W)

INSTRUCTIONS: Please ask any questions about the exercises in class. The point values indicate the relative difficulty of the problem.

QUOTE: Facts are meaningless. You can use facts to prove anything that's even remotely true.
 the top 'wire'). Show your work!

Given the vectors $a=\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle), b=\frac{1}{\sqrt{2}}(i|0\rangle+|1\rangle)$, and $c=\frac{1}{\sqrt{2}}(|0\rangle+i|1\rangle)$, which ones represent the same quantum state?
a) a and b;
b) b and c;
c) c and a;
d) all are the same
e) all are different;

Given the vectors $a=\frac{1}{\sqrt{2}}(|0\rangle-i|1\rangle), b=\left(\frac{3 i}{5}|0\rangle+\frac{4}{5}|1\rangle\right)$, and $c=\frac{1}{2}(|0\rangle+i|1\rangle)$, which ones represent a quantum state?
a) a and b;
b) b and c;
c) c and a;
d) all do;
e) none;

Write the truth table and (describe the) design (of) a (classical) boolean circuit that computes $f: \mathbb{F}_{2}^{3} \rightarrow \mathbb{F}_{2}$ given by $f(x, y, z)=x \oplus(y \otimes z)$ (here \oplus and \otimes are the addition and the multiplication in \mathbb{F}_{2}, respectively) using only \vee, \wedge, and \neg gates.

Let U be a quantum transformation on the space of quantum 2 -states such that $U|0\rangle=\frac{3}{5}|0\rangle+\frac{4}{5}|1\rangle$. Is U uniquely determined by this data? (10 points). Find (one of possibly many, if the answer to the previous question is no) U (10 points).

Given the quantum state $\left.\frac{1}{\sqrt{14}}|001\rangle+\frac{2}{\sqrt{14}}|11\rangle\right\rangle+\frac{3}{\sqrt{14}}|110\rangle$ what is the probability that the third bit is measured as 1 (10 points)? What is the quantum state after such measurement (10 points)?

