
VLSI System Design
Part I : Introduction

Lecturer : Tsuyoshi Isshiki
Dept. Information and Communications Engineering,

Tokyo Institute of Technology
isshiki@ict.e.titech.ac.jp

mailto:isshiki@ict.e.titech.ac.jp

Lecture Notes, Course Assignments, Grades

l Lecture notes are to be downloaded from OCW/OCWi sites
l Course assignments will be given after each lecture

chapter (2-3 lectures per chapter)
l Course grade is based upon the score of each course

assignment only.
l Each course assignments includes several regular

problems and a few “extra credit” problems.
l Regular problems are due ONE WEEK after the actual

assignment. Late submission will be reflected in the score
l Extra credit problems can be submitted any time before the

due date of the final assignment. Scores of extra credit
problems will be added to the course grade as bonus
points. Students are strongly encouraged to submit at least
one extra credit problem.

Course Outline
1. Introduction to VLSI system design

l VLSI design methodology and computer-Aided Design (CAD) tools
l Hardware description language and hardware behavior model

2. Logic synthesis
l Logic minimization

Ø Combinational and sequential circuits
Ø Two-level logic minimization
Ø Multi-level logic minimization

l Technology mapping
Ø Implementation technology : PLA, gate-array, standard cell, FPGA
Ø Area-optimal mapping
Ø Delay-optimal mapping, fan-out optimization

3. High-level synthesis
l High-level design methodology

Ø Register-transfer level and behavioral level descriptions
Ø Architecture (datapath, register, memory, bus, control logic)

l Operation scheduling
l Resource allocation

4. Advanced topics in system-level design issues
l Description language issues (C-based system description)
l Design verification (simulation, emulation, formal verification)
l Platform-based design (CPU-core, standard bus interface, IPs)

Today’s VLSI : System-on-Chip
(SoC)

Bidirectional
Devices

System-on-Chip
Input

Devices
Output
Devices I/F

I/F

I/F

l microphone
l camera
l sensor
l keypad
l mouse
l joystick
l switch

l peripheral bus (IEEE1394, USB, RS232C, PCI, SCSI,
AGP, ISA, ATA, …)

l storage (SRAM, DRAM, FLASH-ROM, disk drive)
l network (Modem, Ethernet, wireless)

l speaker
l LCD/CRT display
l LED light
l motor

SoC – A simplified (logical) view

On-chip
memory

On-chip
memory

On-chip
memory

Interconnect network
(busses, crossbar switches, wires)

I/F

Output
Devices

Bidirectional
Devices

Input
Devices

On-chip
memory

On-chip
memory

Register
file On-chip

memory
On-chip
memory

Functional
blocks On-chip

memory
On-chip
memory

Controller

I/F I/F

Algorithm-Level Behavioral Description

Register-Transfer Level Structural Description

Logic/Transistor Circuit Description

VLSI Mask Layout

Logic Synthesis

Layout Synthesis

（High-Level Synthesis）

System Specification
（System-Level Synthesis）

Layout Verification

Logic Verification

Behavioral Verification

System Verification

Systematic VLSI Design Flow

Complexity: < 100 – 1K words >

< 100 – 10K lines >

< 1K – 100K lines >

< 10K – 1M components >

< 1M – 1G geometries >

System Specification

System Specification
ü System functionality (application)
ü Operating environment (IO interface)
ü Cost (development, manufacture, test)
ü Size/weight (# of chips, board area, box size)
ü Power consumption
ü Flexibility (specification changes, added functionality)

p Human language
(English, Japanese, etc.)
< 100 – 1K words >

System Synthesis/Verification

Algorithm Description

System Specification

p Software languages (C/C++, Java)
p Hardware languages (Verilog, VHDL)
p System-level description languages
(System-C, SpecC)
< 100 – 10K lines >

l Functional Simulation
(SW/HW co-simulation)

