Data Warehousing

- A Typical Large-Scale Application of Data Engineering
 - Architecture for Decision Support Systems
 - cf. On Line Transaction Processing for operational databases
 - Stock up data of operational transaction processing
 - And use the data for determining strategies of enterprise

2019/6/24

Advance Data Engineering (©H. Yokota)

55

Examples of Data Warehouse

- POS (Point Of Sales) data of supermarkets/convenience stores
 - Stock management, Displays of goods, Bargain strategies
 - Combination analysis of purchase (Basket analysis)
- Credit card transaction
 - Dispatching direct mail, analysis of customer reliance
- Cable TV pay-per-view transaction
 - The most popular cable programs for some customer groups
- Telephone call transaction
 - Time and duration analysis for customer packages

2019/6/2

Advance Data Engineering (©H. Yokota)

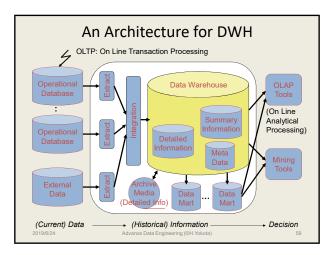
56

Operational DB vs. DWH

- Current State vs. Transaction History
 - Both size increase, but DHW is faster
- Many transactions including update vs. few, mostly retrieval transactions.
 - Operational DB:
 - Concurrent accesses for small amount of data items
 - Response time intensive
 - DWH:
 - Batch access for a large amount of data set
 - Throughput intensive

2019/6/24

Advance Data Engineering (©H.Yokota)


57

Data Warehouse Size

- Huge amount of data should be stored into data warehouse
- Estimation:
 - 1 KB/transaction, 100 transaction/sec (TPS)
 - 100 KB/sec = 360 MB/hour ≈ 10 GB/day ≈ 3 TB/year
- Walmart (A famous supermarket in U.S.A) has 24 TB of DWH (1997)
 - 1999:101TB, 2004:570TB, 2008:2.5PB, 2014:30PB

2019/6/24

Advance Data Engineering (©H.Yokota)

Data Loading (1)

- Extract
 - Extract Data from Multiple Foreign Sources
 - Operational Databases
 - RDB, ODB, ORDB, etc.
 - Different vender
 - External Data
 - CSV Files (Excel), etc.
 - Data Cleaning (Cleansing)
 - To guarantee consistency of data
 - e.g., by keeping integrity constraint

2019/6/2

Data Engineering (©H. Yokota)

Data Loading (2)

- Integration
 - Transform data format of extracting data and merge them
 - Unify synonym and format
 - Personal Computer and PC
 - 15/10/2015 and Oct. 15, 2015
 - ASCII code, JIS code
 - Big/small-endian
- ETL (Extract Transform Load) Tool

2019/6/2

Advance Data Engineering (©H.Yokota)

61

Data Loading (3)

- Refresh
 - Recomputation
 - Incremental Loading
 - e.g., Redbrick Table Management Utility
 - Timing for refresh
 - Synchronization among sources

2019/6/24

Advance Data Engineering (©H.Yokota)

Internal Structure of DWH (1)

- Detailed Information
 - Unified data from each source
 - Some parts of detailed information is stored into archive media
 - Near Line Storage
- Summary Information
 - Summarized by aggregate functions
 - $\bullet\,$ Group-by, SUM, AVG, MAX, MIN, Count
 - Store the results into data warehouse
 - to speed up the performance of common queries
 Have to maintain the state up-to-date
 - update every time new data is loaded
 - Not have to be backed up

019/6/24

63

A 1 1	D		•	•	(TT	T7 1	`
Advanced	I Jata	Hno	เาทคค	rıno	(C)H	Yokota	١
lavancea	Data	2115	,11100.	11115	(🔾 11.	1 OKOta	,

Internal Structure of DWH (2)

- Data Marts
 - Use Decision Support in each section
 - to speed up by reducing amount of data
 - Geographical distribution (e.g., placed in branches)
- · Meta Data
 - Data for data location/state
 - Which part is placed in a Data Mart
 - Which part is summarized in Summary Information

2019/6/24

Advance Data Engineering (©H.Yokota)

Data Structure for DWH (1)

- Storing Detailed Information
 - Mainly in Relational Database Model
 - Star Schema
 - A Fact Table and Dimension Tables
 - Fact Table: History of transaction
 - Dimension Table: Master data
 - Each entry in a Fact Table is a primary key of some Dimension Table
 - A Fact Table has a great number of tuples

2019/6/24

Advance Data Engineering (©H. Yokota)

An Example of Star Schema Shop Table 300tuples Product Table 300tuples Shop_Name Fact Table 600Mtuples Product_Name Product_Category Shop_ID Phone# 730tuples Time Table Fax# Time_ID Promotion Table 50tuples Sales The Year Indicates a primary key End Date Advance Data Engineering (©H.Yokota

Advanced	Data	Fnoi	neerin	$\alpha (\bigcirc H$	Vokota)
Tuvanccu	Data	LIIEI		2 (©11.	IUNUIA

Data Structure for DWH (1)

- Storing Detailed Information
 - Mainly in Relational Database Model
 - Star Schema
 - A Fact Table and Dimension Tables
 - Fact Table: History of transaction
 - Dimension Table: Master data
 - Each entry in a Fact Table is a primary key of some Dimension Table
 - A Fact Table has a great number of tuples
 - Snowflake Schema
 - Hierarchical structure of a Dimension Table
 - Capable of reducing redundant entries

2019/6/24

Advance Data Engineering (©H Vokota)

