VLSI System Design
Part V : High-Level Synthesis(3)

Lecturer : Tsuyoshi Isshiki

Dept. Information and Communications Engineering,
Tokyo Institute of Technology

isshiki@ict.e.titech.ac.jp

High-Level Synthesis Flow

A) Design capture (HDLs, C/C++, signal-flow graph,
etc)

B) Compilation to internal representation
« Data-flow graph (DFG)
« Control-flow graph (CFG)
« Control-data-flow graph (CDFG)
C) Resource allocation
« Specify available functional units
D) Operation scheduling
« Assign each operation to control steps
E) Resource binding
« Assign each data to registers
« Assign each operation to functional units

Resource Binding

Datapath architecture construction
v Functional units

v' Registers

v Interconnect (busses, multiplexers)
v Memory

Resource binding is the process of
allocating each resource instances to
computational elements (operations,
data)

Data Lifetime (1)

. Recall data lifetime within basic
blocks:
— Starts after the data assignment
operation
— Ends after the last operation using
the data
. Used for constructing data-flow
graph for operation scheduling.

. Actually not sufficient for register
binding because data can be alive
across basic block boundaries.

w[2] = w[1];
w[1] = w[0];
x = Getlnput();

u[1] = b[1] * w[1];
u[2] = b[2] * w[2];
u[3] = u[1] + u[2];

w[0] = x + u[3];

v[0] = a[0] * w[O];
v[1] = a[1] * w[1];
v[2] = a[2] * w[2];
v[3] = v[1] + v[2];

y =V[0] + v[3];
PutOutput(y) ;

w1]
wi2] |
w[1]

X

wi0]

uf1]

lu[z]
M)
Jwiog

ol
v[1]

et
l !

Data Lifetime (2) B S

Where does the input variables in
the basic block come from??

x = Getlnput() is the actual input cond0 = (enable != 0);
node to the system.

What about (w[2] = w[1]) and

1] = w{0]) ?? J wlil
(w[1] = w[0]) @ |
w1] w(2]
w[0] = 0; w[1] = 0; w[2] = O;
while (enable != 0){
w[2] = w[1]; b1\/ \/b2| a1 a2
w[1] = w[0]; u[1] V[11\ /2]
x = Getlnput();
u[1] = b[1] * W[1]; ®
u[2] = b[2] * w[2]; :> v[3]

u[3] = u[1] + u[2];
w[0] = x + u[3];
v[0] = a[0] * w[O];
v[1] =a[1] * w[1];
v[2] = a[2] * w[2];
V[3] = v[1] + v[2];
y = V[0] + v[3];
PutOutput(y) ;

0..+-0 2o
Data Lifetime (3) [5%%

For each implicit inputs o
in the basic-block ;
(variables without source cond0 = (enable != 0);
within basic block), 3
traverse the control-flow
graph backwards until
the basic-block which
generates the data is
reached.

When join-node is
reached, traversal must
fork to each of the join
sources.

0.} 0
Data Lifetime (4) ”3;[% ®

For the basic-block

which gene.rates the o ('enable 1= 0)
concerned input data, 7\
add output node for that : :
data (if the output node Wi T
does not exist) : |
w[2]
a1l a2
v[11\ /VIZ]
@
v[3]

Data Lifetime After Scheduling (1)

O Scheduling of input/output nodes :

» All input nodes whose data lifetimes
cross the basic-block boundary need
to be scheduled at time = 0.

» All output nodes whose data lifetimes
cross the basic-block boundary need
to be scheduled at time ¢r=T7,,,. — 1.

