
QIP Course 13: Quantum Error Correction (this
might be skipped)

Ryutaroh Matsumoto

Nagoya University

September 2019

Matsumoto (Nagoya U.) QIP Course 13: Quantum Error Correction (this might be skipped) Sept. 2019 1 / 26



Acknowledgment and Copyright

Materials presented here can by reused under the Creative Commons
Attribution 4.0 International License

https://creativecommons.org/licenses/by/4.0.

Matsumoto (Nagoya U.) QIP Course 13: Quantum Error Correction (this might be skipped) Sept. 2019 2 / 26

https://creativecommons.org/licenses/by/4.0


Error correction, in classical and quantum cases

A communication channel usually has noise, so error correction is
necessary (e.g. audio CD, mobile phone, etc.).

Error correction of classical information
Adding redundancy helps a receiver to decode the original information
from received signals.

Error correction of quantum information?
The quantum no-cloning theorem seemed to prevent adding redundancy,
until 1995.
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Simple repetition quantum error-correcting code

Hereafter quantum codes refer to quantum error-correcting codes.
Suppose that

we want to send one qubit 𝛼|0⟩ + 𝛽|1⟩,
each qubit transmitted can be multiplied by 𝑋 or received without
change,
and errors on different qubits are statistically independent.

Encoder: 𝛼|0⟩ + 𝛽|1⟩ ↦ 𝛼|000⟩ + 𝛽|111⟩.
The above can actually be done by two steps.

1 Prepare two qubits to state |00⟩ and attach it to 𝛼|0⟩ + 𝛽|1⟩, then get
(𝛼|0⟩ + 𝛽|1⟩)|00⟩.

2 Apply a unitary matrix converting |000⟩ to |000⟩ and |100⟩ to |111⟩.
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Decoder of the simple code

1 Measure 𝑍 ⊗ 𝑍 ⊗ 𝐼 and 𝐼 ⊗ 𝑍 ⊗ 𝑍. The order of two measurements
does not matter.

2 Apply unitary matrices according to outcomes as below:
𝑍 ⊗ 𝑍 ⊗ 𝐼 𝐼 ⊗ 𝑍 ⊗ 𝑍 unitary

+1 +1 nothing
+1 −1 𝐼 ⊗ 𝐼 ⊗ 𝑋
−1 +1 𝑋 ⊗ 𝐼 ⊗ 𝐼
−1 −1 𝐼 ⊗ 𝑋 ⊗ 𝐼

3 Perform the inverse of the encoding procedure.
The presented encoder and decoder reconstruct the original quantum
state 𝛼|0⟩ + 𝛽|1⟩ if one or zero out of three qubits is affected by the 𝑋 error.
Demonstrate this on blackboard with the error 𝑋 ⊗ 𝐼 ⊗ 𝐼.
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What happens if 𝑍 occurs

Suppose 𝑍 error occured at one of three qubits. The encoded state becomes

𝛼|000⟩ − 𝛽|111⟩.

Measurement outcome of 𝑍 ⊗ 𝑍 ⊗ 𝐼 is +1 with probability 1, and that of
𝐼 ⊗ 𝑍 ⊗ 𝑍 is +1 with probability 1 (Verify this in Exercise 2).
Therefore, these errors cannot be distinguished from no error, and the
error cannot be recognized. This example cannot correct 𝑍 errors.
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Exercise

1. Suppose that 𝑋2 error occured. Verify that measurement outcome of
𝑍1⊗𝑍2 is −1 with probability 1, and that of 𝑍2⊗𝑍3 is −1 with probability
1 and the state is not changed by measurement.
2. See page 6.
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Fidelity – distance of quantum states

In order to decide whether quantum error correction is useful or not, we
need a measure of distance between two quantum states, and we have to
check whether quantum error correction decreases

the distance between the original state and error corrected state
from the distance between the original state and unprotected state
with error.

A mixed state is a state represented by a density matrix. The fidelity
between a pure state |𝜑⟩ and a mixed state 𝜌 is

⟨𝜑|𝜌|𝜑⟩.

