IEE. B402 Advanced Macroeconomics

A Firm's Intertemporal Behavior

Ryoji Ohdoi
Dept. of Indust. Eng. \& Econ, Tokyo Tech

June 21, 2019 (revised)

Introduction

- Not only households, but also firms often face a situation of dynamic decision making:

Plan of Talk

1. The canonical model of a firm's intertemporal optimization for production and investment.
2. The q-theory of investment (an extenstion)
3. Economic implications

Notation

- $K(t)$: capital stock, or simply capital;
- $I(t)$: gross capital investment, or simply investment;
- $L(t)$: demand for labor;
- $Y(t)$: output;
- $r(t)$: interest rate;
- $w(t)$: wage rate;
- $F(K, L)$: production function of a firm;
- $V(0)$: stock value of a firm evaluated at the initial date;
- $\delta(\geq 0)$: capital depreciation rate (constant).

Setup

- There is a single final good, which is used for consumption and investment.
- The price of this good is normalized to unity (i.e., the good is taken as the numeraire).
- Consider a firm, of which output at date $t \geq 0$ is given by

$$
\begin{equation*}
Y(t)=F(K(t), L(t)) \tag{1}
\end{equation*}
$$

- It pays the wage rate $w(t)$ for each unit of labor $L(t)$. In addition, it pays the cost of investment for production in the future.
- The change in the firm's capital stock is then given by

$$
\begin{equation*}
\dot{K}(t)=I(t)-\delta K(t) \tag{2}
\end{equation*}
$$

Note: $I(t)$ can be negative.

Setup (cont'd)

- Note that the cost of investment is equal to the cost of purchasing the good for the investment purpose.
\Rightarrow The firm pays $I(t)$ for an amount of investment $I(t)$.
(*) This assumption is relaxed later.
- Accordingly, the firm's net cash flow is given by

$$
\begin{equation*}
\text { Net cash flow }=F(K(t), L(t))-w(t) L(t)-I(t) . \tag{3}
\end{equation*}
$$

- The net cash flow (NCF) given in (3) is payed out as dividends to the shareowners.
- The stock value of this firm, $V(0)$, is defined as the sum of present value of the NCF between 0 and ∞.

Schematic

Flow of financial resources

A Firm's Stock Value Maximization Problem

- The canonical problem of a firm in a dynamic environment:

$$
\begin{align*}
\max & V(0)=\int_{0}^{\infty} e^{-\int_{0}^{t} r(s) d s}[F(K(t), L(t))-w(t) L(t)-I(t)] d t \\
\text { s.t. } & \dot{K}(t)=I(t)-\delta K(t) \tag{2}\\
& K(0) \text { given. }
\end{align*}
$$

- The firm chooses $(L(t), I(t), K(t))_{t \geq 0}$ so as to solve the above problem.
- We assume

$$
\begin{array}{r}
F_{K} \equiv \partial F / \partial K>0, \quad F_{L} \equiv \partial F / \partial L>0, \\
F_{K K} \equiv \partial^{2} F /(\partial K)^{2}<0, \quad F_{L L} \equiv \partial^{2} F /(\partial L)^{2}<0 .
\end{array}
$$

Derivation of Conditions for Optimization

\rightarrow Quiz in the class.

Step. 1

- Let $q(t)$ denote the Lagrange multiplier associated with (2).
- Construct the Lagrangian:

$$
\begin{gathered}
\mathcal{L}=\int_{0}^{\infty} e^{-\int_{0}^{t} r(s) d s}[F(K(t), L(t))-w(t) L(t)-I(t) \\
+q(t)(I(t)-\delta K(t)-\dot{K}(t))] d t
\end{gathered}
$$

- From the slides on Jun. 14, the current-value Hamiltonian is given by

$$
H(t)=\square,
$$

Derivation of Conditions for Optimization

Step. 2

- Rewrite \mathcal{L} as

$$
\mathcal{L}=\int_{0}^{\infty} e^{-\int_{0}^{t} r(s) d s} H(t) d t-\int_{0}^{\infty} e^{-\int_{0}^{t} r(s) d s} q(t) \dot{K}(t) d t
$$

