2019/7/15

Hash Join
— Hash S
- — Table -
. 7 - {S}
(R == &
Ch 3

1) Build Phase 2) Prove Phase

Costs for Hash Join

* Assuming all tuples of both R and S can be
place on main memory
— Consider disk base hash join later

* We have to consider the following costs
— Applying Hash Function: {R} + {S}
— Building the Hash Table: {R}
— Comparisons: {S}

Hash Join with Disk Accesses

* Three Algorithms
— Simple Hash Join
— GRACE Hash Join
— Hybrid Hash Join
e Assumptions for cost estimation
— Memory size for hash table: |M|

— The distribution of attribute value is flat
=Rl > S|

Advanced Data Engineering (OH. Yokota) 1

Simple Hash Join

Restore tuples that cannot be placed in main
memory hash table

— Repeat until no overflow

— Both R and S (because of the identical hash table)
* The number of repeat (Expectation):

— L=|RI/IM| (1)

nce Data Engineering (©H.Yokota)

2019/7/15

[llustration of Simple Hash Join

Build 1= 0009, 20%: 10-79"_
101 — h(x) 10)| Hash
115 Table | |M| ;
19010-69, 29:20-99 1R
Overflow
101
1s| S

Probe 1% 0-09, 2%: 1'6'-'1‘9*\\

s
t-1 0- d-2()-!
Overflow 1™0-98,220-99 |

Results

ineering (H.Yokota) 18

=

&
5
o
o

54

Example of Overflow Control

Suppose an attribute storing integer value
Cardinality of R is 100

The hash table |M| can keep 10 tuples of R

* Apply hash function h(X)=mod(X,100)

— It generates two-digit numbers

— Lower digit is used to choose an entry of the hash table
— Higher digit is used to decide overflow tuples

* The first iteration: tuples of R, having higher digit of hash value
is 0, are used to build the hash table, and others become
overflow

* The second iteration: tuples having higher digit # 1 becomes
overflow

* Andsoon
* Iteration count becomes 10 or more

2019/7/18 \dvance Data Engineering (©H.Yokota)

Advanced Data Engineering (OH. Yokota)

Cost for Simple Hash Join (1)

* In the first loop
— Applying Hash Function: {R} + {S}
— Comparison: {S}/ L
— Disk I/O for read: |R| + |S]
— Disk I/O for write: |R| - [M| + |S| - |S| /L
—or ([RI+1]SI)- (IRl + S} /L
— from |[M|=|R|/L

2019/7/15

Cost for Simple Hash Join (2)

* Inthei-thloop (i=2,..,L)
— Applying Hash Function:
{R}-(i-1) x{R}/L+{S}-(i-1) X {S}/L
— Comparison: {S}/ L
— Disk I/O for read:
(IRI+1S1)-(i-1) X (|R] +|S[) /L
— Disk I/O for write:
(IRI+1SI)-i x (IR] +[S])/L

Cost for Simple Hash Join (3)
e Summation from the first to L-th (last) loop
— Applying Hash Function:
L X ({Ry+{S})— (L X (L-1)/2 x ({RY/L+{S}/L))
=(L+1)/2 X ({R}+{S})
= (R[] + [M]) X ({R}+{S}) /2|M]|
— Comparison: ({S}/ L) X L={S}
— Disk I/O :
2L x (|R|+|S]) - (Lx (L+1)) /2
+Lx(L-1)/2) x (|R|+|S]) /L
=L X (|R]+]S])
= (IRl X (IRI +ISI))/ IM]

ineering (©H.Yokota)

Advanced Data Engineering (OH. Yokota)

2019/7/15

Illustration of GRACE Hash Join

Partitioning Phase Join Phase

Hash Build
[S— Hash
(=]

i=1,..,n 3

Hash Probe ,
P — Hash

Results

Cost for GRACE Hash Join

e Disk I/O: 3(|R] +]S])
— Read whole |R| and |S| and write them in the
partition phase, and read them again in the join
phase

» Comparison : XS, = ({S} /L) X L={S}
— Assume Hash Join in Join Phase
* Applying Hash Function:
— Partitioning Phase: {R} + {S}
— Join Phase: Z({R;} + {S;}) = {R} + {S}
— Whole: 2 ({R} + {S})

[llustration of Hybrid Hash Join

Partitioning Phase Join Phase

i Hash Build

L ——

i Hash
! m ha(x) Table

| i=2,..,n 3

Hash Probe ,
P — Hash

Results

Advanced Data Engineering (OH. Yokota) 4

e Disk /O :
=3 (IRl +1IS)=2(IRI +|SI)/ L

=(3-2[M]|/|R|) % (IR +SI)

* Comparison and Applying Hash Function

— The same as GRACE Hash Join

Cost for Hybrid Hash Join

2019/7/15

Comparison of Hash Join Algorithm

Applying

Disk I/0 Hash Comparison
: 1Rl [RI+|M s
Simple |MI(IRI+ISI) 21M| (R +{S}) (s}
GRACE | 3(RIHSD 2 (B H{S}) {S}
Hybrid [6-2{ 7 0RI+1SD 2 ({Ry+{S) {S}

