2019/7/8

Indexing

e Consider an index prepared in some textbook
— When you want to find places related to a keyword
— You will find pages of the index in the book at first
— Then search the keyword in the index assuming all
keywords are sorted
— If you find the keyword, you will check page number
written in the same row of the keyword, and go to the
page
— If the textbook has no index, you have to read all pages to
find the keyword
* The concept of indexing in a database system is
similar to indexing in textbooks

2019/7/8 Advance Data Engineering (GH.Yokota) 90

Basic Structures of Indices

* Tuples can be stored and retrieved based on the value
of their key attribute
— Associative Access
* Location of a tuple is indicated by a TID
— Prepare data structures to derive a TID from a value
 Inverted Table (Inverted File)
— Store a table for mapping TIDs with values of a key
— Entries are sorted for the binary search

— The size of the table is grown by increase of the number of
tuples

* Increase Search and Maintaining Cost

2019/7/8 Advance Data Engineering (©H.Yokota) 91

Inverted Table

contents — address

Page

Key Values TIDs

California
Florida

Hawaii

Utah
sorted Page# Slot#

2019/7/8 Advance Data Engineering (©H.Yokota 92

Advanced Data Engineering (OH. Yokota) 1

2019/7/8

Problems of Inverted Tables

* The inverted table is also stored into a disk

 If the number of tuples (n) increases
— The inverted file use multiple disk pages

* Cost for key value search

— log,(n) by the binary search method
« The binary search for multiple disk page is inefficient

* Cost for insert a new key value

— To migrate entries between disk pages or to sort all entries
again and save them into disk papges

Inverted List and Index Tree

—— o1 [P 2 []
—
T s]
\‘1 o4 | P tps | P mbe |

a==rgNsn
== =
1 A

Problem of skews

201 Advance Data Engineering (©H.Yokotz

B-tree

* First described in a paper by Bayer and
McCreight [1972] (Proposed by Bayer)

* A B-tree of order F'is a tree which satisfies
the following properties:
— Every node has <F+1 sons

— Every node, except for the root and the leaves,
has > F/2+1 sons

— The root has at least two sons (unless it is a leaf)
— All leaves appear on the same level
— A nonleaf node with j sons contains j-1 keys

2019/7/8 Advance Data Engineering (GH.Yokota

Advanced Data Engineering (OH. Yokota) 2

Implementation of B-tree

A tree node is stored into a disk page
It guaranties the maximum number of disk
accesses to search for a key value

— Because paths from the root to all leaves have the
same length

It guaranties the minimum occupancy of 50%
— The average occupancy of 69%

— Because a node has at least F7/2 entries

B-tree can be used as file organization and
clustering as well as access path

2019/7/8 Advance Data Engineering (©H.Yokota

2019/7/8

[llustrations of a B-tree

F=4

llinois
Kentucky

New York

Céliforn ia

\

Indiana
lowa

Kansas
Ohio

Texas
Utah

Louisiana
Maryland
Nevada

Georgia
Idaho

Colorado
Florida

Alabama
Alaska
Arizona

+ lllustrate only key values for simplicity
— Also contain TIDs or body of tuples

2019/7/8 Advance Data Engineering (©H.Yokotz

Inserting into a B-tree

* If a new tuple has to be inserted into a page that
already holds the maximum number of entries
— This page split into two pages: the old one and a newly
allocated page
— The existing entries are distributed across the two pages; one
gets the lower half, the other one the upper half of the tuples
— The dividing key between these two pages is propagated up
to the upper page holding the pointer to the split page
— When the split escalates up to the root node, height
increases

2019/7/8 Advance Data Engineering (GH.Yokota

Advanced Data Engineering (OH. Yokota)

2019/7/8

Insertion Process (1)

yein

Sexal

o0

epersN

pueikien

BUEISINOT

SHOA MON
Asjonyuayy
sioul|ir~

sesuey]

emoj

euelpu]

m_Eo:ﬁo

oyep|

EIER)

epuold

[)

Ilemer]

BuoZiy

eysely

eweqely

H.Yokota

ering

Advance Data Enginee

2019/7/8

Insertion Process (2)

/ SOA MON |
m — Asonyusy)

! eibioan

{ BIuJoJl[E!

/ MIOA MBN |
i Apmuay oyep|

i lemeH

i <==[siou|

i eibi0en

i epHOly

3 opelojo) |

elbioe
epuol4

oyep|

IeMeq elbioan
epuol4

0pelojo)

Step 4

Step 3

Step 2

Step 1

H.Yokotz

2 Engineering

Advance Dz

2019/7/8

After the Insertion

stouljl

yein

sexal

oo

epeneN

pueikiepy

euelsino’

SHOA MN| |

Ajonjuayy

sesuey]

emo|

euelpu|

oyep

remer|

ECER)

ERES) eprold

0peIojoy

"No Changes

BuozZuyY

eysely

eweqely

H.Yokota;

2019/7/8

dvance Data Engineering

Advanced Data Engineering (OH. Yokota)

20

B*-tree

Data or TIDs are stored only at the leaf nodes
The leaf nodes have an entry for every value of the key
The leaf nodes are linked to provide ordered access
— The links are useful for the rage queries
The most popular variations of the B-tree
— All commercial products (such as ORACLE and DB2) have
adopted the B*-tree variation
— The B*-tree is often referred to by the simpler name
B-tree