- Integrating the second term by parts,

$$
\begin{align*}
& \int_{0}^{\infty} e^{-\int_{0}^{t} r(s) d s} q(t) \dot{K}(t) d t=\square \tag{4}\\
& - \\
&
\end{align*}
$$

Derivation of Conditions for Optimization

Step. 3

- Then, the TVC means

$$
\begin{equation*}
\lim _{t \rightarrow \infty} e^{-\int_{0}^{t} r(s) d s} q(t) K(t)=0 \tag{5}
\end{equation*}
$$

- In addition, substituting (4) back into \mathcal{L} on pp. 10, we obtain the conditions for optimization with respect to L, I, and K.

$$
\begin{array}{cc}
L(t): & \frac{\partial H}{\partial L(t)}=0 \Leftrightarrow \square \\
I(t): & \frac{\partial H}{\partial I(t)}=0 \Leftrightarrow \square \\
K(t): & \dot{q}(t)=r(t) q(t)-\frac{\partial H}{\partial K(t)} \\
& \Leftrightarrow \tag{8}
\end{array}
$$

Dynamic vs Static Optimization

- In this simple model, the multiplier $q(t)$ is always equal to \square from (7).
- Then, (8) implies

- Let $R(t)$ denote $R(t)=r(t)+\delta$. Then, the same conditions are obtained from the following static profit maximization problem:

$$
\begin{equation*}
\max _{K(t), L(t)} F(K(t), L(t))-w(t) L(t)-R(t) K(t) \tag{9}
\end{equation*}
$$

An Extension: The q-Theory of Investment

Modification

－We now assume that the cost of investment is given by

$$
\begin{equation*}
\text { Cost of investment }=I(t)+\Phi(I(t), K(t)), \tag{10}
\end{equation*}
$$

where the second term is called the adjustment cost of investment （投資の調整費用）．
－In the context of the investment theory，function Φ is often specified as

$$
\Phi(I, K)=z I^{2} / K
$$

where $z>0$ is an exogenously given parameter．

Problem

- The problem:

$$
\begin{array}{ll}
\max & V(0)=\int_{0}^{\infty} e^{-\int_{0}^{t} r(s) d s}[F(K(t), L(t))-w(t) L(t) \\
& \left.\quad-I(t)-z I(t)^{2} / K(t)\right] d t \\
\text { s.t. } & \dot{K}(t)=I(t)-\delta K(t) \\
& K(0) \text { given. }
\end{array}
$$

- The current-value Hamiltonian:

$$
\begin{equation*}
H=F(K, L)-w L-I-z I^{2} / K+q(I-\delta K) \tag{11}
\end{equation*}
$$

Conditions for Optimization

- TVC is given by (5) also in this problem.
- On the other hand, the conditions for optimization with respect to L, I, and K are given by

$$
\begin{array}{cl}
L(t): & \frac{\partial H}{\partial L(t)}=0 \Leftrightarrow \square \\
I(t): & \frac{\partial H}{\partial I(t)}=0 \Leftrightarrow \square \\
K(t): & \dot{q}(t)=r(t) q(t)-\frac{\partial H}{\partial K(t)} \\
& \Leftrightarrow \tag{14}
\end{array}
$$

Economic Implications

- How can we evaluate the efficiency of firms' investment behavior in our real world?
\Downarrow
- It is important to empirically check whether or not firms' investment satisfies (13), which gives the important theoretical prediction.
- In particular, from (13), we can obtain the following relationship:

$$
\begin{equation*}
I(t) \gtreqless 0 \Leftrightarrow q(t) \gtreqless \square \tag{15}
\end{equation*}
$$

(Caution) Unfortunately, however, $q(t)$ is the Lagrange multiplier in the optimization problem. The data is not directly available.

Useful Theorem

Theorem
Suppose that the production function F is linearly homogenous:

$$
F(x K, x L)=x F(K, L) \forall x \geq 0 .
$$

Then, the conditions for optimization of the problem (on pp. 15) given by (5) and (12)-(14) jointly imply $V(0)=q(0) K(0)$.

Proof.
Homework assignment

- Then, in this case, we can obtain the data of $q(0)$ from the data of stock value $V(0)$ and capital $K(0)$.

