IEE. B402 Advanced Macroeconomics

Ramsey-Cass-Koopmans Model (1)

Ryoji Ohdoi
Dept. of Indust. Eng. \& Econ, Tokyo Tech

June 25-28 Revised

Plan

- Setup of the model
- Households and firms
- Closing the model
- Competitive equilibrium path
- Definition
- Steady state
- Transitional dynamics
- The social planner's problem

Introduction

- Recall that in the Solow-Swan model, consumption C and savings S are proportional to current income Y :

$$
S=s Y, C=(1-s) Y
$$

where $s \in(0,1)$ is the saving rate which is assumed to be exogenous.

- Ramsey-Cass-Koopmans model (or simply, Ramsey model):
- This model differs from the Solow-Swan model in the respect that it endogenizes the savings rate by explicitly modeling the consumer's infinite-horizon dynamic optimization.

Model

Households: Demographics and Utility Function

Population growth:

$$
\begin{equation*}
\dot{L}(t)(\equiv d L(t) / d t)=n L(t) \Leftrightarrow L(t)=L(0) e^{n t} . \tag{1}
\end{equation*}
$$

$(*) L(0)$ is normalized to one.

Lifetime utility function:

$$
\begin{align*}
U & =\int_{0}^{\infty} e^{-\rho t} L(t) u(c(t)) d t \\
& =\int_{0}^{\infty} e^{-(\rho-n) t} u(c(t)) d t \tag{2}
\end{align*}
$$

Assumption 1
$\rho>n$

Households

Let $A(t)$ denote asset holdings by the representative household at t.

Flow budget constraint:

$$
\begin{equation*}
\dot{A}(t)=r(t) A(t)+w(t) L(t)-c(t) L(t) . \tag{3}
\end{equation*}
$$

- $r(t)$: interest rate; $w(t)$: wage rate.
(*) We will discuss the relationship between r and R soon later.

Define a as follows:

$$
a(t) \equiv \frac{A(t)}{L(t)}
$$

Then, we obtain the flow budget equation in per-captia terms:

$$
\begin{equation*}
\dot{a}(t)=(r(t)-n) a(t)+w(t)-c(t) . \tag{4}
\end{equation*}
$$

Utility Maximization Problem

The representative household's utility maximization problem

$$
\begin{array}{rl}
\max _{(a(t), c(t))_{t \geq 0}} & U=\int_{0}^{\infty} e^{-(\rho-n) t} u(c(t)) d t \\
\text { s.t. } & \dot{a}(t)=(r(t)-n) a(t)+w(t)-c(t) \\
& \lim _{t \rightarrow \infty} a(t) \exp \left(-\int_{0}^{t}(r(s)-n) d s\right) \geq 0 \\
& a(0) \text { given. }
\end{array}
$$

Euler Equation and Transversality Condition

Euler equation:

$$
\begin{equation*}
\sigma(c(t)) \frac{\dot{c}(t)}{c(t)}=r(t)-\rho . \tag{8}
\end{equation*}
$$

where

$$
\sigma(c) \equiv-\frac{c u^{\prime \prime}(c)}{u^{\prime}(c)}>0 \forall c .
$$

TVC:

$$
\begin{equation*}
\lim _{t \rightarrow \infty} a(t) \exp \left(-\int_{0}^{t}(r(s)-n) d s\right)=0 \tag{9}
\end{equation*}
$$

Firms

A representative firm's profit maximization problem:

$$
\max _{K(t), L(t)} F(K(t), L(t))-R(t) K(t)-w(t) L(t)
$$

Since $F(K, L)=f(k) L$, the above problem can be converted to

$$
\max _{k(t), L(t)}[f(k(t))-R(t) k(t)-w(t)] L(t)
$$

Competitive factor markets then imply:

$$
\begin{equation*}
R(t)=f^{\prime}(k(t)), \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
w(t)=f(k(t))-k(t) f^{\prime}(k(t)) . \tag{11}
\end{equation*}
$$

No-Arbitrage Condition

Each household has the opportunity to hold the following two types of assets

1. capital $k(t)$
2. individual bonds $b_{p}(t)$
(*) When introduce the government's activity, public bonds are added.

The "no-arbitrage-conation" btw the two assets:

$$
\begin{equation*}
R(t)-\delta=r(t) \tag{12}
\end{equation*}
$$

Market-Clearing Conditions

- Let $B_{p}(t)$ denote the aggregate amount of individual bonds $\left(A(t)=K(t)+B_{p}(t)\right)$
- Since the "lending\&borrowing" in an individual sense is cancelled out as a whole,

$$
B_{p}(t)=0 .
$$

- Then, asset market-clearing condition in per capita terms is given by

$$
\begin{equation*}
a(t)=k(t) . \tag{14}
\end{equation*}
$$

Competitive equilibrium path

Definition

- The zero-profit-condition of firms implies

$$
R(t) k(t)+w(t)=f(k(t))
$$

\Downarrow

- The household's budget constraint is rewritten as

$$
\begin{align*}
\dot{k}(t) & =(R(t)-\delta-n) k(t)+w(t)-c(t) \\
& =f(k(t))-(n+\delta) k(t)-c(t) \tag{16}
\end{align*}
$$

which is equivalent to the market-clearing condition for the final good.

