VLSI System Design Part II : Logic Synthesis (1)

Lecturer : Tsuyoshi Isshiki

Dept. Information and Communications Engineering,
Tokyo Institute of Technology
isshiki@ict.e.titech.ac.jp

Logic Synthesis

1. Logic synthesis types
a. Combinational logic synthesis

- Two-level logic
- Multi-level logic
b. Sequential logic (finite state machine) synthesis
- State minimization
- State encoding

2. Currently available logic synthesis CAD tool

- Mainly two-level/multi-level logic synthesis
- State code optimization for sequential logic

Logic Synthesis Flow

RTL-to-Logic Translation (1)

A) Combinational logic extraction : RTL description is partitioned into combinational logic part and storage elements (DFF, latches)

RTL-to-Logic Translation (2)

B) Logic equation transformation : For each output variable, compute the conditions in which the value evaluates as 1,0 , and don't-care (DC).

```
begin
    n_state = 2'b00;
    n_out = 0;
    case(state)
        2,b00: if(in == 1) n_state = 2',b01;
        2'b01: if(in == 1) n-state = 2'b10;
        2'b10: if(in == 0) n_state = 2'b11;
                else n_state = 2'b10;
        2'b11: if(in == 1) begin
                n_out = 1;
                n_state = 2'b01;
                end
        endcase
end
```

```
n_state[0] =
    (~state[0] & ~state[1] & in ||
        ~state[0] & state[1] & ~in
        state[0] & state[1] & in);
n_state[1] =
    (state[0] & ~state[1] & in ||
        ~state[0] & state[1]);
n_out = state[0] & state[1] & in);
```

```
if(state == 2',b00 && in == 1 ||
    state == 2'b10 && in == 0 ||
    state == 2'b11 && in == 1)
    n state[0] = 1;
else-n state[0] = 0;
if(state == 2',b01 && in == 1 ||
    state == 2'b10)
    n_state[1] = 1;
else-n state[1]=0;
if(state == 2'b11 && in == 1)
    n out = 1;
else-n_out = 0;
```


RTL-to-Logic Translation (3)

A) Combinational logic extraction

```
module str11011(clk, rst, in, out);
input clk, in;
output out;
reg [2:0] state;
reg out;
```



```
    state <= 3'b000;
    out <= 0;
    if(rst == 0)
        case(state)
        3',b000: if(in == 1) state <= 3',b001;
        3'b001: if(in == 1) state <= 3'b010;
        3'b010: if(in == 0) state <= 3'b011;
                else state <= 3'b010;
        3'b011: if(in == 1) state <= 3'b100;
        3'b100: if(in == 1) begin
                                    out <= 1;
                                    state <= 3'b010;
                                end
        default: begin // don't-care state
                            state <= 3'bx;
                        out <= x;
                        end
        endcase.
```

endmodule
reg n_out;
always@(in or rst or state) begin
n_state = 3'b000;
n-out = 0;
if(rst == 0)
case(state)
3'b000: if(in == 1) n state = 3'b001;
3',b001: if(in == 1) n_state = 3'b010;
3'b010: if(in == 0) n_state = 3'b011;
else n state \equiv 3'b010;
3'b011: if(in \equiv= 1) n_state = 3'b100;
3'b100: if(in == 1) bēgin
n_out = 1;
n_state = 3'b010;
end
default: begin // don't-care state
n state = 3'x;
out = x;
end
endcase
end

```

```

```
reg [2:0] n_state;
```

```
```

reg [2:0] n_state;

```

balways@ (posedge clk) begin
    state \(<=\) n_state; out \(<=\) n_out;
end

\section*{RTL-to-Logic Translation (4)}

\section*{B) Logic equation transformation :}
```

begin
n_state = 3'b000;
n}\mathrm{ -out = 0;
i\overline{f}(rst == 0)
case(state)
3'b000: if(in == 1) n_state = 3'b001;
3',b001: if(in == 1) n_state = 3',b010;
3'b010: if(in == 0) n_state = 3'b011;
else n_state \equiv 3'b010;
3'b011: if(in \equiv= 1) n_state = 3'b100;
3'b100: if(in == 1) begin
n_out = 1;
n_state = 3'b010;
eñ
default: begin // don't-care state
n_state = 3'x;
out = x;
end
endcase
end

```

