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A photon experiment.

. . .Consists of shining light through two polarizing sheets of glass
with polarizations orthogonal to each other. When both sheets a
placed in sequence, no light reaches the screen. When a third
sheet (at 45◦ polarization angle) is inserted between the two
sheets, the light shines through again.
Classical explanation is possible with the traditional light modeled
as a wave (exercise). However, only the quantum mechanical
explanation works for low intensity (single photon at a time) light.
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Linear algebra a la Dirac: notation.

Dirac’s notation for vectors, etc. is convenient in the context of
tensor products (introduced later): |v〉 is the same as ~v in the
traditional notation. To play on the connection to the polarization
experiment, a simple two element basis is denoted as |→〉 and |↑〉.
Now we can write linear combinations such as |v〉 = a|→〉+ b|↑〉.
Here, a and b are usually called the amplitudes of |v〉 in the basis
{ |→〉, |↑〉 }, while |v〉 is said to be a superposition of |→〉 and |↑〉.
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A bit of physics connection.

From now on a photon=unit vector and polarizing filter=a
projection on one of the basis elements.
Now, a photon |v〉 = a|→〉+ b|↑〉, where |a|2 + |b|2 = 1 passes
through a horizontally polarized filter with probability (whatever
this may mean) |a|2 and gets absorbed with probability |b|2. After
it passes through, it becomes ‘aligned’ with the film. This is why
placing a third polarizing sheet improves the chances of |v〉’s
‘survival’: |v〉 = c|↖〉+ d |↗〉 as well!
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A few details.

As a specific example, let the emitted photon be
|v〉 = a|→〉+ b|↑〉. Suppose the first filter is polarized vertically.
So |v〉 passes through the first filter with probability b2 becoming
|↑〉. If the next filter is polarized horizontally then |↑〉 has exactly
02 = 0 chances of passing through it. On the other hand if the
next filter is polarized as |↗〉, since
|↑〉 = (

√
2)−1|↖〉+ (

√
2)−1|↗〉, it has ((

√
2)−1)2 = 1/2

probability of passing through, becoming |↗〉. After that it will
pass through the third (horizontally polarized filter) with
probability 1/2 (since |↗〉 = (

√
2)−1|↑〉+ (

√
2)−1|→〉). Huh . . .
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A more complete picture and more notation.

We now allow a and b be complex numbers (to account for
circular polarization). A quantum system (whatever that is) that
can be modeled with a two dimensional (also called two state)
space of states is called a qubit (short for a quantum bit). The
basis of such systems is usually written as |0〉 and |1〉. All bases
are assumed to be orthonormal. The inner product of |v1〉 and |v2〉
is written as 〈v1|v2〉.
A quantum state is an equivalence class of unit vectors [|v〉] where
|v〉 ∼ |v〉′ if |v〉 = e|v〉′ where |e| = 1. Thus a qubit,
mathematically, is a collection of circles in the three dimensional
sphere, S3 (or, more precisely, a fibration of S3).
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Even more notation and details. . .

Given a basis, a ket (or, simply, vector) can be written as a matrix

|v〉 = a|0〉+ b|1〉 =
(

a
b

)
. Its conjugate transpose 〈v | = (a, b) is

called a bra. The product 〈v1||v2〉 = 〈v1|v2〉 is usually called a
bra c ket.
Given an n-state basis { s1, . . . , sn } every ket |v〉 can be written as
a superposition (linear combination) |v〉 = a1|s1〉+ · · ·+ an|sn〉.
Incidentally, |↖〉 and |↗〉 form what is known as the Hadamard
basis. We are now ready to discuss the idea of measurement.
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Measurement I: single qubits.

A measurement device is simply an orthonormal basis |0〉, |1〉. The
act of measurement changes a superposition |v〉 = a|0〉+ b|1〉 into
one of the states |0〉 or |1〉 (hence, observing something always
affects the outcome) with the appropriate ‘probability’ (a2 or b2).
Note that a measurement does not measure a or b! It is more
appropriate to think of measurement as a transformation. The no
cloning theorem shown later implies that ‘clever’ approaches would
not work either. All we can hope for is to get |0〉 or |1〉 in the end
with some probability. . .
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Quick example: quantum key exchange.

Imagine two parties (traditionally called Alice and Bob) trying to
exchange a key (a sequence of classical bits) and avoid being
eavesdropped on by a third party (usually called Eve, get it? . . .
Eve is eavesdropping . . .). Here is a simple strategy:

Alice encodes each classical bit as a qubit using a randomly
chosen basis (say, either Hadamard or standard), sends it to
Bob and makes sure he recieved it.
Bob then randomly picks a basis for the measuring device and
decodes the qubit.
Alice sends a classical bit string telling Bob which basis was
used for every bit.
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Quick example: quantum key exchange, cont.

the bases used by Bob and Alice match 50% of the time, the
rest of the bits are discarded; half of the bits are used for error
checking; if the error rate is too high, eavesdropping is
suspected and the process is repeated.

Note that Eve cannot meddle with the quantum channel: no
cloning theorem makes sure of that. This will lead to higher error
rate than expected. Meddling with the classical channel does not
give any insight into the contents of the message: it is simply a
random stream of bits. Also note that the timing matters.
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More notation.

The number eiφ = a/b
|a|/|b| is called the relative phase of the ket

|v〉 = a|0〉+ b|1〉. Vectors with the same relative phase and the
same magnitudes of their amplitudes represent the same quantum
state.
We introduce a different notation for the Hadamard basis:
|↗〉 = |+〉 = 1√

2
(|0〉+ |1〉), |↖〉 = |−〉 = 1√

2
(|0〉 − |1〉). A couple

more vectors: |i〉 = 1√
2

(|0〉+ i |1〉) and | − i〉 = 1√
2

(|0〉 − i |1〉).
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Tensor products.

Given two vector spaces U and V , their tensor product is defined
as the quotient space of the (infinite dimensional in general) vector
space freely generated by all the pairs |u〉 ⊗ |v〉 ∈ U × V with
respect to the equivalence relation generated by all the identities of
the form:

(|u1〉+ |u2〉)⊗ |v〉 = |u1〉 ⊗ |v〉+ |u2〉 ⊗ |v〉
|u〉 ⊗ (|v1〉+ |v2〉) = |u〉 ⊗ |v1〉+ |u〉 ⊗ |v2〉
(a|u〉)⊗ |v〉 = |u〉 ⊗ (a|v〉) = a(|u〉 ⊗ |v〉)

Intuitively just think of adding a (somewhat deficient) ‘product’
operation, ⊗, to + with all the natural ‘cancelation rules’.
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Tensor products, a few more details.

The tensor product U ⊗ V of inner product spaces has a natural
inner product, defined as a linear extension of
(〈u1| ⊗ |u2〉) · (〈v1| ⊗ |v2〉) = 〈u1|v1〉〈u2|v2〉. In addition, if |u1〉,
. . ., |un〉 is a (n orthogonal) basis of U and |v1〉, . . ., |vm〉 is a (n
orthogonal) basis of V then { |ui〉 ⊗ |vj〉 : i ≤ n, j ≤ m } is a (n
orthogonal) basis of U ⊗ V . Thus dim U ⊗ V = dim U × dim V .
Note that the inner product is defined as a linear extension above.
The reason is that most elements w of U ⊗V cannot be written as
w = |u〉 ⊗ |v〉 which is the mathematical manifestation of one of
the mysteries of modern physics . . .
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Entanglement, simple facts

A state w ∈ U ⊗ V that cannot be written as w = |u〉 ⊗ |v〉 is
called entangled. Every entangled state is a superposition of
unentangled or separable states.
As an example, consided the tensor product Vn = D ⊗D ⊗ · · · ⊗D
of n qubit spaces. The standard basis of Vn can be chosen to
consist of |0〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉, . . ., |1〉 ⊗ |1〉 ⊗ · · · ⊗ |1〉. We will
write |0〉|0〉 . . . |0〉 or even |00 . . . 1〉 and so on instead, for the sake
of compactness. If one recalls the binary representation of integers
0 . . . 2n−1 then the standard basis for an n-qubit state space can be
written even more compactly as |0〉n, . . ., |2n−1〉 as long as the
value of n is known in advance.
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Entanglement, a simple example.

