[llustration of Simple Hash Join

s
Overflow

2019/7/29

Parallelize Simple Hash Join

* Where can we parallelize simple hash join?
* Loop?
— There are dependencies in iteration
* (i-1)-th results are used for i-th iteration
* Astep of the iteration ?
— That IS Join
* The Original Problem
* Itis hard to parallelize simple hash join

Illustration of GRACE Hash Join

Partitioning Phase Join Phase

Hash Build
[S— Hash
]

Hash Probe ,
P — Hash

Results

Advanced Data Engineering (H. Yokota)

2019/7/29

Parallelize GRACE Hash Join

* Parallelize Bucket Decomposition in Phase 1
— Each relation is partitioned in advance
« The average number of tuples in each disk {R}/N and {S}/N
« Selection operations are also executed in advance in parallel
— Virtually divide connected disk into Read Disk and Write
Disk
— Assign each bucket to each processor
 Send each tuple by its hash value
* Parallelize Join Operation in Phase 2
— There is no communication within Phase 2

nce Data Engineering (©H.Yokota)

Pseudo Code for Phasel

* Each PE has two threads:
Thread 1:
for (j=1;j < {R/N}; j++) {
read j-th tuple t and attribute value vin t;
x=ho(v); /*e.g. h(v)=mod(v, N)*/
send t to PE,
}
Thread 2
for (;;) {
receive t and attribute value vin t;
y = hi(v);
write t into a file for y

¢ It should be combined with the phase switch of all-to-all
communication
2019/7/29

Advance Data Engineering (©H.Yokota)

Parallel GRACE Hash Join (1)

IRIIN

Read

&
Hash

&
} Send

Receive
&
Write

IRIN

Advanced Data Engineering (H. Yokota) 2

2019/7/29

Parallel GRACE Hash Join (2)

|SIIN

Read

&
Hash

&
} Send

Receive
&
Write

|SIIN

Parallel GRACE Hash Join (3)

Phase 2
[Interconnection Network or Bus]
— —

Read & Local Join
(IR +IS) /N

ineering (GH.Yokota)

Cost of Parallel GRACE Hash Join

* Phasel
— (IR +1S])/ Nread and (|R| + |S|)/ N write in each PE
— With all-to-all communication cost: o
* Phase 2
— (|R| +1S|)/ N read in each PE
— No communication
e Total I/O in each PE
=3x(IRI+SI)/N
— It means (1/N + o), if there is no skew

Advanced Data Engineering (H. Yokota) 3

2019/7/29

Estimate o (1/3)

Bandwidth of each connection of network: 10MB/s

* Network setup time for each connection: 50 ps
|R| and |S]: 64MB each
* The number of processors (N): 8

Consider the cost for communication, assuming each
processing element has enough large buffer space to
keep |R|/Nor [S|/N

* Also consider the cost when each processing
element has memory for two pages (8KB)

cering (OH.Yokota) 54

Estimate a (2/3)

Estimate o (3/3)

Advanced Data Engineering (H. Yokota) 4

Double Buffering
Writing Writing

Time
Buf. 1| |Buf. 2 E> Buf. 1| |Buf. 2

Reading Reading

* It enables simultaneous reading and writing

ineering (©H.Yokota)

2019/7/29

[llustration of Hybrid Hash Join

Partitioning Phase Join Phase

Hash Build

Hash Probe ,
Hash

Results

Parallelize Hybrid Hash Join

» Consider how to parallelize the Hybrid hash join
* Pseudo Code
Thread 2
for (;;){
receive t and attribute value vin t;
y=hi(v);
if y is 0 then build (or probe) a hash table
else write t into a file for y

}

Advanced Data Engineering (H. Yokota)

Multiple Joins

* There tend to be a number of join operations
in a query
— The query construct a query tree

— The configuration of the tree deeply influence the
performance of query processing
« especially under parallel environment

* Parallel executions in a query tree
— Independent executions
— Pipeline executions
* Here, we assume hash join algorithm

2019/7/29

Notation of a Hash Join Node

* Let left input is for
Build and right for
Probe
— Hash Join cannot

start Probe until the

Build Phase is
finished

Results

Left Input Right Input

2019/7/29 Advance Data Engineering (€H.Yokota)

Query Tree Configurations

R ST U T U

Left Deep Tree \\ Bushy Tree / Right Deep Treg/

Advanced Data Engineering (H. Yokota)