```

if(state == 3',b000 \&\& in == 1 ||
state == 3'b010 \&\& in == 0)
n state[0] = 1;
else if(state,== 3'b101 ||
state == 3'b110 ||
state == 3'b111)
n state [0] = x;
else-n state[0] = 0;

```
if (state \(==3 \prime\) b001 \(\& \&\) in \(==1\) ||
    state == 3'b010 ||
    state \(==3\) 'b100 \&\& in \(==1\) )
    n_state[1] = 1;
else if (state \(==3\) 'b101 ||
    state \(==3 \prime\) b110 ||
    state == 3'b111)
    n_state[1] \(=\mathbf{x}\);
else \(n\) _state[1] \(=0\);
if(state \(==3\) b011 \& \& in \(==1\) )
    n state[2] = 1;
else if(state, == 3'b101 ||
    state == 3'b110 ||
    state == 3'b111)
    n_state[2] = x;
else n state[2] \(=0\);
if(state \(==3 \mathrm{~b} 100 \& \&\) in \(==1\) )
    n_out = 1;
else if (state, \(==3\) 'b101 ||
    state \(==3 \prime\) b110 ||
    state == 3'b111)
    n out \(=\mathbf{x}\);
else n out \(=0\);

\section*{Boolean Function Implementation Using Two-Level Logic}
- The study of logic synthesis started from two-level logic
- Optimized two-level logic is often the starting point for multi-level logic synthesis.
- Several types of two-level logic
- Sum-of-product ( \(1^{\text {st }}\) level : AND, \(2^{\text {nd }}\) level : OR)
, NAND-NAND (has the same structure as sum-of-product)
. Product-of-sum ( \(1^{\text {st }}\) level : OR, \(2^{\text {nd }}\) level : AND)
, NOR-NOR (has the same structure as product-of-sum)

sum-of-product


NAND-NAND


All four circuits implement the same function

\section*{Programmable Logic Array}
- A programmable logic array is a device which can implement arbitrary Boolean function in sum-of-product form with \(N\) inputs, \(M\) outputs, and \(R\) products (cubes).
- Minimizing the number of products \(R\) results in smaller area ( \(N\) and \(M\) are fixed for a given function)


\section*{Boolean Function Terminologies (1)}
1. Boolean function \(f\) with \(N\) inputs and \(M\) outputs is a mapping \(f:\{0,1\}^{N} \rightarrow\{0,1, X\}^{M}\). ( \(X\) : don' t-care)
2. If mapping to don' t-care values does not exist, the function is said to be completely specified. Otherwise it is said to be incompletely specified.
3. If \(M=1\), it is called a single-output function. Otherwise it is called a multiple-output function.
4. For each output \(f_{m}\) of function \(f\) :
- \(\quad \mathrm{ON}\)-set is defined as the set of input values \(x\) such that \(f_{m}(x)=1\)
- OFF-set is defined as the set of input values \(x\) such that \(f_{m}(x)=0\)
- \(\quad D C\)-set is defined as the set of input values \(x\) such that \(f_{m}(x)=X\)
5. A literal is a Boolean variable or its complement.
6. A cube is a conjunction of literals (a product term).
7. A cover is a set of cubes (interpreted as sum-of-product term).

\section*{Boolean Function Terminologies (2)}
8. A bit vector notation of a cube describes the polarity of each literal (0 : complemented literal, 1 : uncomplemented literal) for each variable in the Boolean function. If a variable does not appear in the cube, it is denoted as '-' (also don' t-care)
\[
\text { Ex. } x_{3} \bar{x}_{2} x_{1} \bar{x}_{0} \rightarrow 1010 \quad x_{3} x_{2} \bar{x}_{0} \rightarrow 11-0
\]
9. A cube is called a \(k\)-cube if there are \(k\) elements of '-' (don' t-care) in the bit vector notation.
10. A minterm is a cube that contains all variables in the Boolean function. Each minterm belongs to either the ON-set, OFF-set or the DC-set of a particular output of the function. A minterm is a 0 -cube.
```