» 10 nodes whose data lifetimes do not
cross the basic-block boundaries is not
restricted here (but actually is
dependent on the external devices
connected to these nodes)

Olwvo [%)w (AN v,

Interval Graph for Data Lifetime

1) = Uin¥) > Lar ()] : lifetime

2 3 45 6 7. 8
of output data of v, |

() = () + &) T

Inax(vy) = max{o(v) + Av) —1] *3? e Vig

(v;,v) € E} = sy, o
—— |

Register Binding Problem

O Problem input:
v List of data lifetimes L= {i(v) | v € I}
v’ Setofregisters R={r;|i=0,1,..,|R| -1}

O Register binding A is a mapping of operations v € V/
to the register set R

A: V2R

1 such that all the output data lifetimes of the
operations mapped to a register does not overlap

L Imin(vj) > lmax(vi) or lmax(vj) < Imin(vi)
- forall A(v) = A(v)
O Objective:

v" Minimize the number of registers required |R| to hold all
output variables

Left-Edge Algorithm (1)

1 L : Operation list ' sorted in the increasing order of /,,;,(v)
2. k=-1
3. L’ = ¢ (temporal list of operations)
4 Select the first element vin V which satisfies [,,;,(v) > &
. If such v does not exist, go to 8
5 Remove v from L and add to L~
6' k = max(v)
7. Goto 4
8 Add register » and assign all operations in L~
9 If L is not empty, go to 2. Otherwise END

Sorted operation list : L

0

Vi

Left-Edge Algorithm (2)

L : Operation list ' sorted in the increasing order of /,,;,(v)
k=-1
L’ = ¢ (temporal list of operations)
Select the first element vin V which satisfies [,,;,(v) > &
If such v does not exist, go to 8
Remove v from L and add to L~
k= max(v)
Goto 4
Add register » and assign all operations in L’
If L is not empty, go to 2. Otherwise END

1,2,3,4,5,6,7,8, 0,1,2,3,4,5

Left-Edge Algorithm (3)

L : Operation list ' sorted in the increasing order of /,,;,(v)
k=-1
L’ = ¢ (temporal list of operations)
Select the first element vin V which satisfies [,,;,(v) > &
. If such v does not exist, go to 8
Remove v from L and add to L~
k= max(v)
Goto 4
Add register » and assign all operations in L’
If L is not empty, go to 2. Otherwise END

0.1.2.3.4.5.6.7.8, 0.1.2,3,4.5.6.7.8,

VO H

Left-Edge Algorithm (4)

L : Operation list ' sorted in the increasing order of /,,;,(v)
k=-1
L’ = ¢ (temporal list of operations)
Select the first element vin V which satisfies [,,;,(v) > &
. If such v does not exist, go to 8
Remove v from L and add to L~
k= max(v)
Goto 4
Add register » and assign all operations in L~
If L is not empty, go to 2. Otherwise END

0,1,2,3,4,5,6,7,8, 0,17,2,3,4,5,6,7.8,

V()E ;

V ; —
V g —
V4 (o
PV —

Left-Edge Algorithm (5)

L : Operation list ' sorted in the increasing order of /,,;,(v)
k=-1
L’ = ¢ (temporal list of operations)
Select the first element vin V which satisfies [,,;,(v) > &
. If such v does not exist, go to 8
Remove v from L and add to L~
k= max(v)
Goto 4
Add register » and assign all operations in L~
If L is not empty, go to 2. Otherwise END

Vo a——
v V5_
V9V6_
V g —
Vg
Vi

Left-Edge Algorithm (5)

L : Operation list ' sorted in the increasing order of /,,;,(v)
k=-1
L’ = ¢ (temporal list of operations)
Select the first element vin V which satisfies [,,;,(v) > &
. If such v does not exist, go to 8
Remove v from L and add to L~
k= max(v)
Goto 4
Add register » and assign all operations in L~
If L is not empty, go to 2. Otherwise END

V4_
\Y s
V9V6_
V g —
Vg
Vine—

Properties of Left-Edge Algorithm

O Even though it is a greedy algorithm, left-edge
algorithm produces an optimal solution in terms
of number of registers

* Minimum number of registers required is the maximum
number of data lifetimes overlapping within the
scheduling time set T’

* |t can be shown that left-edge algorithm always
produces a binding solution with the maximum number
overlapping data lifetimes

O Limitations of left-edge algorithm
« Can only handle interval graph

« Cannot take into account factors other than the number
of registers into the problem formulation. (number of
registers is not the only hardware cost)

Task-To-Agent Problem (1)

O Generalization of resource binding problem
 Task : operation, data, data transfer
« Agent : functional unit, register, bus

O Task compatibility and task conflict

 Two tasks are compatible if they can be assigned to
the same agent.