The basis |Φ+〉 = 1√
2

(|00〉+ |11〉), |Φ−〉 = 1√
2

(|00〉 − |11〉),
|Ψ+〉 = 1√

2
(|01〉+ |10〉), |Ψ−〉 = 1√

2
(|01〉 − |10〉) is called the Bell

basis for a 2-qubit system.
Now |Φ+〉 is an entangled state, since were it so that

1√
2

(|00〉+ |11〉) = (a1|0〉+ b1|1〉)⊗ (a2|0〉+ b2|1〉) then b1a2 = 0
and a1b2 = 0.
Also note that there are more than one way of writing a given
space as a tensor product and the notion of entanglement depends
on the tensor decomposition. In other words, picking different sets
of qubits will change which states are entangled.
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Measurement II: n-qubit systems.

To study multi-qubit systems we must now make our notion of
measurement device more precise: a measurement device of an
n-qubit system W is a direct sum decomposition
W = V1 ⊕ · · · ⊕ Vk (not a tensor decomposition).
Then given a quantum state |w〉 ∈W , performing a measurement
produces a state (a unit vector) |φ〉 ∈ Vi with ‘probability’
a2 = |P|φ〉|2 where P is the projection onto Vi and
|w〉 = a|φ〉+ |ψ〉, where |ψ〉 ∈ 〈|φ〉〉⊥.
We now show how Dirac notation makes discussing measurements
(projections) more natural.
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Projections, measurements, and Dirac notation

Recall the interpretation of |v〉 as a column matrix and 〈v | = |v〉∗
as its conjugate transpose. Then the product |v〉〈u| is a matrix
that sends any vector |w〉 to |v〉〈u||w〉 = 〈u|w〉|v〉. If |u〉 and |v〉
are vectors in some orthonormal basis then |u〉〈v | sends |v〉 to |u〉
and |u〉〈u| is a projection on the subspace generated by |u〉.
More generally, if A is any matrix (=linear operator), we can write
(〈u|A)|v〉 = 〈u|(A|v〉) = 〈u|A|v〉. Finally, (A|v〉)∗ = 〈v |A∗ where
A∗ is the adjoint operator. The definition of adjoint can be made
independent of the basis.
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Dirac notation: example

Given the standard basis |00〉, . . ., |11〉 we can now write an
operator that exchanges |00〉 and |11〉 as:

|00〉〈11|+ |11〉〈00|+ |01〉〈01|+ |10〉〈10|

and avoid using the matrix notation. It is easy to see that any
linear operator may be written in Dirac notation as

A|v〉 =
∑∑

aij |vi〉〈vj |v〉

where { |v1〉, . . . , |vn〉 } is an orthogonal basis and
A(|vj〉) =

∑
aij |vi〉.
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Hermitian formalism for direct sums.

We will now introduce a convenient (albeit somewhat redundant)
way of ‘coding’ decompositions of W into orthogonal subspaces.
Recall that an operator A is called self-adjoint or Hermitian if
A∗ = A. A vector |v〉 is called an eigenvector of A if A|v〉 = λ|v〉
(here λ is an eigenvalue of A). Now, if A is self-adjoint,
λ〈v |v〉 = (〈v |A∗)|v〉 = (〈v |A)|v〉 = 〈v |(A|v〉) = 〈v |λ|v〉 = λ〈v |v〉
meaning each eigenvalue of A is real. A few more computations
like this will show that any two eigenvectors corresponding to
distinct eigenvalues of A are orthogonal.
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Hermitian formalism for direct sums, cont.

The collection Vλ of all eigenvectors of A that correspond to the
same eigenvalue λ forms a subspace of W (exercise) called the
λ-eigenspace of A. As we have seen, all the eigenspaces of a
self-adjoint operator are orthogonal. One can also show (a slightly
harder exercise) that W is a direct sum of such eigenspaces.
Conversely, given a direct sum W = V1 ⊕ · · · ⊕ Vk one can pick a
self-adjoint A with distinct eigenvalues λ1, . . . , λk such that
Vi = Vλi (put A =

∑
λi Pi where Pi is the pojection on Vi ).

This gives us a convenient way of coding a direct sum
decomposition of W as a self-adjoint operator. The eigenvalues do
not have any significance for us, as long as they are distinct.
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Hermitian formalism for direct sums, cont.

To sum it up:
A measurement (device) M is a direct (orthogonal) sum
decomposition W = V1 ⊕ · · · ⊕ Vk .
The result of the measurement of a state |v〉 ∈W is a unit
vector |vi〉 ∈ Vi with ‘probability’ a2 where |v〉 = a|vi〉+ |u〉,
u ∈ V⊥i . If Pi is the projection operator on Vi ,
|vi〉 = Pi |v〉/|Pi |v〉| and a2 = 〈v |Pi |v〉.
M can be represented by an observable: a self-adjoint
operator for which each Vi is the eigenspace for some λi .
The values of λi ’s have no significance. The action of M on
the state is irrelevant!
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More on tensor products.

If W = U ⊗ V and A and B are operators on U and V ,
respectively, we can define the operator A⊗ B on W by putting
(A⊗ B)(|u〉 ⊗ |v〉) = A|u〉 ⊗ B|v〉 and linearly extending the
definition to W . If A and B are self-adjoint, then so is A⊗ B.
Tensor products of operators are useful when dealing with
measurements where one has physical access to only a portion of
the system. For example in the case when the two-qubit system
consists of two photons and we only have access to the first one
this means that the states a|00〉+ b|01〉 and c|10〉+ d |11〉 must
not be changed by our observation. Thus our observable will be of
the form M ⊗ I.
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More on tensor products.

The tensor product of operators defined above has a simple matrix
representation provided we agree on the order of the bases to be
the lexicographic order, i.e. if the basis vector u ∈ U is listed
before u′ ∈ U and the basis vector v ∈ V is listed before v ′ ∈ V or
= v ′ then u ⊗ v is listed before u′ ⊗ v ′.
Now if the matrix of A is [A] in the basis { u1, . . . , um }, and the
matrix of B is [B] in the basis { v1, . . . , vn } the the matrix of
A⊗ B in the basis { u1 ⊗ v1, u2 ⊗ v1, . . . , um−1 ⊗ vn, um ⊗ vn } isa11B a12B . . . a1mB

. . . . . .
am1B am2B . . . ammB
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Bell’s theorem: the mathematical setup.

Consider the following two single qubit states:
|vθ〉 = cos θ|0〉+ sin θ|1〉 and |v⊥θ 〉 = − sin θ|0〉+ cos θ|1〉. Note
that |vθ〉 ⊥ |v⊥θ 〉 for any θ.
Let θ1 and θ2 be fixed and put P1 = (|vθ1〉〈vθ1 |)⊗ I and, similarly
P2 = I ⊗ (|vθ2〉〈vθ2 |). Recall |Φ+〉 = 1√

2
(|00〉+ |11〉). What

happens when we measure |Φ+〉 using the projections P1 and P2?
Applying (and keeping in mind that I = |0〉〈0|+ |1〉〈1|)

P1|Φ+〉 =
1√
2

(|vθ1〉〈vθ1 |0〉 ⊗ |0〉〈0|0〉+ |vθ1〉〈vθ1 |1〉 ⊗ |1〉〈1|1〉)
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Bell’s theorem: the mathematical setup, cont.

Thus, after simplifying and rearranging, we get
P1|Φ+〉 = 1√

2
(cos θ1|vθ1〉 ⊗ |0〉+ sin θ1|vθ1〉 ⊗ |1〉) = 1√

2
|vθ1〉 ⊗ |vθ1〉

with ‘probability’ |P1|Φ+〉|2 = 1/2. Remember, P1 is a projection,
not just a self-adjoint operator so we can find the ‘probability’ of
the measurement having the outcome as above by just taking the
square of the projection. What about P2?
Again, P2(|vθ1〉 ⊗ |vθ1〉) = |vθ1〉 ⊗ |vθ2〉〈vθ2 |vθ1〉 =
(cos θ1 cos θ2 + sin θ1 sin θ2)|vθ1〉 ⊗ |vθ2〉 with ‘probability’
| cos θ1 cos θ2 + sin θ1 sin θ2|2 = cos2(θ1 − θ2).
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Bell’s theorem: the mathemaical setup, cont.