if(state == 3,b000 \&\& in == 1 ||
state == 3'b010 \&\& in == 0)
n_state[0] = 1;
else if(state,== 3'b101 ||
state == 3'b110 ||
state == 3'b111)
n state[0] = x;
else-n state[0] = 0;

```

function \(f_{n_{-} \text {state }[0]}\) (state[2], state[1], state[0], in)

\section*{Boolean Function Terminologies (3)}
11. The input variable space \(\{0,1\}^{N}\) can be modeled as a binary \(N\) dimensional hypercube
- Each vertex in the hypercube represents a minterm.
- \(\quad k\)-cube is represented by a binary \(k\)-dimensional hypercube
- \(k\)-dimensional hypercube is sometimes referred to as "binary \(k\)-cube"

function \(f_{n_{-} \text {state }[0]}(\operatorname{state}[2]\), state [1], state[0], in)


\section*{Boolean Function Terminologies (4)}
12. Analogy of Boolean algebra to Class calculus (Set Theory)
- logic variable \(\rightarrow\) set
- logic negation \(\rightarrow\) complement set
- logical \(1 \rightarrow\) universal set
- logical \(0 \rightarrow\) null set ( \(\phi\) )
- logical AND \(\rightarrow\) set intersection \((a \cdot b \rightarrow a \cap b)\)
- logical OR \(\rightarrow\) set union \((a+b \rightarrow a \cup b)\)

universal set

\section*{Boolean Function Terminology (4)}
13. Partial order and containment
- Partial order of logic variables : \(f \leq g \Leftrightarrow(\) if \(f=1\), then \(g=1) \Leftrightarrow f \cdot g=f\)
> Interpretation in set theory \(\rightarrow\) containment of sets : \(f \subseteq g\)
- Partial order of logic expression (cubes and covers) :
\[
\begin{aligned}
& a b c \leq a b \rightarrow a b c \subseteq a b \\
& b c \leq a b+\bar{a} c \rightarrow b c \subseteq a b+\bar{a} c \\
& a \bar{c}+b c \leq a b+\bar{a} c+a \bar{b} \bar{c} \rightarrow a \bar{c}+b c \subseteq a b+\bar{a} c+a \bar{b} \bar{c}
\end{aligned}
\]
\(\checkmark \quad\) Terminologies for set theory (intersection, union, containment) is often applied to logic expressions.

\(a b c \subseteq a b\)

\(b c \subseteq a b+\bar{a} c\)

\(a \bar{c}+b c \subseteq a b+\bar{a} c+a \bar{b} \bar{c}\)

\section*{Boolean Function Terminology (5)}
14. An implicant for a particular output of a function is a cube which contains minterms only in the ON-set and DC-set. (In other words, a cube which does not intersect with the OFF-set)
15. A prime implicant (or simply, prime) is an implicant that is not contained by any other implicant, and intersects with the ON-set.
16. An essential prime implicant (or essential prime) is a prime that contains one or more minterms which are not contained by other primes.
17. A legal cover for a function is a set of implicants which contains the ONset and does not intersect with OFF-set (may intersect with DC-set).


Implicants: \(a \bar{b} \bar{c}, \bar{a} \bar{b} c\), \(a b c, a b \bar{c}, \bar{a} \bar{b} \bar{c}\), \(a b, \bar{a} \bar{b}, a \bar{c}, \bar{b} \bar{c}\)

Primes: \(\bar{a} \bar{b}, a \bar{c}, \bar{b} \bar{c}\)
Essential primes : \(\bar{a} \bar{b}, a \bar{c}\)
Legal cover : \(\bar{a} \bar{b}+a \bar{c}\)

\section*{Two-Level Logic Optimization}
- Input : Boolean function representation using
, Truth table or
, Set of cubes in the ON-, OFF- and DC-sets.
\(\checkmark\) Since the union of the ON-, OFF- and DC-sets is the universal set, specifying two sets (ex. ON-set and DC-set) is sufficient for describing a Boolean function.
- For a completely specified function, only the ON-set is needed.
- Output : optimized Boolean function in terms of number of cubes (or sometimes number of literals)
- Algorithm :
A) Enumerate all prime implicants of the target function
