Data Mining

- Knowledge Discovery in Databases (KDD)
 - Predict or discover rules
 - By analyzing data or detecting patterns
 - Applications
 - Strategy for displaying goods in shops
 - Planning for bargain sales
 - Shipping direct mails
 - Classifying desirable or bad customers
 - and so on

2010/8/27

Advance Data Engineering (©H.Yokota)

Methods for Data Mining

- Discovering Patterns
 - Association Rules (Rakesh Agrawal's group in IBM)
 - Apriori Algorithm
 - Example: Basket Analysis (Receipt Analysis), Research Mining, Web Log Mining, ...
 - Discovering Sequential Patterns
- Similar Time Sequence
- Clustering
 - Using Decision Trees
 - Using Neural Networks
 - Using Genetic Algorithm
- Statistical Analysis
- ...

204010

Advance Data Engineering (©H.Yokota)

What is Association Rules?

- Let $I = \{i_1, i_2, ..., i_m\}$ be a set of items
- Let $D = \{t_1, t_2, ..., t_n\}$ be a set of transactions
 - Each transaction t_i is a set of items such that $t_i \subset I$
- An association rule $X \Longrightarrow Y$ where $X, Y \in I$, $X \cap Y = \phi$
 - having two measures of values, support and confidence
- An **itemset** X has **support** s in the transaction set D
 - s% transactions in D contains X
 - s ≡ sup(X)
- A confidence c of $X \Rightarrow Y$ in D means
 - c% of transactions in D that contain X also contain Y
 - c = sup(X, Y)/sup(X)

[Conditional Probability of Y, given X]

2019/6/27

Advanced Data Engineering	(©H.	Yokota`)
---------------------------	------	---------	---

Mining Association Rules

- A Goal
 - Find all association rules satisfying user specified minimum support and minimum confidence.
- Procedure: Apriori algorithm
 - Derive all large itemsets in which the item satisfy the minimum support.
 - 2. Using the large itemsets, generate association rules satisfying minimum confidence.

2010/8/27

Advance Data Engineering (©H.Yokota)

Apriori Algorithm (1)

I. Generate a large 1-itemset:

- 1. Scan the fact database D
- 2. Count occurrence of each item
- 3. Calculate support for each item
- 4. Derive a set of items satisfying the minimum support
 - The derived itemset is called a large 1-itemset
 the 1-itemset contains 1 length items

II. Generate a candidate 2-itemset:

- 1. Select two items from the large 1-itemset
- 2. Generate all combinations of items in the large 1-itemset.
 - The combination is called a candidate 2-itemset
 - the candidate 2-itemset contains 2 length items

2019/6/27

Advance Data Engineering (©H.Yokota)

Apriori Algorithm (2)

III. Generate a large 2-itemset:

- 1. Scan the fact database again
- Calculate support for each item in the candidate 2-itemset
- 3. Generate a large 2-itemset satisfying the min support
 - the large 2-itemset contains 2 length items

IV. Continue

- 1. Generate a candidate *k*-itemset from the large (*k*-1)-itemset
 - the candidate k-itemset contains k length items
- 2. Choose the large *k*-itemset
- 3. Until the large k-itemset becomes empty

2019/6/27

An Example of Basket Analysis

• Consider the following five baskets (carts)

- · Assumptions:
 - minimum support = 0.5
 - minimum confidence = 0.8

2010/6/27

Advance Data Engineering (©H Vokota)

Apply the Apriori Algorithm

- 1. Derive support for each item
 - A: 3/5 = <u>0.6</u>, B: <u>0.8</u>, C: 0.4, D: <u>0.8</u>, E: 0.4
- 2. Generate the Large 1-itemset: {A, B, D}
- 3. Generate the candidate 2-itemset: {AB, AD, BD}
- 4. Derive support for the candidate 2-itemset
 - AB: 2/5=0.4, AD: <u>0.6</u>, BD: <u>0.6</u>
- 5. Generate the large 2-itemset: {AD, BD}
- 6. Derive confidence
 - AD/A: 3/3 = <u>1</u>, AD/D: 3/4=0.75, BD/B: 3/4=0.75, BD/D: 3/4=0.75
- 7. Association rule: A \Rightarrow D,
- 8. Generate the candidate 3-itemset: {ABD}
- 9. Derive support for the candidate 3-itemset
 - ABD: 2/5=0.4