Similarly we can compute the pobability that the consecutive
measurement with P1 and P2 will result in both ‘negative’
outcomes, i.e. the result of measuring with P1 and P2 will be
|v⊥θ1
〉 ⊗ |v⊥θ2〉. Let P⊥1 = (|v⊥θ1

〉〈v⊥θ1
|)⊗ I (with P⊥2 defined in a

similar way).
Now
P⊥1 |Φ+〉 = 1√

2
(− sin θ1|v⊥θ1

〉⊗|0〉+cos θ1|v⊥θ1
〉⊗|1〉) = 1√

2
|v⊥θ1
〉⊗|v⊥θ1

〉
so P⊥2 P⊥1 |Φ+〉 = 1√

2
((− sin θ1)(− sin θ2) + cos θ1 cos θ2)|v⊥θ1

〉⊗ |v⊥θ2
〉

with ‘probability’ 1
2 cos2(θ1 − θ2).
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Bell’s theorem: the physics.

We can interpret the measurements with P1 and P2 as the
measurement of the polarization angles of a pair of photons in the
state |Φ+〉 (the so called EPR pairs in honor of Einstein, Podolski,
and Rosen). As the preceeding calculations show, the chance of
both photons passing through both polarizing films or both
photons being absorbed by the polarizing films is cos2(θ1 − θ2).
We now setup the following experiment: 1) a central source of
pairs of photons in |Φ+〉 state sent in the opposite directions to
Bob’s and Alice’s labs; 2) where each of the photons passes
through a randomly and independently selected polarizing film set
at one of the three angles: 0◦, 60◦, or −60◦.
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Bell’s theorem: the results.

What is the result predicted by quantum mechanics? When both
films are set at the same angle, both photons will either pass or get
absorbed with probability cos2 0 = 1 (i.e. always). This happens
1/3 of the time (since Alice and Bob choose their polarizer setting
randomly and uniformly). The other 2/3 of the time the probability
of the same outcome at both Bob’s and Alice’s labs is cos2 φ
where φ ∈ {±120◦,±60◦ } so cos2 φ = 1/4. The total probability
that both measurements are the same is 1

3 · 1 + 2
3 ·

1
4 = 1

2 . This
outcome is confirmed by a great many experiments.
What if the quantum mechanics is not correct? What would the
result be if the photons were in a random state right after they left
the source?
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Bell’s theorem: hidden variable failure.

More specifically, suppose the results are determined by some
hidden state each of the photons has (not to be confused with the
quantum state of the pair) and are not probabilistic at all (although
the state itself is random with some distribution unknown to us).
Once the state is ‘set’ (as soon the photons leave the source), and
the film angles are decided upon (again, randomly) the outcome of
the measurement of each photon is deterministic (and independent
of the measurement of the other photon).
These outcomes are not entirely arbitrary, since we know from
experiments that when the angles of the films are the same, the
measurements always agree (i.e. both photons pass or both get
absorbed).
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Bell’s theorem: hidden variable failure.

We will label each state according to how the photon in such state
reacts to the measurement with one of the polarizer film settings:
0◦, 60◦, and −60◦. An example of such lable is

(pass, pass, absorbed).

There are exactly 8 ‘classes’ of states, according to this labeling
scheme.
Note that both photons in the pair must belong to the same ‘class’.
Othewise, if one of them, say passes through a film set at 60◦ while
the other gets asorbed this would violate the experimental fact that
both photons react identically to the same polarizing angle setting.
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Bell’s theorem: hidden variable failure.

If both photons are in the state (pass, pass, pass) or
(absorbed, absorbed, absorbed) the results of the measurements
will be the same regardless of the angle setting. Consider the case
where both photons are in the ‘class’ (absorbed, pass, pass). Out
of 9 possible setings for the pair of polarizing films 5 (±60◦,±60◦

and 0◦, 0◦) will produce an identical outcome (both will pass for
the first four and both will get absorbed in the 0◦, 0◦ case).
This analysis holds for the remaining 5 ‘classes’ as well. Thus in at
least 5 out of 9 randomly chosen settings for the polarizer films,
the experiment should produce an identical result in both Bob’s
and Alice’s labs. This is at odds with the experimentally observed
ratio of 1/2.
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Quantum state transformations.

A quantum state transformation is a unitary operator Q on the
space of quantum states (so a measurement is not a quantum
state transformation in this sense). This means that Q∗Q = I so Q
preserves the inner product of quantum states.
A quantum computation (traditionally) consists of applying a
series of quantum transformations (usually picked from a small set
of so called quantum gates) followed by one or more
measurements. An alternative (and equivalent) approach to
quantum computation is to only use measurements (which would
then have to come from a larger set).
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No cloning.

The security of quantum key distribution algorithm described
above relied on the fact Eve did not posess a device that would
allow her to measure the photon and then send the copy of the
original photon to Bob. This would require a device (=linear
operator) U that acts on a two-qubit space as U|v〉|0〉 = |v〉|v〉
(i.e. clones |v〉). Note that any such U would be unitary, i.e. a
quantum transformation (exercise).
Now if U can clone |0〉, |1〉 and |↗〉 = 1√

2
(|0〉+ |1〉) then

U|↗〉|0〉 = 1√
2

(U|0〉|0〉+ U|1〉|0〉) = 1√
2

(|0〉|0〉+ |1〉|1〉) by
linearity but at the same time
U|↗〉|0〉 = |↗〉|↗〉 = 1

2(|0〉|0〉+ |0〉|1〉+ |1〉|0〉+ |1〉|1〉) with an
obvious contradiction. Thus such U cannot exist. The result above
is known as the no cloning principle .
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Quantum gates.

As was mentioned before, a quantum computation is simply a
sequence of quantum transformations followed by a measurement.
We will restrict ourselves to a finite set of transformations, each of
which acts on a small number of qubits. These transformations
will be called quantum gates. Thus the series of quantum
transformations composed of quanum gates is a series of
transformations of the form I ⊗ · · · ⊗ U ⊗ · · · ⊗ I.
Here are some commonly used single qubit gates:

The four Pauli gates: I, X = |1〉〈0|+ |0〉〈1|,
Y = −|1〉〈0|+ |0〉〈1|, and Z = |0〉〈0| − |1〉〈1|.
Hadamard gate: H = |↗〉〈0|+ |↖〉〈1|.
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More quantum gates.

The single qubit transformations above do not affect the
entanglement and, therefore, do not result in any interesting
computations. The next gate, called the controlled-NOT gate,
Cnot is defined as Cnot = |0〉〈0| ⊗ I + |1〉〈1| ⊗ X . It is easy to see
that Cnot leaves |0〉|0〉 and |0〉|1〉 unchanged, sends |1〉|0〉 to |1〉|1〉
and |1〉|1〉 to |1〉|0〉, i.e. ‘flips the second bit if the first one is 1’. In
particular, Cnot turns the unentangled state |↗〉 ⊗ |0〉 into the
entangled state |Φ+〉 (exercise).
A more general class of transformations, that has Cnot as a special
case is ∧Q = |0〉〈0| ⊗ I + |1〉〈1| ⊗ Q where Q is a single qubit
transformation. In this notation Cnot = ∧X .
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Quantum gates: a quirk.

A word of caution: even when Q acts trivially on a (single qubit)
quantum state, ∧Q might not. As an example, consider
Q|v〉 = eiφ|v〉. Note that Q does not change the quantum state,
since it only affects the (physically irrelevant) global phase of the
state. ∧Q however is not an identity transformation since it takes
the state |Φ+〉 = 1√

2
(|00〉+ |11〉) to 1√

2
(|00〉+ eiφ|11〉) which is

not in the same equivalence class as the state |Φ+〉 (exercise).
Note also that ∧Q does not change the quantum state of any of
the basis vectors (since it merely multiplies them by a global
phase)!
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Quantum gates: notation.

As a visual aid, quantum circuits (=sequences of quantum
transformations) are usually depicted schematically, with lines
representing qubits. Thus, the Cnot gate is shown as follows:

Likewise, the Pauli gates, the Hadamard gate and ∧Q would be
shown as:

X Y Z H Q
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An example: quantum teleportation.

As was mentioned above, one cannot clone an unknown quantum
state. It is therefore surprizing that one can transmit (or teleport)
an unknown quantum state by using quantum transformations and
a classical (i.e. non quantum) channel.
Let Alice have a qubit in an unknown state a|0〉+ b|1〉. Let also
Bob and Alice share an EPR pair |Φ+〉 (say a leftover from their
Bell expeiment). Mathematically, we are dealing with a system of
three qubits in the state 1√

2
(a|000〉+ a|011〉+ b|100〉+ b|111〉).

Alice, being in posession of two of the three qubits can apply any
transformation of the form M ⊗ I where M acts on the first two
qubits.
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Quantum teleportation: the circuit.

