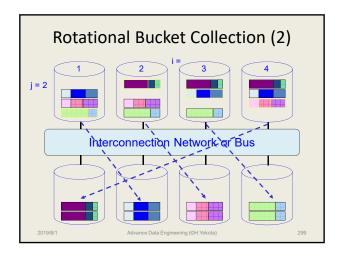
Fine Bucket Method (2) • Make the number of buckets N_b quite larger than the number of PEs N_p Bucket#: N_b $N_b >> N_p$ PE#: N_p

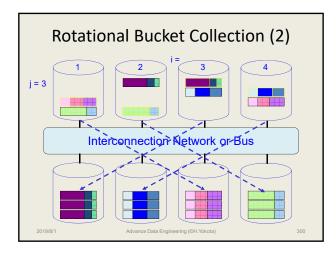
Fine Bucket Method (3)	
Goal: task size in each PE becomes equivalent	
PE1 PE2 PE3 PE4	
2019/8/1 Advance Data Engineering (©H. Yokota)	294

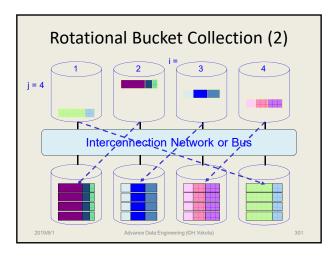
A Bucket Allocation Strategy • LPT (Longest Processing Time) First Strategy — Heuristics for Minimum Make Span • Spreading Bucket Method — Calculation of bucket size and plan making — Distribute buckets to all PEs and make a plan in one of them — Merit of Spreading Bucket • There is no data concentration in a particular PE + Disk • Distribution of fine bucket in each module is similar — It is easy to obtain statistics information


Rotational Bucket Collection (1)

- Routing without congestion during collecting buckets
- Cluster fine buckets into equalized task group by LPT First
 - Distribute N_{ρ} subtask group into N_{ρ} PEs
- i-th PE PE_i ($1 \le i \le N_p$)
 - Read *i*-th subtask group from $(((i + j) 2) \mod N_p) + 1$ module in *j*-th step


2040/0/4


Advance Data Engineering (©H. Yokota)


Rotational Bucket Collection (2) Interconnection Network or Bus

Advanced Data	Engineering	(©H.	Yokota)

Process Flow of Fine Buckets
1. All tuples are hashed into N_b buckets, where
$N_p << N_b$ 2. Applying the Spreading-Bucket Method
3. Make task groups by the LPT First Scheduling
4. Applying the Rotational Bucket Collection
5. Do Join operation in each node
2019/8/1 Advance Data Engineering (©H.Yokota) 302
Costs of Fine Buckets
1. I/O for 1 PE during Hash:
$2 \times (R + S) / N_p$ 2. The Spreading-Bucket Method can be done on-
the-fly
 Data collection for scheduling can be overlap on the I/O
4. I/O for collecting task groups:
$2 \times (R + S) / N_p$ 5. I/O for Join operation:
$(R + S)/N_p$
2019/8/1 Advance Data Engineering (©H.Yokota) 303
Comparison on costs of Fine Buckets
• Let the maximum skew $lpha\%$
— When N_p is infinity, $\alpha\%$ for sequential execution time • Thus, the execution time: $\alpha/100 \times 3 \times (R + S)$
When we adopt the Fine Bucket Method with the Spreading Bucket Method

- Total I/O Cost: 5 $\times (|\,{\rm R}\,|\,+\,|\,{\rm S}\,|\,)/\,N_p$

A Rough Comparison

Combination of Methods

- Tuple placement Method
 - For Tuple Placement Skews
- · Fine Bucket Method
 - For Selectivity / Redistribution Skews
- Dynamic bucket allocation / output tuple allocation Method
 - Join Product Skews
- · Each method is independent
 - Combine these methods

2019/8/1

Advance Data Engineering (©H.Yokota)

305

Parallelize Hybrid Hash Join

- Prepare a corresponding Hash Table in each PF
 - It is difficult to build the Hash Table during read disk, because data is fragmented to all disks
 - Build the Hash Table while writing data into the disk in the Phase 1
 - It can reduce time of Phase 2
- However, we can not apply the fine bucket method

2019/8/1

Advance Data Engineering (©H. Yokota

306

Assignment 12

- In actual situations, it is hard to make the load distribution completely even by the LPT First Strategy.
 - a. Consider the condition of α for the case in which the Fine Bucket Method with the Spreading Bucket Method is effective for N_{ρ} = 100, when we assume that the maximum skew remains $\beta\%$ (difference between the longest and shortest execution time is $\beta\%$ of the sequential execution time) after applying the Fine Bucket Method.
 - b. Consider approaches to make $\boldsymbol{\beta}$ smaller.

2019/8/

Advance Data Engineering (©H.Yokota)

307