ü Data : types/widths, structures, arrays
ü Process : expressions, control-flow, procedures, functions
ü Communication : protocols
ü Simulation : input stimulus, output verification

l manual translation

p Human language
< 100 – 1K words >

High-Level Synthesis/Verification

Algorithm Description

l Functional Simulation

RTL Structural Description p Verilog, VHDL
< 1K – 100K lines >

ü Architecture description
Ø Module (CPU, memory, register, functional unit, IO interface)
Ø Bus architecture

ü Module description (functional/structural)
Ø Combinational/sequential circuit description

l manual translation
l (High-Level Synthesis）

p Software languages (C/C++, Java)
p Hardware languages (Verilog, VHDL)
p System-level description languages
(System-C, SpecC)
< 100 – 10K lines >

Logic Synthesis/Verification

l Logic Verification
l Timing Verification
l Power analysis

RTL Structural Description

Logic/Transistor Circuit Description
p Verilog, VHDL
p Schematic
p Netlist
< 10K – 1M components >

p Verilog, VHDL
< 1K – 100K lines >

l Logic Minimization
l Technology Mapping

ü Cell components (gates, registers, transistors)
ü Nets
ü IO pins

Layout Synthesis/Verification

l Circuit topology verification
l Design rule check
l Timing Verification

Logic / Transistor Circuit Netlist
p Verilog, VHDL
p Schematic
p Netlist
< 10K – 1M components >

VLSI Mask Layout p Mask Pattern
< 1M – 1G geometries >

l Cell / module layout (manual or auto)
l Place and Route

ü Layers (well, diffusion, polysilicon, metals, vias)
ü Rectangle, polygons

Algorithm-Level Description

RTL Structural Description

Logic/Transistor Circuit Description

VLSI Mask Layout

Logic Synthesis

Layout Synthesis

（High-Level Synthesis）

System Specification

（System-Level Synthesis）

Layout Verification

Logic Verification

Behavioral Verification

System Verification

CAD Technology in VLSI Design
Synthesis tools : transformation of
a design description into a more
detailed form of description (logic
synthesis, layout synthesis)
Verification tools : checking the
correctness of the description
(simulators, symbolic verification)

– Logic synthesis and layout
synthesis tools have matured enough
to be used by most designers
– High-level synthesis tools started
to appear in real design cases (but
many designers still prefer RTL as
their design entry)
– System-level synthesis tools do
not yet exist. (currently an active
research area)

Course Outline
1. Introduction to VLSI system design

l VLSI design methodology and computer-Aided Design (CAD) tools
l Hardware description language and hardware behavior model

2. Logic synthesis
l Logic minimization

Ø Combinational and sequential circuits
Ø Two-level logic minimization
Ø Multi-level logic minimization

l Technology mapping
Ø Implementation technology : PLA, gate-array, standard cell, FPGA
Ø Area-optimal mapping
Ø Delay-optimal mapping, fan-out optimization

3. High-level synthesis
l High-level design methodology

Ø Register-transfer level and behavioral level descriptions
Ø Architecture (datapath, register, memory, bus, control logic)

l Operation scheduling
l Resource allocation

4. Advanced topics in system-level design issues
l Description language issues (C-based system description)
l Design verification (simulation, emulation, formal verification)
l Platform-based design (CPU-core, standard bus interface, IPs)

Modeling the Hardware Behavior Using
Hardware Description Language (HDL)

l Hardware Description Language (HDL) is designed
to describe the behavior of all kinds of digital circuits
in text format (to be readable by human).
Ø Primary objective of HDLs was to model the hardware and

do simulation (logic synthesis was initially not the main
objective).

l HDL is similar to software programming languages,
BUT the execution model is different:
Ø All processes occur simultaneously (concurrency)
Ø All processes are either event-triggered or self-timed

Verilog Hardware Model

initial initial #

always @

always @

assign

assign

always @

always @

assign

assign

always @

always #

top-level module
(test vector module)

circuit module

initial #

• Test vector module describes the
behavior of the environment external to
the circuit (usually with self-timed
processes)

• Circuit modules describes the reactive
behavior of the circuit with respect to the
environment

• Hardware behavior is described by a set
of concurrent processes whose
information is exchanged via signals.