« Otherwise, they are in conflict.

O Task-to-agent problem is to assign tasks to
agents such the number of agents are minimized
where all tasks assigned to an agent are
compatible.

Task-To-Agent Problem (2)

O Compatibility graph G, (V,, E))
 Vertices denote tasks

- Presence of an edge (v;, v,) € E, indicates that vertices
v; and v; are compatible

O Conflict graph G.(V,; E))
* Vertices denote tasks
- Presence of an edge (v, v,) € E indicates that v; and v,
are in conflict
O Conflict graph G,(V; E)) is a complement graph
of compatibility graph G, (V,, E,)
« V=V ,(same vertex set)

- G(V,, E,V E;): complete graph (there are edges to
every pair of vertices)

Compatibility Graph vs Conflict Graph

© 5

11§ ,
{0 2

Compatibility Graph, | Conflict Graph

OO

O O

Graph Coloring Problem

Problem input : conflict graph G.(V;; E))

Assign a color to each vertex so that adjacent
vertex pair each has a different color, and the
total number of color is minimized (color -
agent)

General graph coloring problem is NP-complete

Special instances of graphs can be optimally
colored
- Conflict graph constructed from interval graph

- Left-edge algorithm gives the optimal graph coloring
solution in polynomial time

- In general, task-to-agent problem may not be from an
interval graph, in which case left-edge algorithm cannot
be applied

Greedy Graph Coloring Algorithm
O Basic greedy algorithm :

A) Sort VVin some order (such as vertex degree : number of
edges connected to that vertex)

B) For each vertex v € V' (in the sorted order), assign the
color with the minimum index which is not assigned to
any of the vertices adjacent to v.

sorted by color 0 color 1 color 2 color3 color 4

vertex degree
0 (11 0
\ 2 0 2
9@ 0 2 9
1) 0 2 9.1
J 3@ 0 |2 9113
4@ |0 |2 9,13 4
5@ |0 |2 9135 4
6 () 0 2 9,113,5 4,6
7 () 0 2 9,113,577 4,6
8 0 |28 |91|357 |46
vertex degree]?m 0 28 |91]35,7,10|4,6
Conflict Graph @ |0 2,811 9,1|3,5,7,10 | 4,6

Clique Partitioning Algorithm (1)

O Problem input : compatible graph G, (V,, E))
O Partition G, (V,, E,) into cliques so that the total

number of cliques is minimized (clique - agent)

» Clique : complete subgraph (there is an edge for all
vertex pairs in the subgraph = all vertices in a clique
are compatible)

O General clique partitioning problem is NP-
complete

cliques

Clique Partitioning Algorithm (2)

O Super-vertex : group of vertex which form a
cligue (vertex is also a super-vertex)

O If two edges (v;, v) and (v, v) exist, then vertex
v, Is the common neighbor for v; and v,

O Algorithm :

A) Choose an edge (v;, v,) € £, with the most common
neighbors and merge v; and v; into a super-vertex v, ;
(Remove (v, v)) from £,)

B) Add a set of edges {(v; ;, vy) | v, : common neighbor of

Considering Interconnect Cost
iIn Register Binding

O Interconnect cost (simple estimate) - sum of input and
output arcs to the register

» Assume that operations with the same type is assigned to the
same hardware (because functional unit binding not done)

> Interconnect cost = # (input op-types) + # (output op-types)

» Resource vector : each bit denotes whether the corresponding
functional unit is connected (1) or not connected (0)

» Merge interconnect cost : bit-wise OR on the input/output
resource vectors and counting 1s in the vectors.