Alice proceeds to apply the following quantum circuit:

H

?

After the Cnot is applied the state changes to
1√
2

(a(|000〉+ |011〉) + b(|110〉+ |101〉)). Then the Hadamard gate
transforms this to 1/2(a(|000〉+ |100〉+ |011〉+ |111〉) + b(|010〉−
b|110〉+ b|001〉 − b|101〉)). Factoring (in the tensor sense) the
first two qubits (controlled by Alice) we can rewrite the above . . .
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Quantum teleportation, cont.

. . . as 1
2(|00〉(a|0〉+ b|1〉) + |10〉(a|0〉 − b|1〉) + |01〉(a|1〉+ b|0〉) +

|11〉(a|1〉 − b|0〉)). By measuring her two qubits, Alice achieves
two goals: 1) the measurement itself projects the state onto one of
the four possible subspaces with equal ‘probability’; 2) Alice knows
which subspace it is (i.e. |00〉 ⊗D, or |01〉 ⊗D, etc. where D is the
single qubit state space, controlled by Bob). She proceeds to
transmit these two classical bits (in fact, one bit of information is
enough) of information to Bob.
Who, upon receiving the bits, uses one of the Pauli gates as ? to
recover the quantum state (for example, if Bob receives 11 on the
classical channel, he will apply Y ). Bob now has the exact copy of
Alice’s original quantum state while her copy got completely
destroyed by the act of measuring.
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Quantum gates: generating unitary transformations.

Is a finite set of two-qubit gates sufficient to generate all quantum
transformations? Obviously not, as there are uncountably many
such transformations while only a countable set of them can be
generated by combining finitely many gates. However, any
quantum transformation can be approximated by a finite set of
gates (in fact, one can pick the Cnot , H and two phase rotations)
to arbitrary precision.
The proof is technical and is therefore omitted. It consists of two
parts: first showing that an arbitrary quantum transformation can
be written as a composition of Cnot and and a number of
transformations from some well defined classes that act on a single
qubit.
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Quantum gates: generating unitary transformations, cont.

The second part consists of showing that the three single qubit
transfromations mentioned above can approximate any single qubit
transformation. As a geometric twist, it uses the fact that two
rational rotations in R3 can generate a free group, thus their
product must be an irrational rotation about some axis. (As an
exercise show that { sin n } is dense in [−1, 1]).
A much harder argument shows that these approximations can be
performed efficiently i.e. for every bit of precision (for the
approximation) one has to pay only in a polynomial increase in the
number of the basis gates. This is known as the Solovay-Kitayev
theorem.
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Quantum gates: generating unitary transformations,
efficiency

A theorem by Knill shows that most (measure 1 in fact) unitary
operators do not have an efficient exact representation as a
product of two qubit gates.
Finally, a result by Deutsch, Barenco, and Ekert shows that most
random two qubit gates can approximate any quantum
transformation.
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Quantum computation vs classical.

To estimate the relative power of a potential quantum computer
we must accomplish at least two goals:

Choose a model of computation (similar to Turing machines)
Compare quantum computation to one of the equivalent
classical computation models

Computing with quantum gates defined earlier will be our main
computational model. Note that the size of a quantum algorithm
built out of a fixed number of gates is also fixed. We overcome
this limitation by thinking of a quantum algorithm as a (classical)
procedure of picking a quantum algorithm composed of various
gates for a problem of given size.
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Quantum computation vs classical: Boolean circuits.

It will be implicit that this procedure is efficient (polynomial in the
size of the problem) in most cases. A similar classical model of
computation (i.e. a procedure of picking a boolean gate
configuration for every given size problem) is equivalent to every
other classical computation model (Turing, Post, Minski machines,
λ-calculus, etc.).
Thus one can prove that every question about the existence of an
efficient, say, Turing machine can be ‘translated’ into an equivalent
question about the existence of an efficient (growing as a
polynomial in the size of the input) Boolean circuit for a suitable
Boolean function.
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Boolean circuits: example.

To make matters more precise, consider an arbitrary Boolean
function f : Fn

2 → Fm
2 . We will fix a collection of Boolean functions

(usually with small m and n) called gates and say that a sequence
of gi ∈ B, i ≤ S is a Boolean circuit for f if f (x) can be obtained
by applying gi ’s in the fixed order in sequence to the fixed
‘coordinates’. We will also allow the operations that copy and
ignore some coordinates of the intermediate computations.
The S above is called the size of the circuit.
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Boolean circuits: example.

Standard examples of Boolean gates: negation, ¬ : F2 → F2,
¬0 = 1, ¬1 = 0; exclusive or (or equivalently, addition mod 2):
⊕ : F2

2 → F2 defined as ⊕(x1, x2) = x1 + x2 mod 2 (or, if we
remember that F2 is a field, ⊕ is the addition); (nonexclusive) or:
∨ : F2

2 → F2. There are many more (∧, |, etc.).
As an example consider a Boolean circuit for the following addition
with carry : x1 +c x2 = (y1, y2) where y1 = x1 ⊕ x2 and y2 = 1 if
and only if x1 = x2 = 1. We will fix {⊕,∧,¬} as our gates and
proceed as follows: 1) copy (x1, x2) to (z1, z2); 2) set z3 = z1 ⊕ z2;
3) set z4 = z1 ∧ z2; 4) copy (z3, z4) to (y1, y2).
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Boolean circuits: bases.

The artificial example above illustrates a few important points. The
first question to ask is: how many gates are needed if we would
like to be able to implement any Boolean function as a Boolean
circuit? Such collections of gates are called functionally complete
(we will also use the term basis for a functionally complete B).
It is an amusing exercise to show that, say {∨,¬} is a functionally
complete set while {⊕,¬} is not (the frist proof uses normal
forms of Boolean functions while the second is an exercise in mod
2 arithmetic).
The next important point is the use of intermediate variables in
the circuit above.
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Boolean circuits: registers and memory.

The intermediate values represent some physical objects (wires on
a chip or qubits in a quantum circuit later on). Their state at the
end of the computation is not unimportant! We therefore amend
our Boolean circuit model by requiring that all computation takes
place in a fixed memory.
More precisely, a fixed subset A ⊆ {1, . . . ,N} will be called a
register. For each Boolean circuit we will fix a dedicated input
register A and an output register B. Each Boolean gate will be
assumed to be of the form g : Fk

2 → Fk
2 and in a Boolean circuit

g1, . . . , gS we view each gi as acting on some fixed register
Ai ⊆ {1, . . . ,N}.
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Boolean circuits: a more complete example.

To write our adder fom above in this form, first define the three
gates we use as ¬ : (x1) 7→ (¬x1),
∧ : (x1, x2, x3) 7→ (x1, x2, x1 ∧ x2),
⊕ : (x1, x2, x3) 7→ (x1, x2, x1 ⊕ x2). We simply used an extra
‘coordinate’ to store the result of the computation.
We now set the size of our memory at 4, make A = {1, 2} the
input register and {3, 4} the output register. The Boolean circuit
works by placing some values in A (by setting x1 and x2), and
proceeding by first applying ⊕ to (x1, x2, x3) followed by the
application of ∧ to (x1, x2, x4). The output appears in the output
register B (i.e. (x3, x4)).
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Boolean circuits: reversibility.

To accomplish our second goal we need to ‘translate’ every
classical algorithm into a quantum one that performs the same
computation.
We will start with some number of qubits initialized to a specific
state (q1, . . . , qN) viewed as a classical register above. At first, it
might seem we can use the Boolean model above directly, provided
we can implement all the Boolean gates as quantum ones (i.e. as
quantum transformations). This, however is clearly impossible,
since each quantum transformation is invertible while, for example,
the ∧ gate above is clearly not (since it overwrites x3 thus sending
both |000〉 and |001〉 to |000〉). So (at a minimum) we must make
all the classical computations invertible.
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Boolean circuits: reversibility, first try.

We can use the following general idea to turn every Boolean
function into an invertible one. Given a Boolean function
f : Fn

2 → Fm
2 , consider instead the function fτ : Fn+m

2 → Fn+m
2

defined as fτ (x , y) = (x , y ⊕ f (x)) (here we apply ⊕ to each
coordinate). Now fτ is clearly invertible (put
f −1
τ (u, v) = (u, v 	 f (v))) and fτ (x , 0) = (x , f (x)) so as long as

we initialize all the values outside the input register to 0 we can
perform the same computations as before by using a disjoint
register for output.
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Boolean circuits: reversibility, problems.