• Not all of the HDL description can be
automatically synthesized into gate-level
circuits. A synthesizable code is
composed of a subset of HDL constructs
which can be directly translated into logic
equations and storage elements.

circuit module circuit module

Concurrent processes

Synthesizable code

Basic Constructs in Verilog-HDL (1)
l A module is the basic unit for circuits to describe

hierarchical structure
module mux(a,b,sel,c);
input a, b, sel; // input port list
output c; // output port list
Module_description

endmodule
l Signals connect the circuit elements and transfer logic

values
Ø Register data type : special type of signal that can store logic

value
Ø Net data type (wire) : used for circuit connection (cannot store

logic value)

Basic Constructs in Verilog-HDL (2)

l Logic values : 0, 1, x (undefined), z (high impedance)
l Bit-vector signal : signal with multiple bits (unsigned integer)

example : wire [7:0] dbus; // 8-bit signal
l Bit-vector constants : <size>’<base><value>

ü size : # of bits (default size is 32 bits, when not specified)
ü base : b,B = binary, o,O = octal, d,D = decimal, h,H = hex

(default base is decimal, when not specified)

example size base value in binary
101 32 decimal 00…001100101
8’hb9 8 hex 10111001
6’b100100 6 binary 100100
6’b111 6 binary 000111
8’z 8 binary zzzzzzzz

Hierarchy Structure on Verilog (1)

clk

d q
D Q

clk

1

0

a

b

sel

c d
a

b
c

sel M0 D0

module DFF(clk,d,q);
input clk, d;
output q;
reg q;

Module_description
endmodule

module mux(a,b,sel,c);
input a, b, sel;
output c;

Module_description
endmodule

module mux_DFF(clk,a,b,sel,c);
input clk, a, b, sel;
output c;
wire d;

mux M0 (a,b,sel,d);
DFF D0 (clk,d,c);

endmodule

module name

• Ports (input,output,inout) are considered as nets unless
explicitly specified as registers.

l Only nets (wire) can be used to connect module instance ports

instance name

Hierarchy Structure on Verilog (2)

module REG4(clk,ld,in,out);
input clk, ld;
input [3:0] in;
output [3:0] out;
mux_DFF M0 (clk,in[0],out[0],ld,out[0]);
mux_DFF M1 (clk,in[1],out[1],ld,out[1]);
mux_DFF M2 (clk,in[2],out[2],ld,out[2]);
mux_DFF M3 (clk,in[3],out[3],ld,out[3]);
endmodule

clk

a
b c
sel

<0>
<0>

<1>
<1>

<2>
<2>

<3>
<3> <3>

<2>

<1>

<0>

in[3:0]
out[3:0]

M0

clk

a
b c
sel

clk

a
b c
sel

clk

a
b c
sel

M1

M2

M3

ld
clk

Combinational Logic on Verilog (1)
l Event triggered repeated procedure (always)

reg sum, count; // register data type declaration
always @(a or b or c) begin
sum = a ^ b ^ c;
cout = (a & b) | (b & c) | (a & c);

end
(“&” : AND, “|” : OR, “^” : EXOR)

Ø Sensitivity list (triggers block evaluation)
@(a or b or c): one of the signals a, b, c changes its value

ü In describing combinational logic, all signals on the right-hand side of the
expression needs to be included in the sensitivity list.

ü Implication : if none of the signals in the sensitivity list changes, output signal
does not change; therefore no need to reevaluate the expression.