» Use interconnect cost when there are several merge candidates
resource vector

(ADD, MULT)
MULT| | ADD MULT | | ADD MULT| | ADD MULT | | ADD

[01}10] [10}10] / [01}10] [10}01]
1 2 :> \‘1,2’/j[11:10] 1 3 :>\‘13’/2
[1 LI - T T /N

[11:11]

ADD ADD ADD |input output ADD MULT ADD | | MULT

part part

Clique Partitioning Algorithm (3)

optimal vertex 44 0
merge L ®

considering 10 W 10
interconnect @& 0)2 K 0)2
iy, O
9 3
J D 9 J D 3
8 | E 4 8,11 4

| E
#cgmmon TH F)s resource vector 7H Fs
neighbors G (ADD, MULT) G
\ 6) 6

ABCD g FGHTIJKL K/ ABCDEFGHTIUJK
Foo - o\m - - oo - - | A:(0¥[00:01f: |« - - — - - - — - — - | A:(0)[00:01]
- *---33-3034]B:(1)[00:10] - % - - - 22-202 | B:(1)[00:10]
- -*---3-2-23]¢C:(2)[00:01] ||--*---2.-1-1] C:(2)[00:01]
- --**-4464145 | D:(3)[01:10] - - - % -33:5:'313 | D:(3)[01:10]
----*4464145]| E:(4)[01:10] ||- - - - * 3 3:5:313 | E:(4)[01:10]
-3-44*-55-561F:(5)[01:10] | -2 -33* -"44 -4 | F:(5)[01:10]
- 3344-*56-6:7"] G:(6)[01:10] |- 223 3 - * 4:5:-:5:| G:(6)[01:10]
- --6655*5256 | H:(7)[10:10] | |- - -:5:5:4 .4 * 4 2 4 | H:(7)[10:10]
- 3244565* - -:7:| I:(8)[10:10] ||- 213 3 4:5:'4 * - - | I:(8,11)[10:10]
-0-11--2-*-~]J:(9)[10:01] ||-0-11--2-* - | J:(9)[10:01]
- 32445655 - *.77| K:(10)[01:10] 213 3 4:5:4 - - * | K:(10)[01:10]
- 43505 6:7:6:7:-:7:% | L:(11)[10:00] =

Clique Partitioning Algorithm (4)

0
@0 1 @ |31
B
5 2
; ?@ —)
g D J D
4 8,11 4
8,11 g = | E
708 B)s a Bs
s 10 6,10

ABCDEPFGHTIJ ABCDEUZFGTIUJ
S | A:(0)[00:01] S | A:(0)[00:01]
— % - - -10-10] B:(1)[00:10] — % - - -1010 | B:(1)[00:10]
— - % - = - 0.~.0 - | C:(2)[00:01] — - % - - -00 -] C:(2)[00:01]
- - - % - 21942 1 | D:(3)[01:10] - - - % -1010 | D:(3, 7)[11:10]
- - - - %21:4:2 1 | E:(4)[01:10] - - --%10210 | E:(4)[01:10]
-1 -22%-'374:- | F:(5)[01:10] -1 -11%*-3:- | F:(5)[01:10]
- 0011 -*2=- | G:(6,10)[01:10] - 0000 - *<-- | G:(6,10)[01:10]
- - -i4%4:3 2 * 32 | H:(7)[10:10] - 101 1{3:-* - | I:(8,11)[10:10]
- 102 2:4:- 3 % - | I:(8,11)[10:10] ~0-007%= =% | J:(9)[10:01]
-~ 0-11--2-%] J:(9)[10:01]

Clique Partitioning Algorithm (5)

*

I ©O1 1 1 * 1

OO I *1 I

OO *1 1 1

I 1 OO0 1 O

*1 | OO I O

GOQEMEOQ WP

0) [00:01]

1) [00:10]

2) [00:01]

3, 7)[11:10]

4) [01:10]

5, 8,11)[11:10]
6,10) [01:10]

9) [10:01]