 Star Query (Oracle 7)

— Derive Cartesian Products among Dimension
Tables
* to avoid handling the huge Fact Table

* e.g. A4 Laptop, Aug., etc

Optimization of Join (1)

— Tradeoff between the cost for Cartesian Product
and that for handling the Fact Table

— The dimension tables can be filtered by conditions
in advance

Advanced Data Engineering (OH. Yokota)

2019/7/15

Optimization of Join (2)

* Bit Vector Filtering

— Bloom Filtering Merge Join
— Make each entry of R” TN
the Hash Table 1 bit N
* Only Existence (Allow Probe Ve_cto_r S: Sort
collisions) R'T Filtering " st

Hash
— Bit Vector can be place Sort BitMap Byild Vector S’
in main memory R T s !

= Thisfiltering can apply gjiq Vector R Probe Vector R
both sort merge and RT HashBitMap o 4 Filtering
hash join

Scan R Scan S

Advance Data Engineering (©H.Yokota) 165

Join Index (1)

e Assuming join attributes for relations R and S
are R.A and S.B, respectively, an index from
the other attribute of R.C of the relation R is a
Join Index.

— Structure: Inverted File or B*-tree

— Collisions for one entry: Inverted List or in Inverted
File / B-tree

Advance Data Engineering (€H.Yokota) 166

Join Index (2)

[S—
Fact Table

Desk T N Hist_IDProd_ICBhop_I0O... rod_IOPName| P_Cat ...
N | suoprod ighop g | proa icpName]_cal. |
A4LT 'ED ._+10000| 2001 | 3002 |...| | 2000 | Mac |DeskT|...
BSLT 410001 2000 | 3001 |...| | 2001 | VAIO |B5LT |...
D:I"woooz 2001 | 3000 [...| | 2002 | FMV |B5LT ...

Prod_ID = Prod_ID

\dvance Data Engineering (©H.Yokota) 161

Advanced Data Engineering (OH. Yokota)

2019/7/15

Multidimensional Join Index

* Join Index for combination of multiple attributes

Fact Table

N
Hist_IDProd_iCShop_if]..|

10000 | 2001 | 3002 |...

MAC Hawaii *\\

VAIO | Florida Ny

VAIO [New York| « - > 10001 | 2000 | 3001 |...
A\ 10002| 2001 | 3000

\N:l' 10003 | 2000 | 3001 |...

Advance Data Engineering (©H.Yokota) 168

Bitmap Index

Toggle 0 or 1 by existence of a value of the attribute

When the variety of values is small, it provides good
space efficiency

— Bitmap can be place in main memory
— Bitmap can be calculated as an array
* AND/OR operation can be used for filtering
for (i=0;i<len(B1); i++)
B3[i] = B1[i] & B2[i];
On the other hand, large variety of attribute values make
the space efficiency worse.

— combination with value index by segmentation is proposed

2019/7115 Advance Data Engineering (€H.Yokota) 169

An Example of Bitmap Index

Fact Table

5 tPrOd_Ilz Shop_ID Results
N itmap Index i

ist_ID) I 2000 200’1)2002 2003 ?;z::;?sl;ioeo:

10000 2001 [3002 [..] [0][1][o][o] [o][o][1][0] [o]
10001 2000 | 3001 [1[o]o][o] lo|[11[o] o] o]
10002 2001 | 3000 || [0][][o][o] [1][o][o][o] o]
10003| 2020 [3002 [..| [0][0]lo] o] lo]{o|[1][o] o]
10004 | 2003 | 3010 || [o][o][o][1] lo|[o][o][0] o]
10002 2001 | 3001 lo][1]|o][o] lo|[11[o] o] 1]
10003| 2002 | 3011 FFEF lo][o][o]o] o]

Advanced Data Engineering (OH. Yokota) 7

Semi-Join Operation

* A kind of eg-join, but attributes in the result
relation belong to only one relation

‘ Product ID Product Type Price ‘
Product ID | Stocks
P0O1 Laptop PC 1,500
ER0h bc| oot 10
P002 Laptop PC 2,000 i 5
P003 Desktop PC 2,000
1
Product ID Product Type Price
P001 Laptop PC 1,500
P003 Desktop PC 2,000

Data Engineering (OH. Yokota)

2019/7/15

Anti-Semi-Join Operation

 Similar to semi-join, but generating tuples
which does not much with another relation

‘ Product ID ‘ Product Type | Price ‘ Product ID @
P001 Laptop PC 1,500
D P001 10
P002 Laptop PC 2,000 P003 5
P003 Desktop PC 2,000
-

Product ID Product Type Price ‘

P002 Laptop PC_ | 2,000 |

Costs of Semi-Join & Anti-Semi-Join

Cost of Semi-Join are basically same as ordinary join
operations

— For the case of hash join, the size of hash table can be
reduced

Implementation of anti-semi-join is also similar to semi-
join operation except outputting unmuched tuples
instead of muched tuples

— The cost of anti-semi-join is equal to semi join

These operations are related to set operations
Semi-Join is also related to distributed database

nce Data Engineering (©H.Yokota)