Definition

- Since $r(t)=R(t)-\delta=f^{\prime}(k(t))-\delta$, the Euler eq. becomes

$$
\begin{equation*}
\frac{\dot{c}(t)}{c(t)}=\frac{1}{\sigma(c(t))}\left(f^{\prime}(k(t))-\delta-\rho\right) \tag{17}
\end{equation*}
$$

- TVC is now expressed as

$$
\begin{equation*}
\lim _{t \rightarrow \infty} k(t) \exp \left(-\int_{0}^{t}\left[f^{\prime}(k(s))-(n+\delta)\right] d s\right)=0 \tag{18}
\end{equation*}
$$

Definition

Definition 1 (Competitive Equilibrium Path)

Given $k(0)>0$, the pair of paths $(k(t), c(t))_{t \geq 0}$ which jointly satisfy (16)-(18) constitute a competitive equilibrium path.

- Eqs. (16) - (18) :
\rightarrow The system of differential equations wrt $k(t)$ and $c(t)$ with the terminal condition
\rightarrow These equations are called the Autonomous Dynamic System

How can we derive the competitive equilibrium path?

Basically we use the following procedure:

1. Examine the existence and uniqueness of the Steady State

- $\mathrm{SS}=$ the path in which $k(t)$ and $c(t)$ are constant.

2. Examine the stability of the steady state:
3. Check whether or not the Transitional Dynamics to the steady state is uniquely determined or not.

Existence and Uniqueness of Steady State

Steady State

- Let k^{*} and c^{*} respectively denote the steady-state values of $k(t)$ and $c(t)$.
- From the Euler equation (17) with $\dot{c}=0$,

$$
\frac{\dot{c}(t)}{c(t)}=0 \Leftrightarrow \frac{1}{\sigma(c(t))}\left(f^{\prime}(k(t))-\delta-\rho\right)=0 .
$$

- Then, k^{*} is determined as

$$
\begin{equation*}
f^{\prime}\left(k^{*}\right)=\rho+\delta>n+\delta . \tag{19}
\end{equation*}
$$

(*) Eq. (19) pins down the steady-state capital-labor ratio only as a function of the production function, the discount rate and the depreciation rate

Steady State

- From (16) with $\dot{k}=0$, we obtain

$$
\begin{equation*}
c^{*}=C\left(k^{*}\right) \equiv f\left(k^{*}\right)-(n+\delta) k^{*} . \tag{20}
\end{equation*}
$$

- Note that function $C(k)$ satisfies

$$
C^{\prime}(k)=f^{\prime}(k)-(n+\delta) \gtreqless 0 \Leftrightarrow f^{\prime}(k) \gtreqless n+\delta .
$$

- Let us define k_{g} such that $f^{\prime}\left(k_{g}\right)=n+\delta$. k_{g} is golden rule of capital stock.
- Since $f^{\prime \prime}<0$,

$$
\frac{d c^{*}}{d k^{*}} \gtreqless 0 \Leftrightarrow k \lesseqgtr k_{g} .
$$

Steady State

Modified Golden Rule

- k^{*} is called the modified golden rule, which is smaller than the golden rule k_{g}.
Quiz: show it.
- This implies that achieving the golden rule is not desirable from the viewpoint of utility maximizing.

Stability of SS and transitional dynamics Analysis (1): Graphical analysis using Phase Diagram

Transitional Dynamics

From the dynamics of $k(t)$,

$$
\dot{k}(t) \gtreqless 0 \Leftrightarrow c(t) \lesseqgtr f(k(t))-(n+\delta) k(t) \equiv C(k(t)) .
$$

Transitional Dynamics

From the dynamics of $c(t)$ with $c(t)>0$,

$$
\dot{c}(t) \gtreqless 0 \Leftrightarrow k(t) \lesseqgtr k^{*} .
$$

Transitional Dynamics

Stability of SS and transitional dynamics
 Analysis (2): Analysis using Linear Approximation of System (16)-(17)

Local Stability of Linearized System

- Linear approximation of (16) in the neighborhood of SS:

$$
\begin{aligned}
\dot{k}(t) & =\left[f^{\prime}\left(k^{*}\right)-(n+\delta)\right]\left(k(t)-k^{*}\right)-\left(c(t)-c^{*}\right) \\
& =(\rho-n)\left(k(t)-k^{*}\right)-\left(c(t)-c^{*}\right)
\end{aligned}
$$

- Linear approximation of (17) in the neighborhood of SS:

$$
\begin{aligned}
\dot{c}(t) & =\frac{c^{*} f^{\prime \prime}\left(k^{*}\right)}{\sigma\left(c^{*}\right)}\left(k(t)-k^{*}\right) \\
& =-\frac{u^{\prime}\left(c^{*}\right) f^{\prime \prime}\left(k^{*}\right)}{u^{\prime \prime}\left(c^{*}\right)}\left(k(t)-k^{*}\right)
\end{aligned}
$$

