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Introduction

▶ Recall that in the Solow-Swan model, consumption C and savings S

are proportional to current income Y :

S = sY, C = (1− s)Y,

where s ∈ (0, 1) is the saving rate which is assumed to be exogenous.

▶ Ramsey-Cass-Koopmans model (or simply, Ramsey model):

▶ This model differs from the Solow-Swan model in the respect that it

endogenizes the savings rate by explicitly modeling the consumer’s

infinite-horizon dynamic optimization.
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Model
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Households: Demographics and Utility Function

Population growth:

L̇(t)(≡ dL(t)/dt) = nL(t) ⇔ L(t) = L(0)ent. (1)

(∗) L(0) is normalized to one.

Lifetime utility function:

U =

∫ ∞

0

e−ρtL(t)u(c(t))dt

=

∫ ∞

0

e−(ρ−n)tu(c(t))dt. (2)

Assumption 1

ρ > n
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Households

Let A(t) denote asset holdings by the representative household at t.

Flow budget constraint:

Ȧ(t) = r(t)A(t) + w(t)L(t)− c(t)L(t). (3)

▶ r(t): interest rate; w(t): wage rate.

(∗) We will discuss the relationship between r and R soon later.

Define a as follows:

a(t) ≡ A(t)

L(t)
.

Then, we obtain the flow budget equation in per-captia terms:

ȧ(t) = (r(t)− n)a(t) + w(t)− c(t). (4)
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Utility Maximization Problem

The representative household’s utility maximization problem

max
(a(t),c(t))t≥0

U =

∫ ∞

0

e−(ρ−n)tu(c(t))dt

s.t. ȧ(t) = (r(t)− n)a(t) + w(t)− c(t),

lim
t→∞

a(t) exp

(
−
∫ t

0

(r(s)− n)ds

)
≥ 0,

a(0) given.
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Euler Equation and Transversality Condition

Euler equation:

σ(c(t))
ċ(t)

c(t)
= r(t)− ρ. (8)

where

σ(c) ≡ −cu′′(c)

u′(c)
> 0∀c.

TVC:

lim
t→∞

a(t) exp

(
−
∫ t

0

(r(s)− n)ds

)
= 0. (9)
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Firms

A representative firm’s profit maximization problem:

max
K(t),L(t)

F (K(t), L(t))−R(t)K(t)− w(t)L(t),

Since F (K,L) = f(k)L, the above problem can be converted to

max
k(t),L(t)

[f(k(t))−R(t)k(t)− w(t)]L(t)

Competitive factor markets then imply:

R(t) = f ′(k(t)), (10)

and

w(t) = f(k(t))− k(t)f ′(k(t)). (11)
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No-Arbitrage Condition

Each household has the opportunity to hold the following two types of

assets

1. capital k(t)

2. individual bonds bp(t)

(∗) When introduce the government’s activity, public bonds are added.

The “no-arbitrage-conation” btw the two assets:

R(t)− δ = r(t) (12)
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Market–Clearing Conditions

▶ Let Bp(t) denote the aggregate amount of individual bonds

(A(t) = K(t) +Bp(t))

▶ Since the “lending&borrowing” in an individual sense is cancelled

out as a whole,

Bp(t) = 0.

▶ Then, asset market-clearing condition in per capita terms is given by

a(t) = k(t). (14)
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Competitive equilibrium path
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Definition

▶ The zero-profit-condition of firms implies

R(t)k(t) + w(t) = f(k(t))

⇓
▶ The household’s budget constraint is rewritten as

k̇(t) = (R(t)− δ − n)k(t) + w(t)− c(t)

= f(k(t))− (n+ δ)k(t)− c(t) (16)

which is equivalent to the market-clearing condition for the final

good.
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Definition

▶ Since r(t) = R(t)− δ = f ′(k(t))− δ, the Euler eq. becomes

ċ(t)

c(t)
=

1

σ(c(t))
(f ′(k(t))− δ − ρ) (17)

▶ TVC is now expressed as

lim
t→∞

k(t) exp

(
−
∫ t

0

[f ′(k(s))− (n+ δ)]ds

)
= 0 (18)
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Definition

Definition 1 (Competitive Equilibrium Path)

Given k(0) > 0, the pair of paths (k(t), c(t))t≥0 which jointly satisfy

(16)–(18) constitute a competitive equilibrium path.

▶ Eqs. (16) – (18) :

→ The system of differential equations wrt k(t) and c(t) with the

terminal condition

→ These equations are called the Autonomous Dynamic System
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How can we derive the competitive equilibrium path?

Basically we use the following procedure:

1. Examine the existence and uniqueness of the Steady State

▶ SS= the path in which k(t) and c(t) are constant.

2. Examine the stability of the steady state:

3. Check whether or not the Transitional Dynamics to the steady state

is uniquely determined or not.
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Existence and Uniqueness of Steady State

17 / 36



Steady State

▶ Let k∗ and c∗ respectively denote the steady-state values of k(t) and

c(t).

▶ From the Euler equation (17) with ċ = 0,

ċ(t)

c(t)
= 0 ⇔ 1

σ(c(t))
(f ′(k(t))− δ − ρ) = 0.