Ø Statement group
ü begin – end : evaluate multiple statements sequentially
ü fork – join : evaluate multiple statements concurrently (rarely used)

Ø Data types
ü reg : register data type (required for assigned signals inside procedural

blocks. But in this case, this does not represent an actual “register”)

Combinational Logic on Verilog (2)
l If-else statement

reg sum, cout;
reg [1:0] a_plus_b;
always @(a or b or c) begin
a_plus_b = a + b;
if (a_plus_b == 0) begin

sum = c;
cout = 0;

end
else if(a_plus_b == 1) begin

sum = ~c;
cout = c;

end
else begin

sum = c;
cout = 1;

end
end

reg sum, cout;
reg [1:0] a_plus_b;
always @(a or b or c) begin
a_plus_b = a + b;
sum = c;
cout = 1;
if (a_plus_b == 0) begin

sum = c;
cout = 0;

end
else if(a_plus_b == 1) begin

sum = ~c;
cout = c;

end
end

Same behavior

arithmetic addition

These assignments
override the initial
assignments

Initial assignments

Combinational Logic on Verilog (3)
l Case statement

reg sum, cout;
reg [1:0] a_plus_b;
always @(a or b or c) begin
a_plus_b = a + b;
case (a_plus_b)

0: begin
sum = c;
cout = 0;

end
1: begin

sum = ~c;
cout = c;

end
default: begin

sum = c;
cout = 1;

end
endcase

end

reg sum, cout;
reg [1:0] a_plus_b;
always @(a or b or c) begin
a_plus_b = a + b;
sum = c;
cout = 1;
case (a_plus_b)

0: begin
sum = c;
cout = 0;

end
1: begin

sum = ~c;
cout = c;

end
endcase

end

Same behavior

Combinational Logic on Verilog (4)
l Continuous assignment (assign)

wire sum; // net data type declaration
assign sum = a ^ b ^ c;

(explicit continuous assignment)
wire cout = (a & b) | (b & c) | (a & c);

(implicit continuous assignment)
Ø Sensitivity list

ü By default, all signals on the right-hand side of the expression are included in
the sensitivity list (if one of the signal changes, assignment is triggered and
reevaluated)

Ø Data types
ü wire : net data type (required for assigned signals in continuous assignment)

Ø Continuous assignment using conditional expression
assign sum = (a == 1) ? ~(b ^ c) : (b ^ c);

Combinational Logic on Verilog (5)
l Function call

function F_sum;
input a, b, c;
reg a_plus_b;
begin

a_plus_b = a + b;
case (a_plus_b)

0: F_sum = c;
1: F_sum = ~c;
2: F_sum = c;

endcase
end
endfunction

wire sum = F_sum(a, b, c);

Ø Function call is used to describe
complex combinational logic

Ø Input ports become the sensitivity
list (if one of the input changes,
the function is reevaluated)

Ø Function definition must be inside
the module definition

Sequential Logic on Verilog (1)

l Transparent latch using repeated procedure
reg q;
always @(clk or d) begin
if(clk == 1) q = d;

end
Ø What is different from combinational logic description?

ü Case (clk == 0) is not specified.
Ø Circuit behavior

ü When (clk == 1), value of d is transferred to q (transparent).
ü When (clk == 0), value of q is unchanged (regardless of value of d)

time

clk
d
q

clk

Sequential Logic on Verilog (2)
l D flip-flop using 2 latches

reg q0, q;
always @(clk or d) begin
if(clk == 0) q0 = d;
else if(clk == 1) q = q0;

end
l D flip-flop using edge sensitivity list

(simpler and more common way to describe D flip-flops)
reg q;
always @(posedge clk) begin
q = d;

end

time

clk
d
q0

clk

clk

q
q

clk

clk

d 0q

positive (rising) edges

Sequential Logic on Verilog (3)
l 3-bit shift register using blocking procedural assignment

reg [2:0] q;
always @(posedge clk)
begin
q[2] = q[1];
q[1] = q[0];
q[0] = d;

end
Ø Below description is incorrect!!

reg [2:0] q;
always @(posedge clk)
begin
q[0] = d;
q[1] = q[0];
q[2] = q[1];

end
Ø Blocking assignment executes left side assignment immediately after the

evaluation of the right side of the expression
(It “blocks” the following statements from entering evaluation phase until its left
side assignment is completed)

1. q[0]next = d;
2. q[0] = q[0]next;
3. q[1]next = q[0];
4. q[1] = q[1]next;
5. q[2]next = q[1];
6. q[2] = q[2]next;

1. q[2]next = q[1];
2. q[2] = q[2]next;
3. q[1]next = q[0];
4. q[1] = q[1]next;
5. q[0]next = d;
6. q[0] = q[0]next;

Value of d is eventually
assigned to q[2]

right side evaluation

left side assignment

Sequential Logic on Verilog (4)

l 3-bit shift register using non-blocking procedural assignment
Ø Below description is correct!!

reg [2:0] q;
always @(posedge clk)
begin
q[0] <= d;
q[1] <= q[0];
q[2] <= q[1];

end
Ø Non-blocking assignment delays the left side assignment until all

expressions have completed the right side evaluation.