The same idea can be used to make our gates invertible (thus
replacing ∧ with ∧τ , etc). We can now pick a new memory
location for the bits changed by each gate (so the third bit of the
domain of ∧τ will be picked from a ‘fresh’ portion of the memory).
It is easy to see that any Boolean function can be computed in an
invertible manner.
More specifically, we can produce, for each Boolean function
f : Fn

2 → Fm
2 , a Boolean circuit g1, . . ., gN that uses invertible

gates such that the Boolean circuit computes f (x) for every
x ∈ Fn

2 in some register B of size m from the initial state (x , 0).
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Boolean circuits: quantum applications.

We now need the quantum analogs for a classic basis of Boolean
gates. One of the Pauli gates, X can play the role of ¬ while, as it
is easy to see Cnot(x1, x2) = (x1, x1 ⊕ x2). To create a quantum
counterpart of ∧ we need another gate, called the Toffoli gate T .
Its action on on (x1, x2, x3) can be described as follows:
T = |001〉〈001|+ |010〉〈010|+ |011〉〈011|+ |100〉〈100|+
|101〉〈101|+ |111〉〈110|+ |110〉〈111|, i.e. it ‘flips’ the last bit if
and only if the first two bits are 1. A more general version of the
Toffoli gate is ∧2Q which applies Q if and only if the first two bits
are 1. Thus T = ∧2X . Note that
T |x1, x2, x3〉 = |x1, x2, x1 ∧ x2 ⊕ x3〉 as desired.
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Boolean circuits: quantum applications, cont.

The Toffoli gate, as well as ∧2Q can be built by combining two
qubit gates exclusively (the construction will be outlined in the
exercises). The Cnot gate together with a couple of phase shifts
suffice.
We can now ‘reproduce’ any classical computation on a quantum
computer by first rewriting it as an invertible classical computation
and then applying the quantum gates {X ,T ,Cnot } (in fact, Cnot
is redundant) in place of the Boolean gates {¬,∧τ ,⊕τ}. If we
start with the first n qubits set to x ∈ Fn

2 while the rest are set to
0 (this can be done, for example by measuring every qubit in a
classical basis and then applying X to set the desired values where
necessary), we can reproduce any classical algorithm.
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Boolean circuits: reversibility.

Both the method of converting the classical computation into an
invertible one, as well as the resulting translation of a classical
computation into a quantum one have a significant flaw: they are
very wasteful. Since we have no control over what the value of the
‘result bit’ is in each computation we have to pick a ‘fresh’ bit
(among the ones that were set to 0 at the beginning) for the result
of every gate operation. Thus the number of extra bits required to
compute f (x) grows at least as fast as the number of gates (size
of the corresponding Boolean circuit) required to represent f .
Remembering that in the quantum computer every bit is a qubit,
this presents at least an implementation problem.
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The second problem (althogh not immediately apparent) with this
approach is that, in general, the intermediate bits are left
entangled with the result bits in the quantum version of the
algorithm. This makes it difficult if not impossible to utilize some
quantum phenomena to improve the algorithm performance.
‘Ignoring’ the intermediate bits (by say, measuring them) as was
possible in the classical case will change the global quantum state
and lead to unpredictable results. More on this later.
The key to solving both problems is the following notion of a
reversible computation.
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Boolean circuits: reversibility.

Let G : Fn
2 → Fn

2 be an invertible function. We say that it is
represented reversibly by the Boolean circuit g1, . . ., gN acting on
some memory if for every input x the Boolean circuit computes
(G(x), 0) from (x , 0). Thus, if the register is initialized correctly,
the computation will leave the intermediate values in a predictable
state (0 in this case).
We will first show that for any Boolean function f : Fn

2 → Fm
2 , the

function fτ : (x , y) 7→ (x , y ⊕ f (x)) can be represented reversibly.
As usual start with an input register A of size n, an output register
B of size m and a register D, disjoint from A for the intermediate
values. We can assume that B ⊆ D ∪ A.
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Boolean circuits: reversibility.

We will assume that our basis, B has the property that for every
gate g : Fn

2 → Fn
2 in B, there is a gate g−1 ∈ B. Note that each of

the (classical) gates T , ¬, and ⊕ are their own inverses (recall that
by ⊕ we mean ⊕τ : (x1, x2) 7→ (x1, x1 ⊕ x2), what is caled Cnot in
the quantum world).
Now use our basis B to build a Boolean circuit g1, . . ., gN that
computes fτ . If (a, b, d) are the contents of the registers A, B ∩ D
and D \ B respectively, then the circuit G [A,D] = gN ◦ · · · ◦ g1
computes (a, f (a)⊕ b, g(a, b, d)) where g(a, b, d) represents the
‘leftovers’ from the computation. Let E be a register of size m
disjoint from A ∪ D.
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By ‘stringing together’ m ⊕-gates we can create a τm[B,E ]
operation that has the effect of τm[B,E ] : (b, e) 7→ (b, e ⊕ b) and
does not change the contents of any other registers. Note that
τm[B,E ](b, 0) = (b, b).
Finally, by running G [A,D] in reverse (i.e. by replacing each gate
by its inverse) we obtain the G [A,D]−1. Note that
G [A,D]−1(a, f (a)⊕ b, g(a, b, d)) = (a, b, d). In the standard basis
we use, G [A,D] can be constructed by just applying the same
gates in the reverse order.
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The desired reversible computation is now

G [A,D]−1 ◦ τm[B,E ] ◦ G [A,D]

To check that it does what we need start with the value (a, 0, 0, e)
in the registers A, B ∩ D, D \ B, and E , respectively. After
applying G [A,D] the values will change to
(a, f (a)⊕ 0, g(a, 0, 0), e) = (a, f (a), g(a, 0, 0), e). Then
τm[B,E ](a, f (a), g(a, 0, 0), e) = (a, f (a), g(a, 0, 0), e ⊕ f (a)). And
the last step is
G [A,D]−1(a, f (a), g(a, 0, 0), e ⊕ f (a)) = (a, 0, 0, e ⊕ f (a)). Thus
A ∪ E contains the value of fτ (a, e).
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Now everything is ready to show that for any bijection (not just
the ones in the form fτ ) G : Fn

2 → Fn
2 there is a reversible

representation g1, . . ., gN .
Let A and B be two disjoint registers of size n and let D be a
register disjoint from A ∪ B, large enough to hold the intermediate
values for the reversible computation of Gτ and G−1

τ (which is
possible by the previous argument). The circuit is

τn[A,B] ◦ τn[B,A] ◦ G−1
τ [B,A] ◦ Gτ [A,B]

Starting with (a, 0, 0) in A, B, and D we compute (a, 0, 0) 7→
(a,G(a), 0) 7→ (0,G(a), 0) 7→ (G(a),G(a), 0) 7→ (G(a), 0, 0)
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Boolean circuits: benefits of reversiility.

The first observation is that by carefully counting the number of
gates in our construction, we may observe that reversibility at most
quadruples the number of gates representing G (not necessarily
reversibly). Thus if G is effectibly computable, then it is effectibly
computable reversibly.
The next benefit of reversibility is that it allows for a much more
economical (and reversible!) computation of G by Boolean ciruits
in terms of the register size. Here is a sketch of the argument.
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Boolean circuits: reversibility and register size.

Let our Boolean circuit act on a register of size s and have t gates.
Note that the gates do not need more that t + s ‘intermediate
values’, at least in the standard basis.
Imagine that we can split our reversible computation into two
reversible ‘havles’ consisting of the first t/2 gates followed by the
rest t/2 gates. Then the intermediate values used by the first half
can be reused by the second, since they have all been returned to
0! In some sense, a reversible computation uncomputes the
random intermediate results of a non reversible computation.
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Boolean circuits: precise efficiency estimates.

The preious analyses can be made precise to show that for any
bijection G : Fn

2 → Fn
2 that is computable by t gates there exists a

reversible Boolean circuit with O(t1+ε) gates acting on a register
of size O(n ln t).
Thus we can (and will from now on) assume that every classical
computation is using any required intermediate bits in a reversible
way with no drop in efficiency.
Why is reversibility important in the quantum model of
computation?
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Imagine a quantum algorithm running on a system of n qubits. As
is often the case, after applying a number of quantum
transformations, one has to perform some classic ‘postprocessing’
algorithm on all the terms of the linear combination that resulted
from the ‘quantum’ part of the algorithm (for example the classical
algorithm flips some specific bits and makes it possible to cancel
some of the terms in the linear combination).
This classical algorithm will need some m bits to use as
intermediate values, i.e. act on a tensor product U ⊗ V of an n-
and m-qubit spaces. If it does not return the extra qubits in the
origial (0) state, its result will be (most likely) unusable, since
those qubits will be left entangled with the original qubits.
Roughly speaking, what should cancel might no longer.
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Reversibility: artificial example.