@O 1,6,10

5,8,11

*

gEEHOQ WP

0) [00:01]

1, 6,10)[01:10]
2) [00:01]

3, 7)[11:10]

4) [01:10]

5, 8,11) [11:10]
9) [10:01]

Clique Partitioning Algorithm (6)

0 0
® 1,6,10 1,6,10
®
©) ©”
9 <>3£118A1 <>3J118A1
4 O4,9
ABCDEJ ABCDE
* - - - - - | A:(0)[00:01] * - - - - | A:(0)[00:01]
- * - - - - | B:(1, 6,10)[01:10] - *---1|B:(1, 6,10)[01:10]
- - % - — - | C:(2)[00:01] - - % - - | C:(2)[00:01]
- --*-=1D:(3,5,7, 8,11)[11:10] - --%- | D:(3,5, 7, 8,11)[11:10]
- - - - %:03| E:(4)[01:10] - - - - *] E: (4, 9)[11:11]
- - - —E0i% | J:(9)[10:01]
A: vy
B:vy, Vs, Vig
Final register binding result > C: v,
D:v;, Vs, V7, Vg, Vi1
E:vs, Vg

Functional Unit Binding (1)

O Allocate each operation to functional unit instance
» Left-edge algorithm cannot consider interconnect cost
> Interconnect cost : # of 1O ports

too
I
[4]
Vs\ V4l V5 [Ve Vg Vs Vio
}:un:ctio:nal :binc:ﬁng

using left-edge algorithm

connectivity of operations
and registers

Functional Unit Binding (2)

O Use clique partitioning and consider the interconnect
cost

» Resource vector : each element represent register

v :7: 4
Va/ VgV VsV VgV V1 10000
00010
00001 00100
e i I 01000 00001
A|l|B||C||D]| |E ‘
Ve Vs Vg4 00100 () (5) 10000
V1o Vs 01000 00010
connectivity of operations compatibility graph

and registers

Functional Unit Binding (3)

10000 10000 10000
00010 00010
€)
00100 00100
00001 :> 01001
10001 10001
01010 01010
b Voo e e e e
Al |B||E Cc||D
D||E||C Al|B . . .
T e —
[SR o R v o >
I 00100
@ 01001
vy Va/ Vy Vg V3 Vay Vs V1T Vey' V4
| . Disadvantage using
L UL e et I T P T clique partitioning :
: o0 Tl e \ 4 ‘ \ 4 .. .
¥ e T minimum # of FUs is
e ’—m c m) D||A||B| |D||E
Vs Ve % NOT guaranteed!
Va Ve Vs Y, v (but often OK)
V1o Vs o P10 o
FU binding with left-edge algorithm FU binding with clique partitioning

Port Binding (1)

O Assign data to ports for units with hyo G B,
multiple ports (ex:adder) |

» input data simultaneously used for an 1 4]

operation are not compatible (must be va¥ Yva | vY Yve

assigned to different ports)

» Use clique partitioning : works for this
example - but does not work in general

V3 1;6’10 4) V3
Vi Vs ‘B E|: Vy Vs
‘>/6 V7 R — Ve v
v P —
10 8 4 3578 Vio V4 Vg
B| |D| |E = s1E1D

ADD ADD

Port Binding (2)

O Consider 5 additions
Vo t Vq, Vo + V3, Vg + V5, Vg + V7, Vg + Vg
> Regqisters A : (v, V5), B 1 (vq, V4, Vg), C : (v3, Vs, Vg), D @ (v7, Vg)

» Cannot directly allocate registers to 2 ports (register B need to
be allocated to both ports)

V1 V3
VO V4 V5 V7 o 0,2 1, 4, 8 0’ 2’ 7’ 9 1’ 4’ 8
Vo Vg Vg Vg i A ~. | B A,D B
a 0 ¢ P 356 79 I:; 3,56 need 3 ports!
C | C (divide register B)
sl
0,2,7,9,1 0,2,7,Q-vd._
A|lIDI||BI||C A,D,BO AD BO
t"j/ 1 3 5’ 6’ 4’ 8 <:| 3’5 e "4';8-
C.BT C B1

[Olwvo [Od)w (AN v,

Datapath Construction

After resource binding, construct the datapath
Netlist composed of functional units, registers, multiplexers, etc.