1. q[0]next = d;
2. q[1]next = q[0];
3. q[2]next = q[1];
4. q[0] = q[0]next;
5. q[1] = q[1]next;
6. q[2] = q[2]next;

right side evaluation

left side assignment

Sequential Logic on Verilog (5)

l Blocking vs non-blocking procedural assignments
Ø Blocking assignment

p Evaluation timing is consistent with software programming (easy to
understand)

p Description becomes simpler in some cases
n Need to be careful with statement ordering

Ø Non-blocking assignment
p Statement ordering is more flexible
p Description is more closer to actual circuit implementation
n Behavior is sometimes hard to understand
n Cannot be used in combinational logic

l Common practice
Ø Use blocking assignment for combinational logic
Ø Use non-blocking assignment for sequential logic

Finite State Machine on Verilog
l (1101)-String recognizer : when a sequence {1, 1, 0, 1} is detected at

the input, the circuit outputs 1, otherwise outputs 0.

module str1101(clk, in, out);
input clk, in;
output out;
reg [1:0] state;
reg out;
always@(posedge clk) begin

state <= 2’b00;
out <= 0;
case(state)
2’b00 : if(in == 1) state <= 2’b01;
2’b01 : if(in == 1) state <= 2’b10;
2’b10 : if(in == 0) state <= 2’b11;

else state <= 2’b10;
2’b11 : if(in == 1) begin

out <= 1;
state <= 2’b01;
end

endcase
end
endmodule

2-bit binary value “00”

Memory Model on Verilog
l Synchronous RAM

module mem1k_8_sync(clk, ce, we, addr, din, dout);
input ce, we; // ce : chip enable, we : write enable
input [9:0] addr; // 10-bit address
input [7:0] din; // 8-bit data input
output [7:0] dout; // 8-bit data output
reg [7:0] dout; // dout : reg-type
reg [7:0] ram[0:1023]; // 1024 address space
always@(posedge clk) begin
if(ce) begin

if(we) ram[addr] <= din;
else dout <= ram[addr];

end
end
endmodule

Ø @(posedge clk) : read/write access occurs on clk positive edge
Ø Read (we == 0) : ram[addr] is transferred to dout
Ø Write (we == 1) : din is transferred to ram[addr]

Simulation on Verilog
• Test vector module describes

the behavior of the
environment external to the
circuit (usually with self-timed
processes)

• Simulation results can be
displayed with wave viewer
software, or can be displayed
on console

initial initial #

always @

always @

assign

assign

always @

always @

assign

assign

always @

always #

top-level module
(test vector module)

circuit module

initial #

circuit module circuit module

Self-Timed Process on Verilog

l One-time procedure
initial begin
#10 a = 0; b = 0;
#10 a = 1;

end;

l Self-timed repeated procedure
always begin
#10 a = 0; b = 0;
#10 a = 1;

end;

l Concurrent procedures
initial a = 1;
always begin
#10 a = 0;
#10 a = 1;

end;

0 10 20 30 40 50

a
b

0 10 20 30 40 50

a
b

undefined value

initial

always always always

Delay
10 time units

0 10 20 30 40 50

a

always always always

initial

Example of Test Vector Module

0101 1101 0110 1100

Example #1 :
module test;
reg clk, in;
wire out;
reg [4:0] i;
wire [15:0] seq = 16’h5d6c;
initial begin

clk = 0;
for(i=0;i<16;i=i+1)
begin

in = seq >> i;
#50 clk = 1;
#50 clk = 0;

end
end
str1101 S0(clk, in, out);
endmodule

Ø Simulation automatically stops when
all processes have terminated.