B) Select a minimum set of prime implicants which are required to contain the ON-set of the target function.

\section*{Preparation : Cube Reduction}
- For a pair of cubes \(A\) and \(B\), if there exists an cube \(C\) such that \(A+B\) \(=C\), then \(A\) and \(B\) are said to be adjacent and are reducible to \(C\).
- On the bit-vector representations, adjacency of a pair of implicants can be determined by comparing elements in each position : if only one position is different, and if all ' - ' positions are same, then the implicant pair is adjacent.


\section*{Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (1)}
1. Prime implicant extraction
A) From the truth table, delete minterms in OFF-set. (0-cube table : contains only minterm implicants)
B) \(\mathrm{k}=0\).
C) Let N be the \# of rows in k-cube table. If \(\mathrm{N}=0\), then terminate.
D) \(\quad\) for \((i=0 ; i<N ; i++)\)
for \((\mathrm{j}=\mathrm{i}+1\); \(\mathrm{j}<\mathrm{N} ; \mathrm{j}++\) )
If rows \(i\) and \(j\) are adjacent,
- mark these 2 rows with ‘ *'
- add a reduced cube to ( \(k+1\) )-cube table
- Output part of the reduced cube is 1 if it intersects with the ON-set. Otherwise (if it is fully contained in the DC-set), it is \(x\).
E) \(k=k+1\). Go to \(C)\).
F) Rows whose output is 1 and without ' *' marked are the prime implicants.

0 -cube table
\begin{tabular}{|c|c|}
\hline x[3:0] & f [1] \\
\hline 0001 & 1 * \\
\hline 0101 & 1 * \\
\hline 0111 & x * \\
\hline 1000 & 1 * \\
\hline 1010 & 1 * \\
\hline 1100 & 1 * \\
\hline 1101 & \\
\hline 1110 & 1 * \\
\hline
\end{tabular}


2-cube table


\section*{Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (2)}


\section*{Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (3)}
2. Prime implicant table generation
A) Assign ON-set minterms to each row
B) Assign prime implicants to each column
C) For each minterm row, mark an ' \(x\) ' at the column whose prime implicant contains this minterm
3. Prime implicant cover extraction containing all ON-set minterm
(minimum unate covering problem :NP-complete)
A) Delete dominated prime (column) and dominating minterm (row)
B) Extract essential primes and delete all minterms (rows) which are contained in these essential primes. Techniques to reduce
C) Arbitrary select a prime and delete all minterms which are contained in this prime.
prime implicant


ON-set minterm
the problem complexity
(can be applied in any order)

\section*{Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (4)}

\section*{3.A Elimination of dominating minterms}
- Prime set for a minterm

A set of primes which contain the minterm
Ex: prime set for 0101 is \(\{0-01,01-1,-101\}\)
- Dominating minterm :

On a pair of minterms, if the prime set of one of the minterm contains that of the other, the former minterm is said to be the dominating minterm of the latter.
. Prime set is the set of candidate for covering the particular minterm. Dominating minterms can be eliminated from the problem since the prime which covers some dominated minterm always covers the corresponding dominating minterm.

- Row 0101 is the dominating minterm of row 0001.
- Row 1100 is the dominating minterm of rows 1000,1010 and 1110.

\section*{Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (5)}

\section*{3.A Elimination of dominated primes}
- Minterm set for a prime

A set of minterms which are contained by the prime
Ex: minterm set for 0-01 is \(\{0001,0101\}\)
- Dominated prime :

On a pair of primes, if the minterm set of one of the prime contains that of the other, the latter prime is said to be the dominated prime of the former.
, Dominated primes can be eliminated