V13 V14 V12
ROM | | ROM ? ? @
L J
\AA 4 v +
; v A 4 \ 4 \ 4 A B C D E
MULT1| |MULT2| | ADD A A A A 5
V3| V1o Va4|Ve ‘\;7 \\//8 vol vt § v w ‘.\‘;3 Vd,
L 4
L
V v v
0@ 1@ 2@

Control signal generation
for functional units

\'

“«h-{ >
/
/

VsV V1

MULT1

Vo Vo

|:> ctrl0

MULT1

always@(state)
if (state == S1 || state == S2 ||
state == S3 || state == S4)
ctrl0 = 1;
else if (state == S5 || state == S6)
ctrl0 = O;
else ctrl0 = 1b’ x;

Controller Generation (1)

012 3 456 7.8
\ \ Vi
MULTT 4—= 55 ——e
Vg Vig
MULT2 ¢————6¢ é&— ¢
ADD
\/
— ote
AVATY
Vi ’—13‘
H ™ V14,
24 ~—e
Vg V3 2 vy
Vy V7 2 Vg
Ve Vs = Vg | @(state)
v Vg > vy,,always@(state
10 8 " if (state == S4 || state == S6 ||
BIIEIID state == S7)

ctrl1 %

/

ADD

ctri1 =1;

else if (state == S3)
ctri1 = 0;

else ctrl1 = 1b’ x;

Controller Generation (2)

« Control signal generation
for registers

MULT1| |MULT2

V3|Vio V4|Ve
Vs

w2

w1
always@(posedge clk) begin
A1 if (state == S0) REG_A = w4;
if (state == S0) REG_B = w5;
BA else if (state == S5) REG_B = w2;
else if (state == S6) REG_B = w1,

CA if (state == S0) REG_C = w®;
{if (state == S2 || state == S4) REG_D = w1;
D

else if (state == S3 || state == S6 || state == S7)
REG D = wg3;

E{ if (state == S2) REG_E = w2;
else if (state == S4) REG_E = w3;
end

REG
REG;

REG.
REG

REG

enable = 1

Controller Generation (3)

Finite state machine
construction

0O 0 O

w[O]Cgvm %}W[Zl

initial state = S_init;
always@(posedge clk)
if (state == S_init || state == S8)
if (enable != 0) state = SO;
else state = S_end;
else if (state == S0) state = S1;
else if (state == S1) state = S2;
else if

%

condO = (enable != 0);

condO

w[2]
return

b1\/ \/b2 | a1 a2

vi1]\ /vi2]

@

v[3]

High-Level Synthesis Summary (1)

O High-Level Synthesis flow :

A) Design capture (HDLs, C/C++, signal-flow graph,
etc)

B) Compilation to internal representation (Control-Data-
Flow Graph)

C) Resource allocation
D) Operation scheduling
E) Resource binding

F) RTL description generation
v' Datapath construction
v Controller generation

High-Level Synthesis Summary (2)

O Scheduling and a series of resource bindings

(registers, functional units, ports, etc.) are very
closely related

Consider the register cost, interconnect cost, and
other hardware costs during scheduling = can

incorporate these costs as forces in force-directed
scheduling

Simultaneous/iterative scheduling and binding -
more accurate hardware cost evaluation on actual
binding and feedback to the scheduler

High-Level Synthesis Summary (3)

0 Extracting parallelism beyond basic-blocks

Loop pipelining (overlap scheduling of successive
loop iterations)

- Well studied in DSP applications

- Becomes complicated when loop includes control-flows

Multiple control-flow execution
- Not well studied yet in terms of automatic synthesis

- Key issue is how to extract global parallelism (related to the
description language issues)

- Manually done by the hardware designers