We have 0 ≤ ⟨𝜑|𝜌|𝜑⟩ ≤ 1, and larger fidelity means that two states are
closer.
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Meaning of the fidelity

Suppose that we check the state 𝜌 is equal to |𝜑⟩ by measuring the
observable

𝑀 = |𝜑⟩⟨𝜑| + 2(𝐼 − |𝜑⟩⟨𝜑|).

Observe that𝑀 has eigenvalue +1 with projector |𝜑⟩⟨𝜑| and eigenvalue +2
with projector (𝐼 − |𝜑⟩⟨𝜑|). The probability of getting outcome +1 is equal
to

Tr[𝜌|𝜑⟩⟨𝜑|] = ⟨𝜑|𝜌|𝜑⟩.

We also note that the fidelity can be generalized to two mixed states, and
that 1 − fidelity satisfies the axiom of metric on the set of mixed states.

We also note that sometimes√⟨𝜑|𝜌|𝜑⟩ is meant by the word “fidelity”.
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Fidelity increases by error correction

Suppose that the 𝑋 error occurs at each qubit with probability 𝑝. If an
error correcting code is not used, the original state

𝛼|0⟩ + 𝛽|1⟩

becomes

𝜌 = (1 − 𝑝)(𝛼|0⟩ + 𝛽|1⟩)(𝛼⟨0| + 𝛽⟨1|) +
𝑝(𝛼|1⟩ + 𝛽|0⟩)(𝛼⟨1| + 𝛽⟨0|)

We want to consider the worst case, so assume 𝛼 = 1 and 𝛽 = 0. In this
case

𝜌 = (1 − 𝑝)|0⟩⟨0| + 𝑝|1⟩⟨1|

and the fidelity between 𝜌 and |0⟩ is 𝑝.
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If we use the error correction, the original state is preserved when the
number of errors ≤ 1, whose probability is (1 − 𝑝)3 + 3𝑝(1 − 𝑝)2. The
density matrix after error correction can be written as

𝜌′ = {(1 − 𝑝)3 + 3𝑝(1 − 𝑝)2}(𝛼|0⟩ + 𝛽|1⟩)(𝛼⟨0| + 𝛽⟨1|)
+{1 − (1 − 𝑝)3 − 3𝑝(1 − 𝑝)2}𝜌″

for some mixed state 𝜌″. Therefore the fidelity between 𝛼|0⟩ + 𝛽|1⟩ and 𝜌′
is at least (1 − 𝑝)3 + 3𝑝(1 − 𝑝)2, which is larger than 1 − 𝑝 if 𝑝 is small.
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Graph of fidelity
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The Shor code

The first quantum error-correcting code was proposed by Peter Shor. It
encodes 1 qubit to 9 qubits and can correct an arbitrary error acting on a
single qubit.

|0⟩ ↦
(|000⟩ + |111⟩)(|000⟩ + |111⟩)(|000⟩ + |111⟩)

2√2

|1⟩ ↦
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)

2√2

𝑋𝑖: the 𝑋matrix acting on the 𝑖-th qubit
𝑍𝑖: the 𝑍matrix acting on the 𝑖-th qubit
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Correction of the X error

We measure 𝑍1 ⊗ 𝑍2, 𝑍2 ⊗ 𝑍3, 𝑍4 ⊗ 𝑍5, 𝑍5 ⊗ 𝑍6, 𝑍7 ⊗ 𝑍8, 𝑍8 ⊗ 𝑍9.
Observe that each triple of qubits is the same as the error correcting code
explained in the previous lecture. Each triple refers to 1st, 2nd and 3rd
qubits, or 4th, 5th and 6th qubits, or 7th, 8th and 9th qubits.
We can correct single 𝑋 error by the same error-correcting process.
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Correction of the Z error

After (or before) correcting an 𝑋 error, we correct a 𝑍 error.
We measure 𝑋1 ⊗𝑋2 ⊗⋯⊗𝑋6 and 𝑋4 ⊗𝑋5 ⊗⋯⊗𝑋9.
(|000⟩ ± |111⟩)(|000⟩ ± |111⟩) belongs to the eigenvalue +1 of
𝑋1 ⊗𝑋2 ⊗⋯⊗𝑋6 if the two ± are the same, otherwise it belongs to −1.