- Column 01-1 is the dominated prime of column 0-01 and -101. from the problem since the entire minterm set of a dominated prime is always covered by the dominating prime.

\section*{Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (6)}


\section*{3.B Extraction of essential primes}
> An essential prime implicant (or essential prime) is a prime that has at least one ON-set minterm which are not contained in any other primes. Such minterms are called essential minterms.

\section*{Single-Output 2-Level Logic Minimization Using Quine-McCluskey Method (7)}


\section*{3.C Arbitrary selection of remaining primes}
- If 3.A (elimination of dominating minterms and dominated primes) and 3.B (essential prime extraction) cannot further be applied, select an arbitrary remaining prime and delete the rows (minterms) which is contained in this prime. Try 3.A and 3.B again.
- If all minterms have been covered, then TERMINATE.
- In order to obtain an optimal cover, do all combinations of the arbitrary prime selection.

\section*{Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (1)}

\section*{1. Prime Implicant Extraction}
A) Extract the prime implicants for each output seperately.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline truth table & & 0-cube table & & 1-cube table & & 2-cube table \\
\hline \(\mathbf{x}[3: 0] \mathbf{f}^{11: 0]}\) & & \(\mathbf{x}\) [3:0] \(\mathbf{f}_{\text {[1] }}\) & & \(\mathrm{x}_{\text {[3:0] }} \mathrm{f}_{\text {[1] }}\) & & \(\mathbf{x [ 3 : 0 ] ~} \mathrm{f}_{\text {[1] }}\) \\
\hline 000000 & \(\mathrm{f}^{[1]}\) & 0001 1 * & \(\mathbf{f}^{[1]}\) & 0-01 1 & \(\mathbf{f}_{[1]}\) & 1--0 1 \\
\hline 0001 & & 0101 1 * & & 01-1 1 & & \\
\hline 0011 0x & & 1000 1 * & & 10-0 1 * & & \\
\hline 0100 0x & & 1010 1 * & & 1-00 1 * & & \\
\hline 010110 & & 11001 * & & 1-10 1 * & & \\
\hline 011001 & & 1101 1 * & & 110-1 & & \\
\hline 0111 x0 & & 1110 1 * & & 11-0 1 * & & \\
\hline \(\begin{array}{ll}1000 \\ 1001 & 11\end{array}\) & & & & & & \\
\hline 101011 & \multirow[t]{9}{*}{-20,} & 0 -cube table & & 1-cube table & & \\
\hline \(\begin{array}{lll}1011 & 01 \\ 1100 & 1 \times\end{array}\) & & x[3:0] \(\mathbf{f}_{\text {[0] }}\) & \multirow[t]{8}{*}{\(\xrightarrow{\mathrm{f}_{[0]}}>\)} & x[3:0] \(\mathbf{f}_{\text {[0] }}\) & & \\
\hline 1101 & & -0------- & & --011------ & & \\
\hline 111010 & & & & & \multicolumn{2}{|l|}{\multirow[t]{6}{*}{not a prime implicant because the output is}} \\
\hline 111100 & & 0100
0110
x & & \[
\begin{array}{ll}
-100 & x \\
10-0 & 1
\end{array}
\] & & \\
\hline & & 1000 1 * & & 1-00 1 & & \\
\hline & & 1010 1 * & & 101- 1 & & \\
\hline & & 1011 1 * & & 110-1 & & \\
\hline & & 1100 * * & & & & \\
\hline
\end{tabular}

\section*{Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (2)}

\section*{2. Prime Implicant List Merging}
\(\diamond m^{\text {th }}\) prime implicant list corresponds to the prime implicant list for the \(m^{\text {th }}\) output
\(\diamond m^{\text {th }}\) outputs in \(m^{\text {th }}\) prime implicant list are all \(1 \mathrm{~s} \underline{b y}\) definition
A) For each prime \(p\) in the all prime implicant lists
- \(\underline{m}^{\text {th }}\) output is 1 if there exists a prime in the \(\underline{m}^{\text {th }}\) prime implicant list which contains \(p\).
- \(\underline{m}^{\text {th }}\) output is 0 otherwise.
\(>\) This allows implicants other than the primes to be included in the candidate for minterm covering.
prime implicant list

these are identical primes delete one of them from the list