▶ Then, k∗ is determined as

f ′(k∗) = ρ+ δ > n+ δ. (19)

(∗) Eq. (19) pins down the steady-state capital-labor ratio only as a

function of the production function, the discount rate and the

depreciation rate

18 / 36



Steady State

▶ From (16) with k̇ = 0, we obtain

c∗ = C(k∗) ≡ f(k∗)− (n+ δ)k∗. (20)

▶ Note that function C(k) satisfies

C ′(k) = f ′(k)− (n+ δ) ⋛ 0 ⇔ f ′(k) ⋛ n+ δ.

▶ Let us define kg such that f ′(kg) = n+ δ.

kg is golden rule of capital stock.

▶ Since f ′′ < 0,
dc∗

dk∗
⋛ 0 ⇔ k ⋚ kg.
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Steady State

O
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Modified Golden Rule

▶ k∗ is called the modified golden rule, which is smaller than the

golden rule kg.

Quiz: show it.

▶ This implies that achieving the golden rule is not desirable from the

viewpoint of utility maximizing.
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Stability of SS and transitional dynamics

Analysis (1): Graphical analysis using Phase Diagram
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Transitional Dynamics
From the dynamics of k(t),

k̇(t) ⋛ 0 ⇔ c(t) ⋚ f(k(t))− (n+ δ)k(t) ≡ C(k(t)).

O
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Transitional Dynamics
From the dynamics of c(t) with c(t) > 0,

ċ(t) ⋛ 0 ⇔ k(t) ⋚ k∗.

O
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Transitional Dynamics
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Stability of SS and transitional dynamics

Analysis (2): Analysis using Linear Approximation of System (16)–(17)
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Local Stability of Linearized System

▶ Linear approximation of (16) in the neighborhood of SS:

k̇(t) = [f ′(k∗)− (n+ δ)](k(t)− k∗)− (c(t)− c∗)

= (ρ− n)(k(t)− k∗)− (c(t)− c∗)

▶ Linear approximation of (17) in the neighborhood of SS:

ċ(t) =
c∗f ′′(k∗)

σ(c∗)
(k(t)− k∗)

= −u′(c∗)f ′′(k∗)

u′′(c∗)
(k(t)− k∗)
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Local Stability of Linearized System

∴ The linearized (or local) dynamics:(
k̇(t)

ċ(t)

)
= J

(
k(t)− k∗

c(t)− c∗

)
where J is Jacobian matrix:

J =


ρ− n −1

−f ′′(k∗)u′(c∗)

u′′(c∗)
0


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Characteristic Equation

▶ Let ωj (= 1, 2) denote the eigenvalue of matrix J .

▶ ωj is determined from the following characteristic equation:

det(J − ωI) = 0 ⇔ det


ρ− n− ω −1

−f ′′(k∗)u′(c∗)

u′′(c∗)
0− ω

 = 0,

⇔ ω2 − (ρ− n)ω +−f ′′(k∗)u′(c∗)

u′′(c∗)
= 0.

▶ It is shown that there are two real eigenvalues, one negative and one

positive.

▶ Without any loss of generality, let ω1 > 0 and ω2 < 0 respectively

denote the positive and the negative eigenvalues.
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Local Stability of Linearized System

It is well known that the general solution is

(
k(t)− k∗

c(t)− c∗

)
= Z1

(
v11

v21

)
exp(ω1t) + Z2

(
v12

v22

)
exp(ω2t) (24)

▶ Vj ≡ (v1j , v2j)
′: the eigenvector corresponding to ωj (j ∈ {1, 2});

▶ Zj (j ∈ {1, 2}): a constant value still to be determined

Numerical Example

▶ Specifications: u(c) = c1−θ−1
1−θ , f(k) = kα

▶ α = 0.4, δ = 0.07, ρ = 0.04, θ = 0.1, n = 0.2

→ ω1 = 0.3596, ω2 = −0.3396

→ V1 = (0.947,−0.322)′, V2 = (0.941, 0.339)′.
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Numerical Example

stable arm

unstable arm
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Determination of Initial Consumption

Determination of c(0):

k(0)− k∗ = Z1v11 + Z2v12 and

c(0)− c∗ = Z1v21 + Z2v22 (25)

Thus, the initial consumption, c(0), is determined such that

1. Z1 = 0: otherwise the economy diverges from the steady state, and

such a path violates either the Keynes-Ramsey rule or the TVC;

2. Z2 = (k(0)− k∗)/v12: otherwise (25) does not hold given k(0).

Lemma 2
The initial consumption is determined as c(0) = c∗ +

v22
v11

(k(0)− k∗).
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Uniqueness of Equilibrium Path

Therefore, from (24), we can analytically obtain the optimal growth path

as follows:

k(t)− k∗ = (k(0)− k∗) exp(ω2t) and

c(t)− c∗ =
v22
v12

(k(0)− k∗) exp(ω2t) (26)(
=

v22
v12

(k(t)− k∗)

)

Proposition 1

There exists a unique competitive equilibrium path.
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The social planner’s problem
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Social Planner’s Problem

Consider an economy in which a social planner directly determines the

pair of time paths (k(t), c(t))t≥0 so as to maximize

max
(k(t),c(t))t≥0

∫ ∞

0

e−(ρ−n)tu(c(t))dt,

s.t. k̇(t) = f(k(t))− (n+ δ)k(t)− c(t),

k(0) > 0 given

(∗) This is the “original” formulation by Cass (1965) and Koopmans

(1965).

The time paths (k(t), c(t))t≥0 that solves the above problem is called the

First-Best Allocation.
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Theorem

Theorem 3
The competitive equilibrium path achieves the first-best allocation.
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