Consider the following (made up) example. Suppose the result of
the quantum computation is 1√

2
(|110〉 − |111〉) and the last two

operations are the classical U that performs a permutation
|111〉 7→ |010〉, |010〉 7→ |111〉 and the Hadamard transform applied
to the first qubit. Suppose also that the fourth qubit is set to 0 to
be used by U as an itermediate result.
If U is reversible, then 1√

2
(|1100〉 − |1110〉) U7→ 1√

2
(|1100〉 − |0100〉).

The Hadamard transform turns this into
1√
2

(|1100〉 − |0100〉) H7→1
2(|0100〉 − |1100〉 − |0100〉 − |1100〉) =

−|1100〉. Now the first qubit is 1 with certainty!
What if U were not reversible?
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Reversibility: artificial example, cont.

Suppose what U did was |1110〉 7→ |0101〉, |0101〉 7→ |0100〉,
|0100〉 7→ |1110〉. Note that U is still invertible and acts the same
way on the first three qubits if the fourth qubit is set to 0. Now
however 1√

2
(|1100〉 − |1110〉) U7→ 1√

2
(|1100〉 − |0101〉) and

1√
2

(|1100〉 − |0101〉) H7→1
2(|0100〉 − |1100〉 − |0101〉 − |1101〉).

Nothing cancels and the probability of the first bit being 1 is 1
2 !

Measuring the extra bit and resetting it would not work either.
While this example is artificial, the problem it exposes is not. U
can be a much more complicated operator (it can, say, count the
number of bits set to one), which needs extra qubits to work.

Alexander Shibakov Quantum computing: a short introduction



Physics and mathematics of simple (single qubit) systems
Quantum state spaces: tensor products and n qubit systems

Quantum probability, entanglement, and Bell’s theorem
Quantum state transformations and quantum gates.

Introduction to quantum computation
Simple quantum algorithms: Deutsch-Jozsa’s, Simon’s

More advanced algorithms: QFT and Shor’s

Reversibility: artificial example, cont.

The property of not leaving extra qubits entangled is not unique to
the quantum analogs of the classical Boolean circuits. In a more
general setting, U is a quantum transform that we would like to
use as a ‘subroutine’ acting on n qubits. If U needs extra m bits to
accomplish its computation, it should leave those extra bits
unentangled with the first n bits.
Formally if U is an operator on W ⊗ V then
U(w ⊗ |0〉) = U ′(w)⊗ a where a does not depend on w . That
a 6= |0〉 is immaterial since it can always be measured and reset
without affecting the valuable bits.
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Some useful quantum transformations.

Several ‘quantum subroutines’ are available to design quantum
algorithms. One of the most useful ones is the Hadamard-Walsh
transform:

W (|q〉) = H(q1)⊗ · · · ⊗ H(qn)

Some useful observations:

W (|j〉) =
1√
2n (|0〉+ (−1)j1 |1〉)⊗ · · · ⊗ (|0〉+ (−1)jn |1〉) =

1√
2n

2n−1∑
i=0

(−1)i ·j |i〉, here i · j =
n∑

k=0
ik jk , ik is the k-th digit of

i .
2n−1∑
i=0

(−1)i ·j =

{
2n, if j = 0
0, otherwise

(exercise)

Alexander Shibakov Quantum computing: a short introduction



Physics and mathematics of simple (single qubit) systems
Quantum state spaces: tensor products and n qubit systems

Quantum probability, entanglement, and Bell’s theorem
Quantum state transformations and quantum gates.

Introduction to quantum computation
Simple quantum algorithms: Deutsch-Jozsa’s, Simon’s

More advanced algorithms: QFT and Shor’s

Quantum oracles. Phase kickback.

A number of quantum algorithms deal with oracles or black box
functions. An oracle is simply a quantum subroutine
Uf : |x〉|q〉 7→ |x〉|f (x)⊕ q〉. If Uf uses any intermediate values
beyond |x〉 and |q〉 it leaves them unentangled as described above.
Usually Uf is a classical subroutine applied to a quantum system.
Given a classical oracle Uf consider the following transformation:
put the qubit |q〉 into the state |−〉 = 1√

2
(|0〉 − |1〉) and apply Uf

to |x〉|−〉. Now we compute (below I = { i : f (i) = 1 })
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Computing with a classical oracle.

Uf

(
(
2n−1∑
i=0

ci |i〉)|−〉
)

=

1√
2

Uf

(
(
∑
i∈I

ci |i〉+
∑
i 6∈I

ci |i〉)⊗ (|0〉 − |1〉)
)

=

1√
2

(∑
i∈I

ci |i〉 ⊗ |1〉+
∑
i 6∈I

ci |i〉 ⊗ |0〉

−
∑
i∈I

ci |i〉 ⊗ |0〉 −
∑
i 6∈I

ci |i〉 ⊗ |1〉
)

=

1√
2

(−
∑
i∈I

ci |i〉+
∑
i 6∈I

ci |i〉)⊗ (|0〉 − |1〉)
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From a classical oracle to a quantum subroutine.

Thus Uf (|x〉|−〉) =
∑2n−1

i=0 (−1)f (i)ci |i〉 ⊗ |−〉, i.e. this
transformation negates all the terms corresponding to i ’s such that
f (i) = 1. We can put it together in the following quantum circuit:

|x〉

|0〉 X H
Uf

H X |0〉

2n−1∑
i=0

(−1)f(i)ci|i〉

The circuit above is a true quantum subroutine in that it does not
entangle the extra bits with the bits in the output (returning the
intermediate qubit back to |0〉 is not strictly necessary). We will
use the notation IUf for the circuit above. Next we shall use it in
our first quantum algorithm.

Alexander Shibakov Quantum computing: a short introduction



Physics and mathematics of simple (single qubit) systems
Quantum state spaces: tensor products and n qubit systems

Quantum probability, entanglement, and Bell’s theorem
Quantum state transformations and quantum gates.

Introduction to quantum computation
Simple quantum algorithms: Deutsch-Jozsa’s, Simon’s

More advanced algorithms: QFT and Shor’s

Deutsch-Jozsa problem: the setup.

Suppose a function f : Fn
2 → F2 is known to be one of the

following two kinds: f is either constant or balanced , i.e. f takes
on the value of 1 exactly the same number of times it takes on the
value of 0. The Deutsch-Jozsa problem consists of designing a
quantum algorithm that given a (classical) oracle Uf that
computes f decides whether f is constant or balanced.
It is easy to see that any classical algorithm would have to call f at
least 2n−1 times to make this determination. Below we will build a
quantum algorithm that can accomplish the same task after calling
Uf once!
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Deutsch-Jozsa problem: the superposition.

The algorithm starts by preparing a quantum state that is a
superposition of all the possible inputs of f . This can be achieved
in the following manner. Start with a state of |0〉n (which can be
initialized by measuring each qubit of an arbitrary quantum state
|x〉 in the standard basis and then applying one of the Pauli gates
X to ‘invert’ the qubits that are in the wrong state). Then apply
the Walsh-Hadamard transformation

W (|0〉n) =
1√
2n

2n−1∑
i=0

(−1)i ·0|i〉 =
1√
2n

2n−1∑
i=0
|i〉
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Deutsch-Jozsa problem: applying the oracle.

We now apply the circuit IUf built above to the superposition just
constructed (after introducing an auxilary qubit initialized to |0〉):

IUf

(
1√
2n

2n−1∑
i=0
|i〉
)

=
1√
2n

2n−1∑
i=0

(−1)f (i)|i〉

followed by another Walsh-Hadamard transformation:

W (
1√
2n

2n−1∑
i=0

(−1)f (i)|i〉) =
1
2n

2n−1∑
i=0

(−1)f (i)
2n−1∑
j=0

(−1)i ·j |j〉

All that is left to do is to measure the resulting state in the
standard basis.
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Deutsch-Jozsa problem: the result.

