
EXERCISES 2
INTRO TO QUANTUM COMPUTING

MAY 2019
TOKYO TECH NAME

INSTRUCTIONS: Please ask any questions about the exercises in class.
The point values indicate the relative difficulty of the problem.

QUOTE: In Nature there are neither rewards nor punishments, there
are consequences. R.G. Ingersoll
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Recall the definitions of the CNOT and Toffoli gates, C = ∧X , and T = ∧2X , respectively as
T |b1b2b3〉 = |b1b2(b3 ⊕ (b1 ∧ b2))〉 and C|b1b2〉 = |b1(b2 ⊕ b1)〉. Bits b1 (in the case of C) and b2 (in
the case of T ) are usually called the control bits.
Recall the definition of the general n-NOT gate ∧nX on the n + 1 qubits as ∧n|b1 . . . bnbn+1〉 =

|b1 . . . bn(bn+1 ⊕ (b1 ∧ . . . ∧ bn))〉. In other words ∧nX ‘flips’ bit bn+1 exclusively when all the bits b1, . . . , bn

are 1. By analogy with the T and C gates, bits b1, . . . , bn are called control bits.
The gates are depicted graphically below. Note that the filled circles represent the control bits while

the empty ones represent the bit that is flipped.
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Show (10 points) that the C gate is linear, that is C|x⊕y〉 = C|x〉⊕C|y〉 where x⊕y is the bitwise ⊕. Suppose
U is a quantum circuit on n wires composed exclusively of C gates. Conclude that U |x ⊕ y〉 = U |x〉 ⊕ U |y〉
(i.e. U is linear). Note that a correct mathematical proof of this would involve induction on the number of
C gates composing U but I will accept an intuitive explanation.

Show (10 points) that T is not a linear gate by finding 3-qbit x and y such that T |x⊕ y〉 6= T |x〉⊕T |y〉.
Deduce that the T gate cannot be synthesized using exclusively C gates even with additional temporary

storage qubits added. Bonus (5 points): show that C and X gates are not enough either.
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Show the following quantum circuit equivalence. Note, in particular, that b2 is not changed by
this circuit and is simply a temporary storage bit. This means that ∧3X can be synthesized using
only T gates.
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=
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Show the following quantum circuit equivalence. This means that ∧nX can be synthesized using
only T gates and one temporary storage qbit.
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. . . . . .

=

. . .
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Let |x〉 be an n-qubit string. Define a single qubit gate Nk
x by

Nk
x =

{

X, if xk = 0
Id, otherwise

Here Id is the identity operator, X is the NOT gate, and xk is the k-th bit of |x〉. Show that the
quantum circuit below ‘flips’ bit bn+1 if and only if |b1 . . . bn〉 = |x〉.
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Let f : F
n
2 → F2 be a boolean map. Use problems 3 and 4 to synthesize a quantum circuit

implementing Uf with at most one temporary storage qubit (recall that Uf |xb〉 = |x(f(x) ⊕ b)〉).
Bonus (20 points). Let f : F

n
2 → F

n
2 be a one to one map. Modify the construction above

to synthesize a quantum circuit implementing U such that U |x〉 = |f(x)〉 using at most two
temporary qbits. Hint: think of f as a permutation on {0, 1, . . . , 2n−1} and represent f as a
product of disjoint cycles. Use controlled Nk

x gates to change |x〉 to |y〉 where f(x) = y.
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Bonus. Carefully read paper [1] and explain how the results of that paper imply that ∧nX cannot
be synthesized with X , C, and T gates without using any temporary storage bits if n > 2.
Additionally, explain how the results of that paper show that at most one temporary qubit is
enough to solve problem 5 (none if f has an additional property; which one?).
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Bonus. Carefully reread paper [1] and explain why one would still want to use temporary storage
bits for most practical problems.
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Given a quantum state |x〉 = C

2
n
−1

∑

m=0

e−m2
k−n+1πi|m〉, a) determine C (3 points); b) devise a

quantum algorithm to determine k (7 points); c) (5 points) devise a procedure to create |x〉. Hint:
you are allowed to use QFT and inverse QFT for this problem.

Additional study.

While quantum algorithms and quantum computing in general is a relatively young area, there is already
a great amount of research literature to navigate. This short write-up is a merely an overview of classical
introductory papers that go beyond the material presented in class.

Kitayev’s paper [4] presents a concise introduction to finite dimensional quantum states and quantum
computation. It reviews the concepts of reversible computation necessary for quantum computing, as well.
It is also a great introduction to Shor’s algorithm (more precisely the quantum portion of it, the hidden

subgroup problem).
Reversible computation is an important part of quantum algorithm design. Paper [2] is a classic in-

troduction to reversible logic synthesis, both classic and quantum. It is complemented by paper [1] which
answers a number of natural questions about reversible logic synthesis. Book [a] by K. Morita is a compre-
hensive treatment of the theory of reversible computing for various computation models.

Papers [5]–[8] are not directly related to quantum computation but they provide an important rela-
tionship between information processing and its physical manifestations. In particular, paper [7] shows that
while such connections exists they are more subtle than it might seem at first.

Finally, the matter of quantum entanglement and its exprerimental verification in the form of Bell’s
inequalities is addressed in [9]. It is worth a careful reading by anyone who wants to understand the nature
of entanglement and its physical effects.
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