\section*{Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (3)}
3. Prime implicant table generation
A) Assign ON-set minterms to each row for each output
B) Assign prime implicants to each column
C) For each minterm row,
- mark an ' \(\beta\) ' at the column whose output part of the corresponding prime implicant is 0 for the corresponding output of this minterm
- Otherwise, mark an ' \(X\) ' at the column whose prime implicant contains this minterm


These primes cannot be used for covering because they intersect with the OFF-set of the corresponding output

\section*{Multiple-Output 2-Level Logic Minimization Using Quine-McCluskey Method (4)}
4. Prime implicant cover extraction containing all ON-set minterms (same as the single-output case)


\section*{Improving Quine-McCluskey Method (Espresso-EXACT, UC Berkeley)}
- Problems
- Need to specify all minterms
- Need a large number of cube reducibility tests.
\(>\) Only a small portion will pass the test to generate reduced cubes.
\(>\) Identical primes may be generated multiple times.
- Size of the prime implicant table is large since each row corresponds to minterms
- Improvements
- Extract all the prime implicants directly without enumerating minterms.
- Generate a reduced prime implicant table and solve the minimum covering problem on this smaller table.

\section*{Direct Extraction of Prime Implicants (Preperation 1)}
- Corollary 1 : Let \(P\) be a cover for a completely specified function \(f\). For any implicant \(c\) of \(f\), there exists \(c^{\prime} \in P\) such that \(c \subseteq c^{\prime}\) if and only if \(P\) includes all primes of \(f\).
- Theorem 1: Let \(P_{f}\) and \(P_{g}\) be the covers for completely specified functions \(f\), and \(g\), respectively. And let \(P_{f g}\) be \(P_{f} \cdot P_{g}\) that is expanded in sum-of-product form. If \(P_{f}\) and \(P_{g}\) include all primes for \(f\) and \(g\), respectively, then \(P_{f g}\) includes all primes of function \(f \cdot g\).
- Proof :
> By definition, \(P_{f g}\) is a cover whose cube elements are the non-zero conjunctions of a cube in \(P_{f}\) and cube in \(P_{g}\);
\[
P_{f g}=\left\{c_{f} \cdot c_{g} \mid c_{f} \in P_{f}, c_{g} \in P_{g}, c_{f} \cdot c_{g} \neq 0\right\}
\]
> Any implicant of the function \(f \cdot g\) is also an implicant for both \(f\) and \(g\) (if \(f \cdot g\) is true, then both \(f\) and \(g\) must be true as well). Thus for any implicant \(c\) of \(f\) \(\cdot g\), there exists \(c_{f} \in P_{f}\) and \(c_{g} \in P_{g}\) such that \(c \subseteq c_{f}\) and \(c \subseteq c_{g}\). Therefore \(c \subseteq\) \(c_{f} \cdot c_{g} \in P_{f g}\).

\section*{Direct Extraction of Prime Implicants (Preperation 2)}

Theorem 2: Let \(P\) be a cover for a completely specified function \(f\), and \(P^{\prime}\) be the cover for the complement of \(f\) (denoted as \(\bar{f}\) ) which is obtained by applying De-Morgan's Law to \(P\) and then expanding it to sum-of-product form. \(P^{\prime}\) includes all primes of \(f\).
(Let us call this the Negate-And-Expand Method)
- Proof:
- Let \(P=c_{0}+c_{1}+\ldots+c_{n}\left(c_{i}\right.\) is a cube)
- By De-Morgan's Law : \(\bar{P}=\overline{c_{0}+c_{1}+\ldots+c_{n}}=\bar{c}_{0} \cdot \bar{c}_{1} \cdot \ldots \cdot \bar{c}_{n}----\) (1)
- A complement of a cube becomes a cover composed of singleliteral cubes. Each single-literal cube is the prime of this cover.

Ex. \(\overline{x_{0} \cdot \bar{x}_{1} \cdot x_{2}}=\bar{x}_{0}+x_{1}+\bar{x}_{2}\)
- Since each term in eq(1) becomes a cover composed of primes for that cover, expanding these terms into sum-of-product form results in a cover composed of all primes of \(\bar{f}\). (according to Theorem 1)