There are two possible cases. If f is constant then

1
2n

2n−1∑
i=0

(−1)f (i)
2n−1∑
j=0

(−1)i ·j |j〉 =

(−1)f (0)

2n

2n−1∑
i=0

2n−1∑
j=0

(−1)i ·j |j〉 =

(−1)f (0)

2n

2n−1∑
j=0

(2n−1∑
i=0

(−1)i ·j
)
|j〉 = (−1)f (0)|0〉n

Thus our measurement will return a 0 state with certainty!
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Deutsch-Jozsa problem: the setup.

If, on the other hand, f is balanced then

1
2n

2n−1∑
i=0

(−1)f (i)
2n−1∑
j=0

(−1)i ·j |j〉 =

1
2n

2n−1∑
j=0

 ∑
f (i)=0

(−1)i ·j −
∑

f (i)=1

(−1)i ·j

 |j〉
If j = 0 the difference inside the parentheses above is also 0 since f
is balanced. Thus our measurement will return 6= |0〉n with
certainty! Let us look at the corresponding quantum circuit.
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Deutsch-Jozsa problem: the circuit.

In the circuit below it is very apparent that the oracle was only
applied once. The quantum nature of the algorithm allowed us to
use the oracle essentially on every input at the same time!

|0〉

|0〉

W

X H
Uf

H X

W

|0〉

|x〉

The effect exploited above is given the name of quantum
parallelism, i.e. applying a (usually classical) quantum subroutine
to a superposition. It is somewhat abused in popular explanations
of quantum algorithms.
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Simon’s problem: stochastic quantum computation.

The algorithms considered so far produce results with certainty.
We now consider a problem where the computation is probabilistic.
In Simon’s problem f : Fn

2 → Fn
2 is a 2-1 function such that for

some bit string a and every x the value f (x) = f (x ⊕ a). The goal
is to compute a. Here, f is a ‘black-box’ function and the task is
to minimize the number of applications of f to find a. The best
classical algorithm can solve this problem in O(2n/2) steps.
Simon’s quantum algorithm can solve the problem in O(n) calls to
Uf with O(n3) postprocessing steps.
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Simon’s problem: stochastic quantum computation.

Start by creating a superposition

 1√
2n

2n−1∑
x=0
|x〉

⊗ |0〉n using a

Walsh-Hadamard transform. Apply Uf to produce
1√
2n

2n−1∑
x=0
|x〉|f (x)〉. Now measure the right register in the standard

basis.
The measurement result itself is ignored. Recall that such a
measurement will project the superposition above on some
Fn

2 ⊗ |y〉. After the measurement, the input (left) register will

contain
1√
2

(|x0〉+ |x0 ⊕ a〉) where the measured value was f (x0).

Alexander Shibakov Quantum computing: a short introduction



Physics and mathematics of simple (single qubit) systems
Quantum state spaces: tensor products and n qubit systems

Quantum probability, entanglement, and Bell’s theorem
Quantum state transformations and quantum gates.

Introduction to quantum computation
Simple quantum algorithms: Deutsch-Jozsa’s, Simon’s

More advanced algorithms: QFT and Shor’s

Simon’s problem: stochastic quantum computation.

Proceed to apply the Walsh-Hadamard transform to the result:

W (
1√
2

(|x0〉+ |x0 ⊕ a〉)) =
1√

2n+1

2n−1∑
i=0

((−1)x0·i + (−1)(x0⊕a)·i )|i〉.

Now (x0 ⊕ a) · i = x0 · i ⊕ a · i so the last sum is

1√
2n−1

∑
i∈S

(−1)x0·i |i〉

where for each i ∈ S,

x0 · i = x0 · i ⊕ a · i mod 2,

Thus a · i = 0 mod 2 (remember ⊕ is addition in F2)!
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Simon’s problem: stochastic quantum computation.

Rewrite a · i = 0 mod 2 as i1 · a1⊕ · · · ⊕ in · an = 0 to see that this
is a linear equation in a1, . . ., an over F2. Now measuring the left
register will give us a random (and uniformly distributed) equation
of this kind.
The next step is to repeat the measurement n − 1 times. If the
‘binary vectors’ |ik〉 are linearly independent for k = 1, . . . , n − 1
then we can solve the (underdetermined, since a 6= 0) system of
linear equations thus obtained in O(n3) steps (by Gaussian
elimination).

Alexander Shibakov Quantum computing: a short introduction



Physics and mathematics of simple (single qubit) systems
Quantum state spaces: tensor products and n qubit systems

Quantum probability, entanglement, and Bell’s theorem
Quantum state transformations and quantum gates.

Introduction to quantum computation
Simple quantum algorithms: Deutsch-Jozsa’s, Simon’s

More advanced algorithms: QFT and Shor’s

Simon’s problem: stochastic quantum computation.

What is the probability that the equations are linearly
independent? The pobability of ik+1 being independent of

i1, . . . , ik is
size of Fn

2 − size of Fk
2

size of Fn
2

=
2n − 2k

2n = 1− 1
2n−k .

Picking ik independently at random the probability is

(1− 1
2n−1 ) · · · (1− 1

2
) ≥

∞∏
k=1

(1− 1
2k )

Using (1− a)(1− b) ≥ 1− (a + b) for positive a and b, the product

above is at least
1
4

(start by
∏∞

k=1(1− 1
2k ) = 1

2
∏∞

k=2(1− 1
2k )).
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Simon’s problem: stochastic quantum computation.

Now one can repeat the computation above to reduce the
probability of error exponentially to an arbitrary small value.
It may be of some interest to point out that there is an exact
algorithm that solves Simon’s problem (i.e. it is guaranteed to
produce a result in polynomial time) but it is much more involved
than the construction above.
Another remark of interest, although not related to quantum
computation, is that the product

∏∞
k=1(1− 1

2k ) can be estimated
much more precisely using the pentagonal number theorem by
L. Euler.
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Quantum Fourier Transform, preliminaries: DFT and FFT.

Recall the definition of the Discrete Fourier Transform (DFT).
Given a polynomial Pn(z) = c0 + c1z + · · ·+ cnzn−1 and the
principal n-th root of unity ωn = e

2πi
n the DFT of Pn is the

sequence P̌n = Pn(ω0
n), . . . ,Pn(ωn−1

n ). The straightforward
evaluation of P̌n takes O(n2) steps (even that requires a minor
trick to evaluate the value of Pn(z) in O(n) steps).
The Fast Fourier Transform is an algorithm to evaluate the DFT in
O(n ln n) steps. It is based on the following ideas.
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The Fast Fourier transform.

For simplicity, assume below that n is a power of 2 (this is a
simplifying idea 0, if you will).

Pn(z) = Pe
n/2(z2) + zPo

n/2(z2) where
Pe

n/2(z) = c0 + c2z + · · ·+ cn−2zn/2−1 and
Pe

n/2(z) = c1 + c3z + · · ·+ cn−1zn/2−1 (i.e. the even and the
odd parts of Pn).

ω2
n = e

2·2πi
n = e

2πi
n/2 = ωn/2.

Putting the two together we get
P̌k

n = Pe
n(ω2k

n ) + ωk
n Po

n (ω2k
n ) = (P̌e

n/2)k + ωk
n (P̌o

n/2)k
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Fast Fourier Transform: efficiency.

Using the last formula it is easy to see that it takes
T (n) = 2T (n/2) + O(n) steps to compute the transform. Here
2T (n/2) is the ‘time’ (measured as the number of elementary
operations) to compute the two transforms of size n/2 and O(n) is
the time to perform the summation and multiplication for the n
values of P̌n. Now T (n) = O(n ln n) by a well known result in
combinatorics (just plot the recursive call tree for the algorithm to
see this). Note that O(n) also includes the steps necessary to
‘reshuffle’ the coefficients of Pn.
One can also provide a speedup (not asymptotically but still
significant) by noticing that ω

k+ n
2

n = e
(k+n/2)2πi

n = −ωk
n .
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The matrix representation of FFT.

We now rewrite the FFT formula above in the matrix form. First,
some notation. We will assume that the length of the sequence is
2n. Since FFT is a linear transform it can be represented by a
2n × 2n matrix F n. We will use the notation Sn for the ‘shuffle’
matrix that sends the basis vector |2i〉 to |i〉 and the vector |2i + 1〉
to |n2 + i〉 (note we are using Dirac’s notation for convenience only
at this time). That is, Sn splits the polynomial into its even and
odd halves. Note that the result of Sn can be achieved in O(n) bit
permutations while Sn performs 2n write operations.
Finally, the matrix Dn is the diagonal 2n × 2n matrix with the
entries ω0

2n+1 , . . . , ω
2n−1
2n+1 on the diagonal.
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The matrix representation of FFT.