𝑍 errors changes the sign ±:
𝑍1 ⊗ 𝐼 ⊗ 𝐼(|000⟩ ± |111⟩) = 𝐼 ⊗ 𝑍2 ⊗ 𝐼(|000⟩ ± |111⟩) =
𝐼 ⊗ 𝐼 ⊗ 𝑍3(|000⟩ ± |111⟩) = |000⟩ ∓ |111⟩. Observe that different errors
have the same effect.

Relation between errors and measurement outcomes
observable no error 𝑍1 or 𝑍2 or 𝑍3 𝑍4 or 𝑍5 or 𝑍6 𝑍7 or 𝑍8 or 𝑍9
𝑋1 ⊗⋯𝑋6 +1 -1 -1 +1
𝑋4 ⊗⋯⊗𝑋9 +1 +1 -1 -1
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Correction of the XZ error

If an XZ error occurs on some qubit, it can be corrected by doing the 𝑋
error correction and the 𝑍 error correction sequentially (Exercise).
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Correction of an arbitrary error 1
Let 𝑈 be a 2 × 2 unitary matrix. Suppose that the error 𝑈 occured at the
first qubit. Since 𝐼, 𝑋, 𝑍, and 𝑋𝑍 is a basis for 2 × 2matrices, we can write

𝑈 = 𝑎𝐼𝐼 + 𝑎𝑋𝑋 + 𝑎𝑍𝑍 + 𝑎𝑋𝑍𝑋𝑍.

Suppose that the state of 9 qubits was |𝜑⟩ (an encoded state of the Shor
code) before error. Specifically

𝛼
(|000⟩ + |111⟩)(|000⟩ + |111⟩)(|000⟩ + |111⟩)

2√2

+𝛽
(|000⟩ − |111⟩)(|000⟩ − |111⟩)(|000⟩ − |111⟩)

2√2
.

After error, the state is

(𝑈 ⊗ 𝐼⊗8)|𝜑⟩ (1)
= 𝑎𝐼(𝐼 ⊗ 𝐼⊗8)|𝜑⟩ + 𝑎𝑋(𝑋 ⊗ 𝐼⊗8)|𝜑⟩ (2)

+𝑎𝑍(𝑍 ⊗ 𝐼⊗8)|𝜑⟩ + 𝑎𝑋𝑍(𝑋𝑍 ⊗ 𝐼⊗8)|𝜑⟩. (3)
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Correction of an arbitrary error 2

Recall that
1 The state after a single error 𝑋, 𝑍, or 𝑋𝑍 is an eigenstate of the
observable for error correction.

2 Different errors cause different measurement outcomes, or have the
same effect on the state. Otherwise one cannot correct errors.

Thus, the each term in Eq. (3) belongs to different eigenvalues. After
measurement, one out of four terms in Eq. (3) remains, whose error can
be regarded as 𝐼, 𝑋, 𝑋𝑍, or 𝑍.
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Noisy channel

Study of diginal communications expresses a noisy channel as a
conditional probability of output given input.

Noisy quantum channel can be considered in a similar way. Suppose that
output 𝜎𝑖 (density matrix) is output with a probability 𝑝𝑖 when the input is
𝜌 (density matrix).
But, the output can be expressed as

∑
𝑖
𝑝𝑖𝜎𝑖.

It is more natural to express a noisy quantum channel as a mapping from
density matrices to density matrices.
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Which conditions are necessary for noisy quantum
channel

𝒮in: the set of density matrices on some linear space.
𝒮out: the set of density matrices on another linear space.
Γ ∶ 𝒮in → 𝒮out.
Γ should have the following three properties:
Linearlity Because Γmust preserve the ratio of probabilistic mixtures.

Trace-Preserving
Complete Positivity Let 𝐼𝑛 be the identity mapping from the space of 𝑛 × 𝑛

matrices to itself. For all 𝑛, Γ ⊗ 𝐼𝑛 sends positive
semidefinite matrices to positive semidefinite matrices.