\section*{Negate-And-Expand Method}


\section*{Single Cube Containment Minimality}

For each cube in the list, if some other cube contains it, then delete this cube from the list.
Ex:
01-- contains 010- (delete 010-)
-1-1 contains -101 (delete -101)

\section*{Direct Extraction of Prime Implicants for Completely Specified Functions}
> By applying Negate-And-Expand twice on a cover for a completely specified function \(f\), the obtained cover becomes the entire set of primes for \(f\).
\[
\mathrm{Ex.} f=x_{0} \bar{x}_{2}+\bar{x}_{0} x_{1} x_{3}+x_{1} \bar{x}_{2}+x_{2} \bar{x}_{3}+x_{0} x_{3}
\]


\section*{Direct Extraction of Prime Implicants for Incompletely Specified Functions}
> For an incompletely specified function \(f\), apply the Negate-AndExpand operations twice on the cover containing both the ON-set and DC-set. The obtained cover includes all primes of \(f\) and possibly other implicants which do not intersect with the ON-set. (DC-implicants)


\section*{Function Negation Methods (1)}
> Computation time of Negate-And-Expand operation can become very long when there are a large degree of redundancy in the cover representation of the function (i.e. a large number of small cubes).
\(>\quad\) While the \(2^{\text {nd }}\) negation requires Negate-And-Expand operation in order to obtain the entire prime set, the obtained cover after the \(1^{\text {st }}\) negation (OFF-set cover) does not have to be the entire prime set for the negated function.
Shannon Expansion method can be used for the \(1^{\text {st }}\) negation to obtain the OFF-set cover.
> The cover obtained by Shannon Expansion does not include all primes for the negated function, but its redundancy is relatively low. Also, the computational complexity is significantly lower than Negate-And-Expand Method.

\section*{Shannon Expansion}
- \(\quad f_{x_{i}}\) : cofactor of \(f\) with respect to factor \(x_{i}\)
\[
\begin{gathered}
f_{x_{i}}=f\left(x_{0}, \ldots, x_{i-1}, 1, x_{i-1}, \ldots, x_{n-1}\right), f_{\bar{x}_{i}}=f\left(x_{0}, \ldots, x_{i-1}, 0, x_{i-1}, \ldots, x_{n-1}\right) \\
\operatorname{Ex}: f=a \bar{b} \bar{c}+a c \bar{d}+\bar{b} c d \\
f_{a}=\bar{b} \bar{c}+c \bar{d}+\bar{b} c d, f_{\sigma}=\bar{b} c d, f_{a c}=\bar{d}+\bar{b} d
\end{gathered}
\]
- Shannon expansion : \(f=x_{i} f_{x_{i}}+\overline{x_{i}} f_{\overline{x_{i}}}\)
- Shannon expansion negation : \(\bar{f}=x_{i} \overline{f_{x i}}+\bar{x}_{i} \overline{f_{\bar{i}}}\)
- Recursive Shannon expansion negation:
\(\mathrm{Ex}: f=a \bar{b} \bar{c}+a b c+\bar{b} c\)
\[
\begin{aligned}
& \bar{f}=a \overline{f_{a}}+\bar{a} \overline{f_{\bar{a}}}=a(\bar{b} \bar{c}+b c+\bar{b} c)+\bar{a}(\bar{b} c \\
& \overline{f_{a}}=b \overline{\bar{a}_{a b}}+\bar{b} \bar{f}_{a \bar{a}}=b(\bar{c})+\bar{b}(\bar{c}+c)=b \bar{c} \\
& \overline{f_{a}}=b \overline{f_{\bar{a}}}+\bar{b} \overline{f_{a}}=b(\overline{0})+\bar{b}(\bar{c})=b+\bar{b} \bar{c} \\
& \bar{f}=a \overline{f_{a}}+\bar{a} \overline{f_{a}}=a(b \bar{c})+\bar{a}(b+\bar{b} \bar{c})=a b \bar{c}+\bar{a} b+\bar{a} \bar{b} \bar{c}
\end{aligned}
\]

\section*{Function Negation by Shannon Expansion (1)}


\section*{Shannon Expansion on Multiple-Output Function}


\section*{Negate-And-Expand Method for Multiple-Output Functions}


\section*{Reduced Prime Implicant Table Generation (1)}
- Essential prime set \(E_{r}=\{c \mid c \in Q, F \nsubseteq Q-c\}\) :
\(>\quad c\) is an essential prime if the prime set excluding \(c\) (" \(Q-c\) " denotes the set \(Q\) whose element \(c\) is eliminated) does not contain the ON-set cover \(F\). (therefore \(c\) is essential for covering \(F\) )