19/7/8 Advance Data Engineering (©H.Yokota

2019/7/8

Illustrations of B*-tree

(1]
& F=4
]
=3
S
o ©| (x
3| = cf |%=
5|3 33
o |2 313
g 3z
g L8| ol = i 218 8ls X<
R RSN SR
8le|NE NS | 8| LTI BIE| | T1B| 8|8 E 15| 53 \| 35|25
HE GRS IR HEEIEEE 2
NN NN I
LTTT [JLLTTJETTT LT []
jlibslogbodviotitbles 103

Performance Aspects of B-trees

N: Number of tuples in the database

F: Maximum number of entries in an index node; by F* we
denote the average number of entries in an index node

C: Maximum number of entries in a leaf node; by C* we denote
the average number of entries in a leaf node

k: (Average) length of a key value

t: (Average) length of a tuple

p: Length of a pointer or a TID

B: Effective storage capacity of a page (page size minus length of
administrational data)

u: Average node occupancy; we assume the same average
occupancy for both leaf and index nodes

2019/7/8 Advance Data Engineering (©H.Yokota!

Advanced Data Engineering (OH. Yokota)

Entries and Leaves

* Calculate the average number of entries
C*=|(B/(k+1t))xu] (Storing tuples in leaves)
C*= _(B /(k + p))x uj (Storing TIDs in leaves)

F*=|(B/(k+ p))xu]
* To store N tuples,
[N/C*]
leaf pages are required
* Since each index node can point to F*
successors, the first level above leaves has
[[N/C*]/F*]

dvance Data Engineering (€H.Yokotz

2019/7/8

Height of the B-tree

* Calculate how often
[N/C*]
can be divided by F* until the result is less
than 1
H =1+[log,..(N/C*]]

* or
N =C*xF *(H-1)
An Example
Storing tuples Storing TIDs
(C*=43) (C*=300)
H N (max) N (max)
2 12,900 90,000
3 3,870,000 27,000,000
4 1,161,000,000 8,100,000,000
5 348,300,000,000 2,430,000,000,000

* B=8,000 Byte, k=10 Byte, =100 Byte,
p=6 Byte, u=0.6

Advanced Data Engineering (OH. Yokota)

2019/7/8

Assignment 5

* Assuming:
— Average seek time of the disk =2ms
— Rotation Speed of the disk = 12,000 rpm
— Data transfer bandwidth = 20MB/s
— A page size 4KB (4096Byte)
— Effective storage capacity (B) 4000Byte
— k=20 Byte, =100 Byte, p=4 Byte, u=0.6

1. Derive the maximum number of tuples for a B-tree
storing TIDs, of which height is 2 and 3

2. Calculate access time to derive a TID of a tuple by
the B-tree stored into the disk for 500,000 tuples

2019/7/8 Advance Data Engineering (GH.Yokota!

Hashing

* Hash files are designed to provide fast access to one
tuple via an attribute or concatenation of attributes

— TID does just that, but it is a system-generated, internal
identifier, which normally does not have any significance for
the application

— The attribute used for hash file access is an external attribute
* Use the same hash function for storing and retrieving
* An example of a hash function: h(X) = mod(X, n)

— nis the size of the hash table
* Folding methods are used for character strings

Page

Utah
—
Storing TIDs

2019/7/8 Advance Data Engineering (©H.Yokota 110

Hashing
Page
Hash Table
5 California
Hawaii { >< y tth

S
California >?{
8
I

Advanced Data Engineering (OH. Yokota) 7

2019/7/8

Hash Collision

« Different keys have the same hash value
— Ex: h(X) = mod(X, 8), h(9)=h(17) =1
* Use other entries for the keys

¢ Search cost is not constant

0 0 Page
Le

©
w N
o
H

)
‘\
ololo|o

Extensible Hashing (1)

* A fixed number of entries in a hash table
becomes a problem for the scalability

¢ By the extensible hashing, the number of
entries in a hash table can grow and shrink
with usage (a power of two)

* A hash function produces a bit string S for
each key value

* Then d bits are taken out of S from a defined
position
—dis called as a depth

Extensible Hashing (2)

* The hash table has a global depth, and each hash
bucket has a local depth

* Anexample:
— Assuming two tuples can be store into a bucket

Florida~ 1104~~~ ~-—=--——=-=--= N
Key value S A Local Depth .
New York 1001 ! Global Depth |1 f
California ~ 010Q L Caliomia | |
Hawaii 0011 - :
Florida il i Directory New York !
Texas 0101 i Hawaii |

S Full
Take out d bits from LSB Copy the directory and assign two bits

2019/7/¢ Advance Data Engineering (GH.Yokota 13

Advanced Data Engineering (OH. Yokota) 8

2019/7/8

Extensible Hashing (3)
Texas. 0101

e Local Depth / Local Depth \
Global Depth

Global Depth |1 1
California California

2 3
New York New York
2
Hawaii

Florida
Directory 3

5 Full
Hawaii
X i Florida
Copy the directory again w

and assign three bits
The number of gathered arrows = 26b-LD

ng (©H.Yokota, 114

2019/7/8 Advance Data Engin

Extensible Hashing (4)

* Aninverted table or a smaller hash table is placed
into a hash bucket

* To access a record, probe the directory of the
extensible hashing at first, access a page
corresponding to the hash bucket, and derive the TID
by the inverted table or the small hash table

* The directory may use a number disk pages but can
be distinguished by the bit string

* The number of disk access is two to derive a TID

* However, costs for extensions are high because of
requiring whole copy of the directory

2019/7/8 Advance Data Engineering (©H.Yokote 115

Advanced Data Engineering (OH. Yokota) 9