Example #2 :
module test;
reg clk, in;
wire out;
reg [4:0] i;
wire [15:0] seq = 16’h5dc6;
initial

for(i=0;i<16;i=i+1) begin
in = seq >> i; #100;

end
always #50 clk = ~clk;
initial begin

clk = 0;
wait(i == 16) $finish;

end
str1101 S0(clk, in, out);
endmodule

Ø When there is an endless process,
simulation can be explicitly
terminated by $finish command

Simulation Output Command
module str1101(clk, in, out);
input clk, in;
output out;
reg [1:0] state;
reg out;
always@(posedge clk) begin

$display($stime, “ in(%b),out(%b),state(%b)”,
in, out, state);

state <= 2’b00;
out <= 0;
case(state)
2’b00 : if(in == 1) state <= 2’b01;
2’b01 : if(in == 1) state <= 2’b10;
2’b10 : if(in == 0) state <= 2’b11;

else state <= 2’b10;
2’b11 : if(in == 1) begin

out <= 1;
state <= 2’b01;
end

endcase
end
endmodule

Simulation Output Result
50 in(0), out(x), state(xx)
150 in(0), out(0), state(00)
250 in(1), out(0), state(00)
350 in(1), out(0), state(01)
450 in(0), out(0), state(10)
550 in(1), out(0), state(11)
650 in(1), out(1), state(01)
750 in(0), out(0), state(10)
850 in(1), out(0), state(11)
950 in(0), out(1), state(01)

1050 in(1), out(0), state(00)
1150 in(1), out(0), state(01)
1250 in(1), out(0), state(10)
1350 in(0), out(0), state(10)
1450 in(1), out(0), state(11)
1550 in(0), out(1), state(01)

Tips on Simulation and Verification (1)

l State initialization
Ø In simulation, register values are initially undefined.
Ø In real circuits, registers can take arbitrary initial values
Ø In order to force the state to a known desired state, a proper

input sequence needs to be fed into the circuit.

50 in(0), out(x), state(xx) 50 in(0), out(x), state(10)
150 in(0), out(0), state(00) 150 in(0), out(0), state(11)
250 in(1), out(0), state(00) 250 in(1), out(0), state(00)

Ø Regardless of the initial state, the first two 0s at the input
forces the state to go into initial state at the 2nd clock cycle.

Ø HOWEVER, many state machine does not have a proper
input sequence to force to a known desired state from
arbitrary (possibly unreachable) states à add “reset” input

Simulation Real circuit

Tips on Simulation and Verification (2)
l In general, forcing the state to a known desired state is simply done by adding a
“reset” signal input
module str1101(clk, rst_n, in, out);

input clk, rst_n, in; // rst_n : asynchronous reset (active low)
output out;
reg [1:0] state;
reg out;
always@(posedge clk or negedge rst_n) begin

state <= 2’b00;
out <= 0;
if(~rst_n) // if reset is deactivated
case(state)
2’b00 : if(in == 1) state <= 2’b01;
2’b01 : if(in == 1) state <= 2’b10;
2’b10 : if(in == 0) state <= 2’b11;

else state <= 2’b10;
2’b11 : if(in == 1) begin

out <= 1;
state <= 2’b01;
end

endcase
end
endmodule

Tips on Simulation and Verification (3)

l In any system, coding the appropriate test vectors is
not easy (probably harder than coding the actual
circuit)
Ø The designer needs to take account all the possible input

patterns so as to cover the complete behavior of the circuit
Ø For a large system, test vector covering only a small portion

of the complete behavior takes very long time to simulate.
This results in very low design productivity, and also leaves
a large number of “bugs” left undetected.

Ø To verify a large system, Circuit Emulation technique is often
used (the system is implemented on a set of programmable
logic devices and run on actual environment).