> Checking \(F \cap c \nsubseteq Q-c\) (instead of \(F \nsubseteq Q-c\) ) is sufficient.
- Containment check
\(>A \subseteq B \Leftrightarrow c \subseteq B\) for \(\forall c \in A\) ( \(A, B\) : cover, \(c\) : cube)
\(\checkmark \quad\) In order for a cover to be contained in another (partial order), all cube included in the former needs to be contained in the latter.
\(>c \subseteq B \Leftrightarrow B_{c} \equiv 1\) ( \(B_{c}\) : cofactor of \(B\) with respect to cube \(c\) )
> \(B \equiv 1 \Leftrightarrow B_{x} \equiv 1 \wedge B_{x} \equiv 1\) (tautology check by recursion)


\section*{Reduced Prime Implicant Table Generation (2)}
- \(\quad\) Relatively redundant prime set \(R_{r}=Q-E_{r}\)
- Totally redundant prime set \(R_{t}=\left\{c \mid c \in R_{r}, c \subseteq E_{r}\right\}\)
- Partially redundant prime set \(R_{p}=R_{r}-R_{t}\)
- On obtaining a minimal prime set which covers the ON-set \(F\)
\(\checkmark \quad E_{r}\) is always included
\(\checkmark \quad R_{t}\) is never included
\(\checkmark \quad R_{p}\) is the portion of the total prime set which is considered in the minimum covering problem.
Each element of \(R_{p}\) corresponds to the columns of the reduced prime implicant table.
\(>\quad\) Minterm set \(M_{p}\) which needs to be covered (rows of the reduced prime implicant table)
\(\begin{array}{ll}\checkmark & M_{p}=\bar{E}_{r} \cap R_{p} \\ \checkmark & m \cap E_{r}=\phi\left(m \in M_{p}\right)\end{array}\)

\section*{Reduced Prime Implicant Table Generation (3)}
- Computation of minterm set \(M_{p}\) (actually, each row may represent a collection of minterms)

For each cube \(c \in R_{p}\), consider the set \(R^{\prime}=R_{p}-c\).
\(>\) Recursively divide \(c\) into smaller cubes at its don' t-care variables
- Ex. 0-1- \(\rightarrow\) (001-, 011-) \(\rightarrow((0010,0011),(0110,0111))\)
\(>\) On each divided cubes \(c^{\prime}\) :
- If \(c^{\prime} \subseteq E_{r}\), then \(c^{\prime}\) is not included in \(M_{p}\).
- If there exists a cube \(d \in R^{\prime}\) such that \(c^{\prime} \subseteq d\), then all minterms included in \(c^{\prime}\) is covered by the prime \(d\). If so, add \(c\) ' to the row and mark ' \(X\) ' to all columns which contain \(c\) '. (Note that there may be several cubes which contain \(c\) ')
If one of the two conditions above is satisfied, then \(c^{\prime}\) does not have to be divided anymore.

\section*{Reduced Prime Implicant Table Generation (4)}
\[
\begin{aligned}
& \begin{array}{|c|}
\hline \mathrm{E}_{\mathrm{r}} \\
==== \\
01-= \\
10-- \\
\hline
\end{array} \\
& \begin{array}{l}
\mathrm{R}_{\mathrm{p}} \\
==== \\
0-1- \\
-01- \\
-101 \\
1-01 \\
\hline
\end{array}
\end{aligned}
\]

\section*{Reduced Prime Implicant Table Generation (5)}


\section*{Reduced Prime Implicant Table Generation (6)}


Reduced prime implicant table
\[
\begin{array}{c:c:c} 
& 1 & - \\
M_{p} & 1 & 1 \\
\hdashline 11110 & x & x
\end{array}
\]

\section*{Summary on Two-Level Logic Optimization}
- Two-level logic optimization is first proposed by Quine and McCluskey, and since then has been studied widely.
- Based on Quine-McCluskey method, improvements have been made in prime extraction, prime table generation, covering techniques to reduce the computation time.
- Even though the computational complexity is NPcomplete (due to prime covering problem), nearoptimal solution can be obtained in short time.
- There are heuristic algorithms which solve the prime extraction/prime covering problems iteratively.```