2019/6/27

Advance Data Engineering (©H.Yokota)

Explain the Algorithm in SQL (1)

• Generate a large 1-itemset

INSERT INTO LargeItemset1

SELECT Product_ID

FROM Fact_Table

GROUP BY Product_ID

HAVING COUNT(Transaction_ID) > MSC

Here, MSC = COUNT(DISTINCT TID) × minimum_support

• Generate a candidate 2-itemset

INSERT INTO CandidateItemset2

SELECT P.Product_ID AS PP, Q.Product_ID AS QP

FROM LargeItemset1 AS P, LargeItemset1 AS Q

WHERE PP < QP

2019/6/27

Explain the Algorithm in SQL (2) Cand. 2 QP Generate a large 2-itemset INSERT INTO Largeltemset2 SELECT X.Product_ID AS XP, Y.Product_ID AS YP FROM Fact_Table AS X, Fact_Table AS Y CandidateItemset2 AS C WHERE X.Transaction_ID = Y.Transaction_ID AND XP = C.PP AND YP = C.QP GROUP BY XP, YP HAVING COUNT(X.Transaction_ID) > MSC

Sequential Pattern Mining • Handle not just combinations but sequences • Sequence database - Each sequence has SID - (ce) indicate c and e occur at the same time - <b(ce)> is a subsequence of <(bf)(ce)b(fg)> • Sequential Pattern Mining: - Given min_sup = 2, <b(ce)> is a sequential pattern

Apriori Property Based Approach • Apriori property for sequential patterns - For a subsequence Sy of a sequence Sx $\boldsymbol{-}$ If Sy is not frequent, then Sx is not frequent either - For instance SID Sequence <hb> is infrequent, so do <hab> and <(ah)b> 10 <(bc)cd(ab)> Generate subsequence 20 <(bf)(ce)b(fg)> DB satisfy min_sup 30 <(ah)(bf)abf> Finding length-1 pattern — Generate candidate pattern 40 <(be)(ce)d> 50 <a(bd)bcd(ade)> Advance Data Engineering (©H.Yokota)

PrefixSpan

- <ab> is prefix of sequence <(ah)(bf)abf> and <a(bd)bcb(ade)>, but not others
- For the prefix <ab>, <(_h)(_f)abf> and
 <_(_d)bcd(ade)> are prefix-based projection
- Find length-1 sequence patterns at first: <a>, , <c>, <d>, <e>, <f>, <g> to generate their projection databases
- Then all length-2 sequence patterns
 <aa>, <ab>, <ac>, <ad>, <ae>, <af>, <ag>
 to generate their projection databases

2010/8/27

Advance Data Engineering (©H Vokota)

Efficiency of PrefixSpan

- No candidate sequence needs to be generated
- · Projection databases keep shrinking

2019/6/27

Advance Data Engineering (©H.Yokota)

Closed Sequential Pattern

10 <(bc)cd(ab)>

20 <(bf)(ce)b(fg)>

30 <(ah)(bf)abf>

50 <a(bd)bcd(ade)>

40 <(be)(ce)d>

- Inclusion of sequence
 - <(bd)cd(ab)> inc <bcda>
 - <(bd)cd(ab)> inc <bd>
- <bcda> inc <bd>
- Closed Pattern:
 - There is no pattern P', where P inc P' and sup(P) = sup(P')
 - sup(P) = sup(P)

 For example, sup(<ab(cd)>) = 3, sup(<abc>) = 3 and <ab(cd)> inc <abc>, so <abc> in not closed
- Can reduce redundancy

2019/6/27

Other Pattern Mining Algorithms

- A large number of algorithms have been proposed
 - Pattern-growth methods: FreeSpan
 - Vertical format based mining: SPADE
 - Constraint-based mining: SPIRIT
 - Mining closed sequential patterns: CloSpan, BIDE $\,$

- ...

- This course does not focus on details of them
 - Focus on bases of Data Engineering

2010/8/27