The second and the third conditions are necessary to convert density
matrices to density matrices.
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Three conditions are also sufficient

Suppose that Γ satisfies the three conditions. Then there exists a linear
spaceℋenv, its pure state |0𝐸⟩ and the unitary matrix acting onℋenv and
the input of Γ, such that

Γ(𝜌) = Trℋenv[𝑈(𝜌 ⊗ |0𝐸⟩⟨0𝐸|)𝑈∗]. (4)

Draw its physical meaning on the black board.
The existence of such 𝑈 and |0𝐸⟩ shows that the three conditions are also
sufficient.

A map with the three conditions is called
quantum operation, or
CPTP (completely positive trace-preserving) map.
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Criticism on the usual error model in QECC

In the beginning of research in quantum error correction, it was assumed
that a finite set of unitary matrices can occur as a channel error. It does
not seem reasonable because

There are infinitely many unitary matrices, and
The noisy state evolution comes from interaction with the
surrounding environment, and such an interaction cannot be written
as a uniatry matrix on the transmitted quantum information.

But the original assumption can be justified (explained later).
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When an error is considered to be corrected

When the receiver reconstructs the original transmitted quantum state
perfectly, the error is considered to be corrected. But this is too restrictive,
because

1 quantum information is “analog”, and
2 a small difference between the original state and the decoded state is
acceptable.

Small difference between two states results in a small difference in
probability distributions under the same measurement. This also justifies
allowing a small difference the transmitted and the decoded states.

Then, how one quantifies the difference? There are several ways (see
Chapter 12 of Nielsen&Chuang). One way is to use the fidelity introduced
earlier in this course.
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Memoryless assumption

In digital communications, additive noise can often be seen as
independently and identically distributed (i.i.d.). For example, the
additive noise often comes from random motion of electrons in receive
circuit, which has the same probability distribution and statistically
independent among different time instances. A channel with the i.i.d.
assumption is calledmemoryless.
Suppose that 𝑛 quantum systems are transmitted and the channels is
denoted by a CPTP map Γ𝑛. Under some assumtions (e.g., each quantum
system interacts with a different environment during transmission), then
Γ𝑛 satisfies the i.i.d. assumption, i.e.,

Γ𝑛 = Γ1 ⊗ Γ1 ⊗⋯⊗ Γ1,

where Γ1 is a CPTP map acting on a single system. Such a quantum
channel is calledmemoryless.
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Memoryless assumption justifies finite errors

Assume that
𝑛 quantum systems are transmitted, and
the quantum channel is memoryless.

Let 𝐵 be a basis of matrices on a single system, and 𝐵 is assumed to have
the identity matrix.
When a transmitter and a receiver

assume only errors in 𝐵⊗𝑛 occur,
define the number of errors to be non-identity component in the
error matrix,
and corrects errors if the number of errors is not large,

then the decoded mixed state has high fidelity with the original pure state.
Reference: R. Matsumoto, Fidelity of a t-error correcting quantum code
with more than t errors, Phys. Rev. A, vol. 64, no. 2, 022314, Aug. 2001 (see
also its erratum).
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Exercise

1. Suppose that the 𝑋𝑍 error occured at the 5th qubit of the Shor code.
Describe the changes of the state in the error correction process step by
step.
2. Verify that 𝐼, 𝑋, 𝑍, and 𝑋𝑍 form a basis for the linear space of 2 × 2
matrices.
3. Suppose that the 𝐻 error occured at the 5th qubit of the Shor code,
where

𝐻|0⟩ =
|0⟩ + |1⟩
√2

, 𝐻|1⟩ =
|0⟩ − |1⟩
√2

.

Describe the changes of the state in the error correction process step by
step.
4. Show that the fidelity between 𝛼|0⟩ + 𝛽|1⟩ and 𝜌′ in page 11 is at least
(1 − 𝑝)3 + 3𝑝(1 − 𝑝)2.
5. Show that 0 ≤ ⟨𝜑|𝜌|𝜑⟩ ≤ 1.
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