The formula for the FFT becomes:

F n =

(
In−1 Dn−1

In−1 −Dn−1

)(
F n−1 0

0 F n−1

)
Sn

We now define the Quantum Fourier Transform as a quantum
transformation

UF n : |i〉 7→ 1√
2n

∑
ωij

2n |j〉

The constant 1√
2n is necessary to make UF n unitary (it is missing in

our formula for FFT for simplicity).
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From the matrix form of FFT to the efficient QFT.

We can use the formula for the classical FFT to represent UF n as

UF n =
1√
2

(
In−1 Dn−1

In−1 −Dn−1

)(
UF n−1 0

0 UF n−1

)
Sn

in the standard basis. Note that

(
UF n−1 0

0 UF n−1

)
is simply

I ⊗ UF n−1 , i.e. the QFT on the lower n − 1 qubits. We will now

show that Dk = Dk−1 ⊗
(

1 0
0 ω2k+1

)
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QFT: the implementation.

To see the last formula, let |i〉 be a vector in the standard basis.
Suppose j is even so |j〉 has the form |j/2 0〉 = |j/2〉 ⊗ |0〉. Then

Dk−1 ⊗
(

1 0
0 ω2k+1

)
|j/2〉 ⊗ |0〉 =

ω
j/2
2k |j/2〉 ⊗ |0〉 = ωj

2k+1 |j〉 = Dk |j〉

Now consider the case of an odd j .
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QFT: the implementation, cont.

Similarly if |j〉 = |(j − 1)/2〉 ⊗ |1〉 then

Dk−1 ⊗
(

1 0
0 ω2k+1

)
|(j − 1)/2〉 ⊗ |1〉 =

ω
(j−1)

2
2k |(j − 1)/2〉 ⊗ (ω2k+1 |1〉) =
ωj−1

2k+1ω2k+1 |(j − 1)/2〉 ⊗ |1〉 = Dk |j〉

Armed with this recursive relation we can now compute

1√
2

(
In−1 Dn−1

In−1 −Dn−1

)
|δ〉 ⊗ |j〉, δ = 0, 1
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QFT: the implementation, cont.

First consider the case δ = 0 (remember, δ is the most significant
bit). Then

1√
2

(
In−1 Dn−1

In−1 −Dn−1

)
|0〉 ⊗ |j〉 =

1√
2

(|0〉 ⊗ |j〉+ |1〉 ⊗ |j〉)

If δ = 1 we have

1√
2

(
In−1 Dn−1

In−1 −Dn−1

)
|1〉⊗ |j〉 =

1√
2

(|0〉⊗Dn−1|j〉− |1〉⊗Dn−1|j〉)
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QFT: the implementation, cont.

After factoring we get

1√
2

(
In−1 Dn−1

In−1 −Dn−1

)
|δ〉 ⊗ |j〉 =

H ⊗ In−1(|0〉〈0| ⊗ In−1 + |1〉〈1| ⊗ Dn−1)|δ〉|j〉

The operator in parentheses, (|0〉〈0| ⊗ In−1 + |1〉〈1| ⊗ Dn−1) is
simply Dn−1 controlled by δ. Since

Dn−1 = Dn−2 ⊗
(

1 0
0 ω2n

)
=

(
1 0
0 ω2

)
⊗ · · · ⊗

(
1 0
0 ω2n

)
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QFT: the implementation, cont.

we can use the following quantum circuit to compute the last
stage.

|δ〉

|jn−1〉

. . .

|j0〉

�ω2

. . .

�ω2n

H

where �ω2k =

(
1 0
0 ω2k

)
so this circuit takes O(n) gates to

implement.

Alexander Shibakov Quantum computing: a short introduction



Physics and mathematics of simple (single qubit) systems
Quantum state spaces: tensor products and n qubit systems

Quantum probability, entanglement, and Bell’s theorem
Quantum state transformations and quantum gates.

Introduction to quantum computation
Simple quantum algorithms: Deutsch-Jozsa’s, Simon’s

More advanced algorithms: QFT and Shor’s

QFT: the efficiency.

Reviewing the QFT circuit

UF n =
1√
2

(
In−1 Dn−1

In−1 −Dn−1

)(
UF n−1 0

0 UF n−1

)
Sn

we note that Sn takes up n (2-qubit permutation) gates, and that
the leftmost operator takes up another n gates. The middle
operator is just the QFT on n − 1 qubits so recursively expanding
the circuit we obtain the QFT efficiency to be O(n2) compared to
the classical version for which the efficiency is O(n2n) in our
notation!
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QFT: the efficiency, cont.

To compare the classical version with the quantum one note that
in the recursive relation, the classical FFT requires two transforms
each performed on half the samples while the post- and
preprocessing steps require O(2n) operations. Thus the recurrent
relation for the number of steps is T (2n) = 2T (2n−2) + O(2n)
giving T (2n) = O(n2n). The QFT, on the other hand, requires
just one transform applied to qubits less one and the post- and
preprocessing stages take up O(n) gates so the relation is
T (n) = T (n − 1) + O(n) resulting in T (n) = O(n2).
Also note that the two transforms (FFT and QFT) are not quite
the same: whereas the FFT produces a sequence of individually
accessible values, the QFT turns one quantum state into another.
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QFT: applications, Shor’s algorithm.

The QFT forms the core of P. Shor’s efficient (probabilistically
polynomial, i.e. better than O(n3)) algorithm for factoring large
numbers (the meaning of n will become clear soon).
Suppose a large number M is given by its sequence of m bits. To
find a nontrivial factor of M one can try the following method;

Guess a random a < M such that gcd(a,M) = 1 (if not, we
are done);
Find an even r such that ar = 1 mod M (r is called the
period of a (half of a’s will have such r);
(a

r
2 + 1)(a

r
2 − 1) = 0 mod M so probably (a

r
2 ± 1) has a

common factor with M; use Euclidean algorithm to find it;
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QFT: applications, Shor’s algorithm, cont.

The first and last step are efficient in the classical sense. The
second step is the one for which no efficient classical algorithm is
known.
Shor’s idea was to use the QFT to guess the period for a. He
starts by picking an n such that M2 ≤ 2n < 2M2 (so
n ∼ 2 log2 M). The function f (x) = ax mod M is efficiently
computable classically (for each x) so there exists an efficient
quantum circuit for Uf (recall that Uf : |x〉|0〉m 7→ |x〉|f (x)〉).
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QFT: applications, Shor’s algorithm, cont.

Start the computation by creating a superposition

1√
2n

∑
x
|x〉|0〉m Uf7→ 1√

2n

∑
x
|x〉|f (x)〉

using Walsh-Hadamard transform followed by Uf .
Now measure the last m bits (i.e. a random value of f ). The
measurement will project the state to one of

C
∑

x
g(x)|x〉|f0〉

where g(x) = 1 if and only if f (x) = f0.
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QFT: applications, Shor’s algorithm, cont.

Discard f0 and observe that if g(x) = g(x ′) = 1 for some x 6= x ′

then x − x ′ is a multiple of the period of f . So f and g have the
same period. To find it, apply the QFT:

F n(C
∑

x
g(x)|x〉) = C

∑
x

ǧ(x)|x〉

and observe, that like in the case of FFT ǧ(x) will concentrate
around x that are multiples of the period of g . Measure one. The
quantum part is over. Shor shows how to turn the guess thus
obtained into a value that is the period most of the time.

Alexander Shibakov Quantum computing: a short introduction



Physics and mathematics of simple (single qubit) systems
Quantum state spaces: tensor products and n qubit systems

Quantum probability, entanglement, and Bell’s theorem
Quantum state transformations and quantum gates.

Introduction to quantum computation
Simple quantum algorithms: Deutsch-Jozsa’s, Simon’s

More advanced algorithms: QFT and Shor’s

Concluding remarks.

To complete the analysis of Shor’s algorithm one would have to
show that all the probabilities are appropriately bounded and that
all the classical portions are efficient. We omit such details as they
are fun exercises to do.
Note that it is not known whether there is a classical algorithm for
efficient factoring. It is widely believed that no such algorithm
exists and most cryptographic systems are based on this belief.
It is currenly not known whether there is an algorithm like Shor’s
that has a certain outcome.
Finally, there is a problem that can be solved more efficiently using
quantum computing (Grover’s algorithm) but not with an
exponential speedup.
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