Verilog Reference on the WEB

l On-line Verilog HDL Quick Reference Guide
by Stuart Sutherland of Sutherland HDL, Inc. -
Portland, Oregon, USA

http://www.emmelmann.org/Library/Tutorials/docs/verilog_ref_guide/vlog_re
f_top.html

http://www.emmelmann.org/Library/Tutorials/docs/verilog_ref_guide/vlog_ref_top.html

HDL Summary

l Hardware Description Languages (HDLs) are designed to describe
the behavior of all kinds of digital circuits in text format (to be readable
by human).

l A subset of HDL description can be automatically transformed to gate-
level circuit by logic synthesis tools (“synthesizable” RTL code).

l With the current increase in design complexity, doing designs on RTL is
becoming too time consuming

Ø Although the description is in text format, concurrent behavior of HDL is still
hard to track by human, giving more opportunities for errors and making
debugging even harder.

Ø Software languages are far more easy to track, since everything occurs
sequentially.

Ø Population of HDL programmers is much smaller than that of software
programmers.

Ø Strong need for high-level synthesis tools

Problem 1.1
Design the following circuits in Verilog.

l Give complete module description for each circuit
l Explain the behavior
l (If you have access to Verilog simulator) create simple test

vector module and confirm the behavior on simulation
A) 4-bit ripple-carry adder using full-adder modules
B) 4-bit counter with enable/reset inputs in register-transter

level description (use arithmetic operators directly on the
4-bit signals)
Ø increment only when “enable” is 1
Ø set the counter to 0 when “reset” is 1

C) Describe the 4-bit counter in B) using 4-bit ripple-carry
adder in A)

D) Unsigned multiplier (4-bit inputs, 8-bit output) (use
whatever architecture such as “shift-and-add”,
“array”, “Booth”)

Problem 1.2
Consider the following integer divider module

module divide8(clk, start, a, b, ready, q, r);
input clk, start;
input [7:0] a, b;
output ready;
output [7:0] q, r;

reg [7:0] q, r, a0, b0;
reg [3:0] state;
reg ready;

wire [7:0] a1;
assign a1[7:1] = r[6:0];
assign a1[0] = a0[7];

wire sub = (a1 >= b0);

always@(posedge clk) begin
if(state < 8) state <= state + 1;
if(start == 0) begin
state <= 0; ready <= 0;
q <= 0; r <= 0;

end
else if(state == 0) begin
a0 <= a; b0 <= b;

end
else if(ready == 0) begin
if(state == 8) ready <= 1;
r <= (sub)? a1 - b0 : a1;
q <= (q << 1) + sub;
a0 <= a0 << 1;

end
end
endmodule

Problem 1.2
A) Explain the algorithm of this divider.

Ø How is the division computed?
Ø What are the roles for each variable?

B) Assume :
l a = 8’b01100100 (=100), b = 8’b00001001

(=9)
l start = 0 for the first clock cycle, and start = 1

after that.
Explain the behavior of the circuit at each clock cycle
(explain the values of each variable at each clock cycle).

C) Modify this divider module so that it can handle 16-bit
inputs.

D) Using the above 16-bit divider module, design a circuit
which converts 16-bit binary value into 5-digit decimal
value (each decimal digit consumes 4-bit)

Problem 1.3 (extra credit)
Design a simple calculator on Verilog with

the following specification
l There are 14 keys (‘0’, ‘1’, …, ‘9’, ‘+’, ‘=’, ‘C’). When a key

is pushed, a 4-bit signal associated with the key is generated
with a proper control signal.

l There is a 4-digit decimal number display which can display 12
types of characters (‘0’, ‘1’, …, ‘9’, ‘E’, ‘ ’). To control the
4-digit display, the calculator circuit outputs 16-bit signal, each 4-
bit group controlling each digit position.

l Entering ‘C’ resets the calculator. [‘ ’, ‘ ’, ‘ ’, ‘0’] is
displayed.

l If the result is greater than 9999, [‘ ’, ‘ ’, ‘ ’, ‘E’] is displayed
to indicate error.

l For other specifications, follow the conventions of actual
calculator.

