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Introduction

▶ In many facets of life, we often face a situation of dynamic decision

making.

▶ Example: our intertemporal allocation of consumption

Today

assets assets
Tomorrow

(stock)

(flow)
income flow

consumption

savings

income flow

consumption

savings

utility utility

c(t)

a(t) a(t+)

c(t+)
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Another Example

▶ Firms’ intertemporal plan of production

Today

capital capital 
Tomorrow

(stock)

(flow)

I(t)

K(t) K(t+)

sales

investment

wage payment cash dividend

sales

investment

wage payment cash dividend
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Two Classes of Variables

▶ We start with a classification of variables.

▶ In a dynamic environment, variables are divided into two classes,

state variables (状態変数) and control variables (制御変数).

▶ The movement of state variables is governed by first order

differential equations, called the transition equation (推移方程式).

▶ Time is continuous here and indexed by t. Let x(t) denote a state

variable and u(t) denote a control variable.

▶ Then, the transition equation is generally expressed as

ẋ(t)

(
≡ dx(t)

dt

)
= G(x(t), u(t), t). (1)

(∗) Hereafter, a dot over a variable indicates its time derivative.

▶ G is the function which governs the movement of x(t), adequately

specified depending on the context (see the next slide).

4 / 21



Examples

1. In a household’s behavior,

▶ Her assets corresponds to the state variable (x(t) = a(t)), while

consumption corresponds to the control variables (u(t) = c(t)).

▶ Her flow budget constraint corresponds to the transition equation:

ȧ(t) = r(t)a(t) + w(t)− c(t),

where r(t) is the interest rate and w(t) is the wage at time t.

2. In a firm’s behavior,

▶ Its capital corresponds to the state variable (x(t) = K(t)), while

investment and labor demand correspond to the control variables

(u(t) = (I(t), L(t))).

▶ Dynamic equation of capital corresponds to the transition equation:

K̇(t) = I(t)− δK(t),

where δ ≥ 0 is the rate of capital depreciation.
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Canonical Problem

▶ For simplicity, we assume that both of x and u are one-dimensional.

▶ Then, the simplest continuous-time optimization problem is written

as

max
(x(t),u(t))t≥0

J =

∫ T

0

F (x(t), u(t), t)dt

s.t. ẋ(t) = G(x(t), u(t), t), (1)

x(0) = x0 given, (2)

where we refer to J and F respectively as the objective function and

the instantaneous return function.

▶ For the moment, we assume that the end point T is finite.

▶ The constraint (2) means that the initial value of the state variable

is historically given.
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Additional Constraint

▶ Additional constraint:

In addition to (1) and (2), the optimization problem in economics

often includes the following inequality constraint at the terminal

date:

b(T )x(T ) ≥ 0, (3)

where b(T ) is the variable dependent on T , the example of which is

the discount factor applied to x(T ).
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Example: A Household’s Utility Maximization

▶ A household’s dynamic utility maximization problem:

max
(a(t),c(t))t≥0

U =

∫ T

0

e−ρt ln c(t)dt

s.t. ȧ(t) = r(t)a(t) + w(t)− c(t),

a(0) = a0 given,

e−
∫ T
0

r(s)dsa(T ) ≥ 0,

where

▶ ρ > 0 is the subjective discount rate (主観的割引率), applied to the

utility from consumption.

→ e−ρt ln c(t) < ln c(t) (∀t > 0) means that at the initial date, she

discounts her future utilities.

▶ On the other hand, e−
∫ T
0 r(s)ds captures the time discounting about

assets at the terminal date, a(T ).
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Assumption

▶ Consider the general problem on pp. 6.

▶ Assumption:� �
F and G are continuously differentiable functions of three inde-

pendent arguments.� �
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Lagrangian and Hamiltonian

▶ Set up the Lagrangian:

L =

∫ T

0

{
F (x(t), u(t), t) + µ(t)

[
G(x(t), u(t), t)− ẋ(t)

]}
dt

+ η(T )b(T )x(T ),

where µ(t) is the Lagrangian multiplier associated with the

constraint (1), and ν is the multiplier with the constraint (3).

▶ Let us define the function H:

H(x(t), u(t), µ(t), t) = F (x(t), u(t), t) + µ(t)G(x(t), u(t), t).

H is called the Hamiltonian.
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Reduced Form of L

▶ The Lagrangian is rewritten as

L =

∫ T

0

H(x(t), u(t), µ(t), t)dt−
∫ T

0

µ(t)ẋ(t)dt+ νb(T )x(T ).

▶ Integrating the second term by parts, we can obtain∫ T

0

µ(t)ẋ(t)dt = µ(T )x(T )− µ(0)x0 −
∫ T

0

x(t)µ̇(t)dt. (4)

▶ Using (4), the Lagrangian is eventually reduced to

L =

∫ T

0

[
H(x(t), u(t), µ(t), t) + x(t)µ̇(t)

]
dt

− µ(T )x(T ) + νb(T )x(T ) + µ(0)x0. (5)
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First-Order Conditions

▶ Then, in analogy with solving a nonlinear programming problem, we

obtain the first-order conditions (hereafter F.O.Cs) with respect to

u(t) and x(t):

u(t) :
∂H(·)
∂u(t)

= 0 ⇔ ∂F

∂u(t)
+ µ(t)

∂G

∂u(t)
= 0, (6)

x(t) :
∂H(·)
∂x(t)

+ µ̇(t) = 0 ⇔ µ̇(t) = −
[

∂F

∂x(t)
+ µ(t)

∂G

∂x(t)

]
. (7)

Equation (7) is called the Euler–Lagrange equation. In economics, it

is simply called the Euler equation.