Local Stability of Linearized System

\therefore The linearized (or local) dynamics:

$$
\binom{\dot{k}(t)}{\dot{c}(t)}=J\binom{k(t)-k^{*}}{c(t)-c^{*}}
$$

where J is Jacobian matrix:

$$
J=\left(\begin{array}{cc}
\rho-n & -1 \\
-\frac{f^{\prime \prime}\left(k^{*}\right) u^{\prime}\left(c^{*}\right)}{u^{\prime \prime}\left(c^{*}\right)} & 0
\end{array}\right)
$$

Characteristic Equation

- Let $\omega_{j}(=1,2)$ denote the eigenvalue of matrix J.
- ω_{j} is determined from the following characteristic equation:

$$
\begin{aligned}
\operatorname{det}(J-\omega I)=0 & \Leftrightarrow \operatorname{det}\left(\begin{array}{cc}
\rho-n-\omega & -1 \\
-\frac{f^{\prime \prime}\left(k^{*}\right) u^{\prime}\left(c^{*}\right)}{u^{\prime \prime}\left(c^{*}\right)} & 0-\omega
\end{array}\right) \\
& \Leftrightarrow \omega^{2}-(\rho-n) \omega+-\frac{f^{\prime \prime}\left(k^{*}\right) u^{\prime}\left(c^{*}\right)}{u^{\prime \prime}\left(c^{*}\right)}=0
\end{aligned}
$$

- It is shown that there are two real eigenvalues, one negative and one positive.
- Without any loss of generality, let $\omega_{1}>0$ and $\omega_{2}<0$ respectively denote the positive and the negative eigenvalues.

Local Stability of Linearized System

It is well known that the general solution is

$$
\begin{equation*}
\binom{k(t)-k^{*}}{c(t)-c^{*}}=Z_{1}\binom{v_{11}}{v_{21}} \exp \left(\omega_{1} t\right)+Z_{2}\binom{v_{12}}{v_{22}} \exp \left(\omega_{2} t\right) \tag{24}
\end{equation*}
$$

- $V_{j} \equiv\left(v_{1 j}, v_{2 j}\right)^{\prime}$: the eigenvector corresponding to $\omega_{j}(j \in\{1,2\})$;
- $Z_{j}(j \in\{1,2\})$: a constant value still to be determined

Numerical Example

- Specifications: $u(c)=\frac{c^{1-\theta}-1}{1-\theta}, f(k)=k^{\alpha}$
- $\alpha=0.4, \delta=0.07, \rho=0.04, \theta=0.1, n=0.2$
$\rightarrow \omega_{1}=0.3596, \omega_{2}=-0.3396$
$\rightarrow V_{1}=(0.947,-0.322)^{\prime}, V_{2}=(0.941,0.339)^{\prime}$.

Numerical Example

Determination of Initial Consumption

Determination of $c(0)$:

$$
\begin{align*}
k(0)-k^{*} & =Z_{1} v_{11}+Z_{2} v_{12} \text { and } \\
c(0)-c^{*} & =Z_{1} v_{21}+Z_{2} v_{22} \tag{25}
\end{align*}
$$

Thus, the initial consumption, $c(0)$, is determined such that

1. $Z_{1}=0$: otherwise the economy diverges from the steady state, and such a path violates either the Keynes-Ramsey rule or the TVC;
2. $Z_{2}=\left(k(0)-k^{*}\right) / v_{12}$: otherwise (25) does not hold given $k(0)$.

Lemma 2
The initial consumption is determined as $c(0)=c^{*}+\frac{v_{22}}{v_{11}}\left(k(0)-k^{*}\right)$.

Uniqueness of Equilibrium Path

Therefore, from (24), we can analytically obtain the optimal growth path as follows:

$$
\begin{align*}
& k(t)-k^{*}=\left(k(0)-k^{*}\right) \exp \left(\omega_{2} t\right) \text { and } \\
& c(t)-c^{*}=\frac{v_{22}}{v_{12}}\left(k(0)-k^{*}\right) \exp \left(\omega_{2} t\right) \tag{26}\\
&\left(=\frac{v_{22}}{v_{12}}\left(k(t)-k^{*}\right)\right)
\end{align*}
$$

Proposition 1

There exists a unique competitive equilibrium path.

The social planner's problem

Social Planner's Problem

Consider an economy in which a social planner directly determines the pair of time paths $(k(t), c(t))_{t \geq 0}$ so as to maximize

$$
\begin{aligned}
\max _{(k(t), c(t))_{t \geq 0}} & \int_{0}^{\infty} e^{-(\rho-n) t} u(c(t)) d t \\
\text { s.t. } & \dot{k}(t)=f(k(t))-(n+\delta) k(t)-c(t) \\
& k(0)>0 \text { given }
\end{aligned}
$$

(*) This is the "original" formulation by Cass (1965) and Koopmans (1965).

The time paths $(k(t), c(t))_{t \geq 0}$ that solves the above problem is called the First-Best Allocation.

Theorem

Theorem 3
The competitive equilibrium path achieves the first-best allocation.