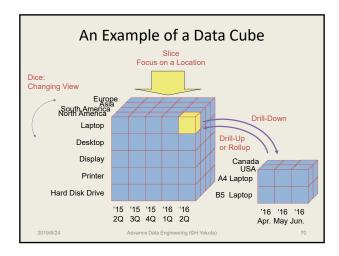
67

Data Structure for DWH (2)

- Storing Summary Information
 - Multidimensional Data
 - also called as a Data Cube
 - Applying Group-By and other aggregate functions for the Fact Table by some attributes of Dimension tables, beforehand.
 - to speed up the performance of common queries
 - some operations are available for Data Cubes

2019/6/24

Advance Data Engineering (©H.Yokota)


Operations on a Data Cube

- Dice:
 - Changing the view
- Slice:
 - Focusing on some dimensions.
- Drill-Down:
 - See more detailed veiws
- Drill-up (Rollup)
 - See more global view

2019/6/24

Data Engineering (©H.Yokota)

Advanced Data Engineering (©H. Yoko)	ata Engineering (©H. Yokota	Engineering	Data	Advanced
--------------------------------------	-----------------------------	-------------	------	----------

OLAP Architecture

- · On Line Analytical Processing
- ROLAP
 - Relational OLAP
 - Based on Relational Operations
- MOLAP
 - Multi-dimensional OLAP
 - Based on Multi-dimensional Data
- Hybrid OLAP
 - Combine ROLAP + MOLAP

Advance Data Engineering (©H.Yokota)

An Example of ROLAP Queries

Query:
'Derive the total sales of A4-type laptop personal computers that were sold in the U.S.A. as the Summer Campaign during August, 2015.'

Many Join operations between the Fact Table and the Dimension Tables are required.

SELECT SUM(Sales)
FROM Fact_Table
WHERE Product_ID IN
(SELECT Product_ID IN
(SELECT Product_Table
WHERE Product_Category = 'A4 Laptop')
AND Shop_ID IN
(SELECT Shop_ID
FROM Shop_Table
WHERE Country = 'U.S.A.')
AND Promotion_ID IN
(SELECT Promotion_ID
FROM Promotion_Table
WHERE Promotion_Category = 'Summer Campaign')
AND Time_ID IN
(SELECT Time_ID
FROM Time_Table
WHERE The_Year = 2015 AND The_Month = 'Aug.')

View Materialization

- Keeping the intermediate state of query results as a relation (Materialized View).
 - It reduces time for retrieval
- A Problem
 - When the contents of original database are update, the change has also to be applied to the
 - It takes costs (especially for aggregate results)
- Trade-off between retrieval speed and update cost

2019/6/24

Advance Data Engineering (©H.Yokota)

73

Multiple Aggregation

- It is usual to derive multiple aggregation in Data Warehouse (for a Data Cube)
- A method of applying multiple aggregate functions to a tuple that is read from the local disk in parallel is also proposed.

Multidimensional Aggregate Function

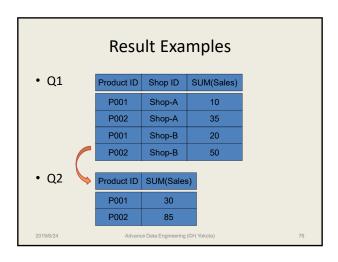
2019/6/2

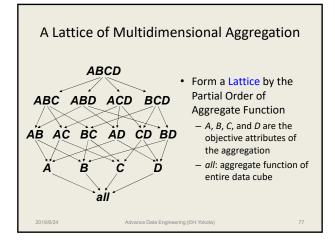
Advance Data Engineering (©H.Yokota)

Aggregate Function
 Query Example 1
 SELECT Product_ID, Shop_ID, SUM(Sales)

Partial Order Relation for Multidimensional

FROM Fact_Table
GROUP BY Product_ID, Shop_ID

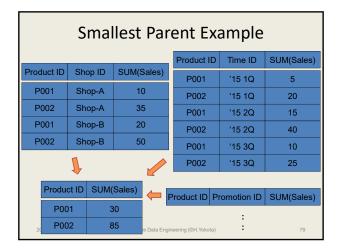

Query Example 2
 SELECT Product_ID, SUM(Sales)
 FROM Fact_Table
 GROUP BY Product_ID


 The result of Query Example 1 can be used for calculating Query Example 2. (Product_ID, Shop_ID) ≥ Product_ID

2019/6/24

Data Engineering (©H.Yokota)

Advar	iced Data	ı Engin	eering (©H.	Yol	kota)
-------	-----------	---------	----------	-----	-----	-------



Optimization of Calculating A Data Cube

- In the Lattice of Multidimensional Aggregate Functions
- Smallest Parent
 - It is better to calculate A from AB or AC than to derive from ABC
 - Select smaller one between AB and AC
- Cache Effect
 - Use a result of the previous aggregate function as much as possible
- Optimization of Disk Scan
 - Consider the location of disk head, for example ABC, ACD, ABD, BCD for the attribute of ABCD

019/6/24 Advance Data Engineering (©H.Yokota)

NG 1. {Product ID, Shop ID, Time ID} → {Product ID, Shop ID} 2. {Product ID, Time ID, Promotion ID}→{Time ID, Promotion ID} 3. {Product ID, Time ID, Promotion ID}→{Time ID, Promotion ID} OK 1. {Product ID, Time ID, Promotion ID}→{Time ID, Promotion ID} 2. {Product ID, Shop ID, Time ID} → {Product ID, Shop ID} 3. {Product ID, Shop ID}→ {Product ID}

Advance Data Engineering (©H.Yokota)