▶ F.O.Cs with respect to µ(t) → the transition equation (1).
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Transversality Condition

▶ Note that equation (7) is the condition for t ∈ [0, T ). The condition

with respect to x(T ) is given by

µ(T ) = νb(T ).

▶ Moreover, the (Kuhn-Tucker) multiplier ν must satisfy the following

complementary slackness condition:

νb(T )x(T ) = 0.

▶ The above two conditions jointly imply

µ(T )x(T ) = 0. (8)

Condition (8) is called the transversality condition (横断性条件),

often abbreviated as the TVC.
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On the Sufficiency

▶ Note that conditions (6)–(8) are the necessary conditions for

optimization.

▶ So it is still silent whether or not these conditions are sufficient for

that.

⇓

Theorem (Sufficiency)

If the Hamiltonian H is concave with respect to (x(t), u(t)), then

conditions (6) – (8) are also the sufficient conditions for optimization.

Proof.
Appendix.
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Application: A Household’s Utility Maximization

▶ Now consider the utility maximization problem on pp. 8.

▶ The Hamiltonian is given by

H(a, c, µ, t) = e−ρt ln c(t) + µ(t) [r(t)a(t) + w(t)− c(t)] .

Note that H is concave with respect to (a, c).

▶ The conditions for utility maximization:

c(t) :
∂H

∂c(t)
= 0 ⇔ e−ρt/c(t) = µ(t) (9)

a(t) : µ̇(t) +
∂H

∂a(t)
= 0 ⇔ µ̇(t) = −r(t)µ(t) (10)

TVC : µ(T )a(T ) = 0 ⇔ e−ρT /c(T )a(T ) = 0 (11)

(9) and (11) jointly imply a(T ) = 0 .

▶ Economic implications of the dynamic utility maximization are

discussed in an upcoming class.
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The Optimization Problem with Time Discounting

▶ Economically interesting problems often specify the instantaneous

return function F as

F (x(t), u(t), t) = e−ρtf(x(t), u(t), t),

which means that one unit of return at time t is evaluated as

e−ρt < 1 at the initial time.

▶ The problem is now given by

max
(x(t),u(t))t≥0

J =

∫ T

0

e−ρtf(x(t), u(t), t)dt

s.t. ẋ(t) = G(x(t), u(t), t),

x(0) = x0 given,

b(T )x(T ) ≥ 0.
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Two Types of Hamiltonian

▶ The Hamiltonian takes the form:

H(x(t), u(t), µ(t), t) = e−ρtf(x(t), u(t), t) + µ(t)G(x(t), u(t), t).

(12)

In the discounted optimization problem, function (12) is called the

present-value Hamiltonian (現在価値ハミルトニアン).

▶ When we introduce the new variable, λ(t) ≡ µ(t)eρt, we can rewrite

(12) as

H(x(t), u(t), µ(t), t) = e−ρtĤ(x(t), u(t), λ(t), t),

where

Ĥ(x(t), u(t), λ(t), t) = f(x(t), u(t), t) + λ(t)G(x(t), u(t), t). (13)

(13) is the current-value Hamiltonian (当該価値ハミルトニアン).
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F.O.Cs

▶ Needless to say, whichever we use, (12) or (13), we can obtain the

same F.O.Cs.

▶ When we use the current-value Hamiltonian (13), we can obtain the

following conditions:

u(t) :
∂Ĥ

∂u(t)
= 0 ⇔ ∂f

∂u(t)
+ λ(t)

∂G

∂u(t)
= 0, (14)

x(t) :
∂Ĥ

∂x(t)
− ρλ(t) + λ̇(t) = 0

⇔ λ̇(t) = ρλ(t)−
[

∂f

∂x(t)
+ λ(t)

∂G

∂x(t)

]
, (15)

TVC : e−ρTλ(T )x(T ) = 0. (16)

▶ Once we recall the definition of λ(t): λ(t) ≡ eρtµ(t), we can easily

verify that the conditions (14)–(16) are equivalent to (6)–(8).
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A Household’s Utility Maximization (Once Again)

▶ Consider the utility maximization problem on pp. 8 again.

▶ The current-value Hamiltonian is given by

Ĥ(a, c, µ, t) = ln c(t) + λ(t) [r(t)a(t) + w(t)− c(t)] .

▶ The conditions for utility maximization:

c(t) :
∂Ĥ

∂c(t)
= 0 ⇔ e−ρt/c(t) = µ(t) (17)

a(t) : λ̇(t)− ρλ(t) +
∂Ĥ

∂a(t)
= 0 ⇔ µ̇(t) = −r(t)µ(t) (18)

TVC : e−ρTλ(T )a(T ) = 0 ⇔ e−ρT /c(T )a(T ) = 0 (19)
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Infinite-Horizon Problem

▶ Most economic models, not only in macroeconomics, but also in

repeated games, political economy and so on, are formulated as

infinite-horizon problems.

▶ Consider the following problem by taking a limit of T → ∞ in the

original problem:

max
(x(t),u(t))t≥0

J =

∫ ∞

0

e−ρtf(x(t), u(t), t)dt

s.t. ẋ(t) = G(x(t), u(t), t),

x(0) = x0 given,

lim
T→∞

b(T )x(T ) ≥ 0.
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Infinite-Horizon Problem

▶ (6)–(7) or (14)–(15) provide the conditions for optimization also in

this infinite-horizon problem.

▶ On the other hand, the TVC (8) or (16) is now replaced by

lim
T→∞

µ(T )x(T ) = 0, (20)

or

lim
T→∞

e−ρTλ(T )x(T ) = 0. (21)

21 / 21