Advance

d Data Engineering (©OH. Yokota)

Implementation of Set Operations

¢ Intersection (RN S)
— Apply the semi-join targeting all attributes as conditions
— Costs is equal to one for a join operation
* Difference (R—3S)
— Apply the anti-semi-join targeting all attributes
— Costs is also equal to one for a join operation
e Union (RUS)

— Apply difference operation to derive (R-S) and concatenate
(R-S) with S

— Or concatenate R with S and eliminate duplications

2019/7/15 Advance Data Engineering (©H.Yokota) 174

2019/7/15

Division =
R
+ Division produce a relation | ProductiD

listed in relyq’gi’gr’)us

that consists of the set of P001 John s
tuples from R defined over P001 Alice
thz attribute C that match P001 Bill
the combination of every P002 John P001
tuplein’S, where Cis the P002 Bill - P002
set of attributes that are in P003 John P003
Rbutnotin$ P003 Bill
P004 Alice
P004 Bill
R[ProductID] + S[ProductID]
Salesman who sold all products BT

Implementation of R[X]

=5[X1 (1)

* Sort Base Direct Method
— Sort R by X as minor and C as major
— Check X of R with S from top of the same value C

Advance

Data Engineering (OH.Yok

X R (© minor major s
‘ Product ID | Salesman ‘ ‘ Product ID | Salesman ‘ ’m‘

P001 John P001 Alice

P001 Alice P004 Alice

P001 Bl |Sort | P0O1 Bill

P002 John P002 Bil

o0s = ‘ o 2 results

P03 John P004 Bill

P003 Bill P001 John

P004 Alice P002 John [il |

P004 Bil P003 John

e ota) 176

Advanced Data Engineering (OH. Yokota)

Implementation of R[X]+S[X] (2)

* Hash Base Direct Method
— Prepare two hash functions h1(X) and h2(C)
— h1(X) is used to derive entry # in the indicated h2(C) and set 1

X C

T
P001 John A P001 2
P001 Alice L)X)J P003
P001 Bill
iR002 dfstite P002P001 P003
P002 Bill John =1 [1
P003 John Alice 1
P003 Bill
P004 Alice Bill ™1 1 1
P004 Bill
)19/7/15 Advance Data Engineering KOS 17

2019/7/15

Implementation of R[X]+S[X] (3)

* Aggregate Function based Indirect Method
— Apply semi-join in advance, then count tuples for each group of C
— If any group have count as same as the cardinality of S, then output

R S R’
Product ID‘ Salesman ‘ ‘Product |D‘ ‘Product ID‘ Salesman ‘
P01 John P00 P01 John
Poo1 | Alice |PX[Ppoo2 # PO01 | Alice Jehi
P01 Bill P003 P01 Bill Alice
P002 | John P002 | John Sl
P002 Bill P002 Bill
P003 | John P003 | John
P003 Bil P003 Bill
P004 | Alice Quiz:
00 Eil ‘ Consider an SQL sentence

2019/7/1

to derive the results

Cost for Group-by and
Aggregation Operations (1)

* Nested Loop base
—Scan all tuples to search tuples in the same group,
and then calculate COUNT, SUM, AVG, MAX, MIN
* ({R}-1)+({R}-2)+..+1
* Comparison : {R}({R}- 1) /2
— Write the result into disk at the last
« Disk I/O: [R|(|R| +1)/2

\dvance Data Engineering (©H.Yokota) 17¢

Advanced Data Engineering (OH. Yokota)

10

Cost for Group-by and
Aggregation Operations (2)
e Sort base
— At first sort all tuples and scan from the top
* Assume Merge Sort
— Cost for sort and one scan at the last
* Comparison : {R}(log{R}+1)
— Disk 1/0: |R|(2log|R|+1)
* Hash base
— Divide tuples by a hash function

* Apply the aggregate function for each hash bucket
— If there is no hash collision

* Applying Hash Function, Comparison: {R}

« Disk /O : |R|

nce Data Engineering (©H.Yokota)

2019/7/15

 Bit-Sliced Index
value

 Each bit-slice can be placed on main memory

them

— Adopted by Sybase 1Q, CCA Model 204

Indexing for Aggregation Functions

— Divide each bit of binary expression of an integer

« Alist of each bit in tuples is treated as a bitmap index

* Calculate SUM or AVG for each bit-slice and summarize

* Projection Index

location.
* Reduce Disk I/O by reducing amount of data

— Suited for complex aggregate functions on the
attribute

* Derive SUM for the results of some calculation
— Adopted by Sybase IQ

nce Data Engineering (©H.Yokota)

Indexing for Aggregation Functions

— Derive an attribute (Projection), and access by its

Advanced Data Engineering (OH. Yokota)

11

Comparison on the AF Indices

2019/7/15

Aggregate | Value-list | Bit-Sliced | Projection
Max, Min Best Slow Slow
SUM, AVG | Not Bad Best Good
SUM(A1*(1-A2))| Very Slow | Very Slow Best
NELLELY Best Good Good
Range
BIEE Not Bad Best Good
Range

Advanced Data Engineering (OH. Yokota)

12

