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Introduction

▶ Not only households, but also firms often face a situation of

dynamic decision making:

Today
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Plan of Talk

1. The canonical model of a firm’s intertemporal optimization for

production and investment.

2. The q-theory of investment (an extenstion)

3. Economic implications
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Notation

▶ K(t): capital stock, or simply capital;

▶ I(t): gross capital investment, or simply investment;

▶ L(t): demand for labor;

▶ Y (t): output;

▶ r(t): interest rate;

▶ w(t): wage rate;

▶ F (K,L): production function of a firm;

▶ V (0): stock value of a firm evaluated at the initial date;

▶ δ(≥ 0): capital depreciation rate (constant).
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Setup

▶ There is a single final good, which is used for consumption and

investment.

▶ The price of this good is normalized to unity (i.e., the good is taken

as the numeraire).

▶ Consider a firm, of which output at date t ≥ 0 is given by

Y (t) = F (K(t), L(t)). (1)

▶ It pays the wage rate w(t) for each unit of labor L(t). In addition, it

pays the cost of investment for production in the future.

▶ The change in the firm’s capital stock is then given by

K̇(t) = I(t)− δK(t). (2)

Note: I(t) can be negative.
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Setup (cont’d)

▶ Note that the cost of investment is equal to the cost of purchasing

the good for the investment purpose.

⇒ The firm pays I(t) for an amount of investment I(t).

(∗) This assumption is relaxed later.

▶ Accordingly, the firm’s net cash flow is given by

Net cash flow = F (K(t), L(t))− w(t)L(t)− I(t). (3)

▶ The net cash flow (NCF) given in (3) is payed out as dividends to

the shareowners.

▶ The stock value of this firm, V (0), is defined as the sum of present

value of the NCF between 0 and ∞.
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Schematic
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A Firm’s Stock Value Maximization Problem

▶ The canonical problem of a firm in a dynamic environment:

max V (0) =

∫ ∞

0

e−
∫ t
0
r(s)ds

[
F (K(t), L(t))− w(t)L(t)− I(t)

]
dt

s.t. K̇(t) = I(t)− δK(t), (2)

K(0) given.

▶ The firm chooses (L(t), I(t),K(t))t≥0 so as to solve the above

problem.

▶ We assume

FK ≡ ∂F/∂K > 0, FL ≡ ∂F/∂L > 0,

FKK ≡ ∂2F/(∂K)2 < 0, FLL ≡ ∂2F/(∂L)2 < 0.
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Derivation of Conditions for Optimization

→ Quiz in the class.

Step. 1

▶ Let q(t) denote the Lagrange multiplier associated with (2).

▶ Construct the Lagrangian:

L =

∫ ∞

0

e−
∫ t
0
r(s)ds

[
F (K(t), L(t))− w(t)L(t)− I(t)

+ q(t)(I(t)− δK(t)− K̇(t))
]
dt.

▶ From the slides on Jun. 14, the current-value Hamiltonian is given

by

H(t) = F (K(t), L(t))− w(t)L(t)− I(t) + q(t)(I(t)− δK(t)) ,
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Derivation of Conditions for Optimization

Step. 2

▶ Rewrite L as

L =

∫ ∞

0

e−
∫ t
0
r(s)dsH(t)dt−

∫ ∞

0

e−
∫ t
0
r(s)dsq(t)K̇(t)dt.

▶ Integrating the second term by parts,∫ ∞

0

e−
∫ t
0
r(s)dsq(t)K̇(t)dt =

∫ ∞

0

e−
∫ t
0
r(s)dsH(t)dt

−
∫ ∞

0

e−
∫ t
0
r(s)dsH(t)dt−

∫ ∞

0

e−
∫ t
0
r(s)dsq(t)K̇(t)dt (4)
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Derivation of Conditions for Optimization

Step. 3

▶ Then, the TVC means

lim
t→∞

e−
∫ t
0
r(s)dsq(t)K(t) = 0. (5)

▶ In addition, substituting (4) back into L on pp. 10, we obtain the

conditions for optimization with respect to L, I, and K.

L(t) :
∂H

∂L(t)
= 0 ⇔ FL(K(t), L(t)) = w(t) , (6)

I(t) :
∂H

∂I(t)
= 0 ⇔ FL(K(t), L(t)) = w(t) , (7)

K(t) : q̇(t) = r(t)q(t)− ∂H

∂K(t)

⇔ q̇(t) = r(t)q(t)− FK(K,L) + q(t)δ . (8)
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Dynamic vs Static Optimization

▶ In this simple model, the multiplier q(t) is always equal to d d

from (7).

▶ Then, (8) implies

FK(K,L) = r + δ .

▶ Let R(t) denote R(t) = r(t) + δ. Then, the same conditions are

obtained from the following static profit maximization problem:

max
K(t),L(t)

F (K(t), L(t))− w(t)L(t)−R(t)K(t). (9)
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An Extension: The q-Theory of Investment
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Modification

▶ We now assume that the cost of investment is given by

Cost of investment = I(t) + Φ(I(t),K(t)), (10)

where the second term is called the adjustment cost of investment

(投資の調整費用).

▶ In the context of the investment theory, function Φ is often specified

as

Φ(I,K) = zI2/K,

where z > 0 is an exogenously given parameter.
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Problem

▶ The problem:

max V (0) =

∫ ∞

0

e−
∫ t
0
r(s)ds

[
F (K(t), L(t))− w(t)L(t)

− I(t)− zI(t)2/K(t)
]
dt

s.t. K̇(t) = I(t)− δK(t),

K(0) given.

▶ The current-value Hamiltonian:

H = F (K,L)− wL− I − zI2/K + q(I − δK). (11)
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Conditions for Optimization

▶ TVC is given by (5) also in this problem.

▶ On the other hand, the conditions for optimization with respect to

L, I, and K are given by

L(t) :
∂H

∂L(t)
= 0 ⇔ FL(K(t), L(t)) = w(t) , (12)

I(t) :
∂H

∂I(t)
= 0 ⇔ FL(K(t), L(t)) = w(t) , (13)

K(t) : q̇(t) = r(t)q(t)− ∂H

∂K(t)

⇔ q̇(t) = r(t)q(t)− FK(K,L) + q(t)δ . (14)
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Economic Implications

▶ How can we evaluate the efficiency of firms’ investment behavior in

our real world?

⇓

▶ It is important to empirically check whether or not firms’ investment

satisfies (13), which gives the important theoretical prediction.

▶ In particular, from (13), we can obtain the following relationship:

I(t) ⋛ 0 ⇔ q(t) ⋛ ⋛ 1 (15)

(Caution) Unfortunately, however, q(t) is the Lagrange multiplier in the

optimization problem. The data is not directly available.
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Useful Theorem

Theorem

Suppose that the production function F is linearly homogenous:

F (xK, xL) = xF (K,L)∀x ≥ 0.

Then, the conditions for optimization of the problem (on pp. 15) given

by (5) and (12)–(14) jointly imply V (0) = q(0)K(0).

Proof.

Homework assignment

▶ Then, in this case, we can obtain the data of q(0) from the data of

stock value V (0) and capital K(0).
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