2019/7/29

Parallel Multiple Join

* Parallel execution of multiple join is depend
on the structure of the query tree
— Left Deep Tree:
* Sequential
— Right Deep Tree:
« Pipeline Execution (Parallel Build)

— Bushy Tree:
* Child node can be executed in parallel
* Pipeline Execution can also be done

Parallel Aggregation

* Based on sequential aggregation algorithm
using hash
— Hashing for a Group-By operation
— Applying aggregation functions to each group
¢ Count, Sum, Average, Max, Min
* Three algorithms for parallel execution
— Centralized Two Phase Algorithm (C-2P)
— Two-Phase Algorithm (2P)
— Repartitioning Algorithm (Rep)

Centralized Two Phase Algorithm (C-2P)

1. Read tuples from each local disk, apply a hash
function, and execute aggregate function for
hash buckets in each PE

2. Send the results of aggregation to a node to
merge them

= The centralized node will be a bottleneck
when the number of PE increases

Advanced Data Engineering (H. Yokota) 7

Centralized Two Phase Algorlthm (C-2P)

Hash Hash Hash Hash

Mgj Mgj|Mg| Mg

2019/7/29

Pseudo Code for C-2P

In each PE (indicated by x)
for(i=1; i<={Rx}; i++) {
get i-th tuple t from Rx;
derive target attribute value vin t;
y = h(v);
keep t in buffer[y] }
for(i=1; i <= group#; i++) {
apply aggregate functions for buffer[i]
send the result to a PE}
In the PE(0)
merge the results for each group

2019/7/29 Advance Data Engineering (€H.Yokota)

Two-Phase Algorithm (2P)

1. Read tuples from each local disk, apply a hash
function, and execute aggregate function for
hash buckets in each PE

2. Send the results of aggregation to nodes
corresponded with hash partition in parallel

= The merge operations are also executed in
parallel

Advanced Data Engineering (H. Yokota)

2019/7/29

Two-Phase Algorithm (2P)

| A R
an)| (e)| | e)| [e]

Hash Hash Hash

[Hash

Pseudo Code for 2P

In each PE (indicated by x)
for(i=1; i<={Rx}; i++) {
get i-th tuple t from Rx;
derive target attribute value vin t;
y =h(v);
keep t in buffer[y] }
for(i=1; i <= group#; i++) {
apply aggregate functions for buffer([i]
z=h2(i);
send the result to PE(z)}
In each PE
merge the results for corresponding groups

2019/7/29 Advance Data Engineering (€H.Yokota) 280

Repartitioning Algorithm (Rep)

1. Read tuples from each local disk, and apply a
hash function

2. Send the result to nodes depend on the hash
result

3. A node receive the result execute aggregate
function in parallel

= The number of invocations of aggregate
functions can be reduced

ing (©H.Yokota)

Advanced Data Engineering (H. Yokota)

Repartitioning Algorithm (Rep)

[—
¥ 3 ¥ ¥
I]

[Hash] [Hash] [Hash Hash

Mg

AF

2019/7/29

Pseudo Code for Rep (1)

In each PE (indicated by x)
for(i=1; i<={Rx}; i++) {
get i-th tuple t from Rx;
derive target attribute value vin t;
y =h2(v);
send t to PE(y) }

Pseudo Code for Rep (2)

In each PE

merge tuples;

n = count tuples;

for(i=1,i<n;i++){
get i-th tuple from buffer and derive target attribute
valuevint;
z=h(v);
store t in buffer[z];

}

for(j= 1; j < number of buffer in the PE; j++) {
apply aggregate functions for buffer(j]

}

2019/7/29 ineering (©H.Yokota)

Advanced Data Engineering (H. Yokota)

10

2019/7/29

Comparison on Parallel Aggregation

404
From:

— Adaptive Parallel
Aggregation Algorithm

— A.Shatdal and J.F.
Naufhton,

— Proc. of Int'l Conf.
SIGMOD '95,
pp.104--114, (figl)

¢ Using 32 PEs

* The graph indicates:

— When there are small
groups, 2p is better

30

Response Time (see)

Bt
<

[T T | = el . .
I 0100 1000l leslE et lad? — Otherwise, Rep is

Numher of Groups better

019/7/29 Advance Data Engineering (©H.Yokota)

Advanced Data Engineering (H. Yokota)

