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Answers to Previous Exercises

1. Let N = 5x 7 and x = 8. Compute r = ord(x, N).

r=4.

2. Tell whether or not x”/2 mod N # N — 1.

82 mod 35 = 29 # 34.

3. Tell whether either gcd(x"/? — 1 mod N, N) or gcd(x"’? + 1 mod N, N) is
a factor of N or not.

Yes, thay are factors. Explain how to compute the ged by the Euclidean
algorithm.

4. Compute |ug) with above values and s = 1.

3
% kZ::O eXP(—ﬂi§)|8k mod 35) = %(Il)—i|8) + (=1)[29)+i[22))
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5. Let U be as defined in the lecture. With above x and N, what is the
eigenvalue of U to which |u,) belongs?

exp(mi/2) = i.

6. Suppose that we execute the phase estimation procedure with the above
Uand — Z |us) with t = 4 qubits for recording the value of a phase s/r.

There are 2! = 16 possible outcomes. Plot those 16 probabilities and
observe that outcomes corresponding to s/r for s = 0, ..., r — 1 have higher
probabilities than the rest.

Read the hint given in the last unit. The quantum state immediately
before the measurement in the phase estimation is

Z [us vy | @ = |us><us’|

S,s’

whose partial trace is

17t
D |vs><us/| Trlju)ug|] = = D o),
5,8 ﬁ—/ 50

which is the equal probabilistic mixture of |vg), ..., [Uy_1)-
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Therefore, the probability of getting measurement outcome ¢ is
1 r—1
- Yo |ats,o|%, where |vg) = a5 0|0) + a1 |1) + -+ + a5 2e1]2" — 1), and

2t—1
Asp = % I;)[exp (27i(6 — ¢/2"))]*(by using Unit 9)
5
= — ) [exp(2ri(s/4 — ¢/16))]¥
16 e
¢ probability ¢  probability
0 1/4 8 1/4
1 0 9 0
2 0 10 O
30 , 11 0
4 1/4 12 1/4
5 0 13 0
6 0 14 0
7 0 15 0
Observe that probabilities of ¢ near to 16s/4 (s = 0, ..., 3) have larger

values.
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Continued fraction

r: the order of x’ modulo N'.
We are given
X = O.blbz ces bt

that is close to s/r with high probability. The remaining task is to compute
r from b, b, ... b;. r can be determined by the continued fraction algorithm.

A continued fraction is

aQ+ ————— 1)
a; +

1
az+ T

aN

where ay, ..., ap are positive integers and a, > 0. Denote the value of Eq.
(1) by [ao, a, ... aN].
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Computation of a continued fraction

The representation of a continued fraction of rational x can be found, for

example, as follows:

31 5 1
1—3 = 2+1—3—2+§
5
1 1
= 2+ 3=2+ T
24 - 2+ <
> 3
1 1
= 24 =2+ T
2+ — 2 T
1+2 145
2
1
= 2+ T
1+
1+
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How to find the phase by the continued fraction

Recall that we have to find r from
Xx = 0.byb,...b;

such that x is close to s/r. We have the following theorem.

Theorem 1: Let [ay, ..., an] be the continued fraction of x. If

|x —s/r| < ﬁ and gcd(s,r) = 1, then s/r is equal to [ay, ..., a,] for some
0<n<N.

Proof. Its proof is given in “Quantum Computation and Quantum
Information,” ISBN: 0521635039.

We can make |x — s/r| < # by increasing ¢ (the number of qubits used for

phase estimation). If we execute the order finding several times, we will
eventually have gcd(s, r) = 1. If we assume Theorem 1, the factorization
can be found as follows: Compute the continued fraction of x as [ay, ...,
ay]. For each 0 < n < N, write [ay, ..., @,] as p,/q, and check whether g,
satisfies that (x")%" mod N’ = 1 and gcd(N’, [(x')?%/2 = 1]) is a factor of N'.
If it is the case, we found a factor of N’. Otherwise, try again.

Matsumoto (Nagoya U.) QIP Course 11: Quantum Factorization Algorith Sept. 2017 8/10



Cost of continued fraction

Thus, if we assume Theorem 1, then what we have to do is to check the
speed (required computational time) of continued fraction computation.
Theorem 2: Let [ay, ..., ay] be the continued fraction of rational

x = p/q > 1. Define py = ay,qo =1, p; = 1 + apay, q; = ay,

Pn = QuDp-1t Pn-2
dn = aupQn-1+qn-2-

Then we have

Pn
— =1Qgp,...,Q
g, ~ G0 anl

forn=0,..., N.

Its proof is given in “Quantum Computation and Quantum Information,”
ISBN: 0521635039.

From the above theorem we can evaluate the required number N of
computational steps. Observe that p,, > p,_; and q,, > q,_;. So we have
Pn 2 2pp—2 and q,, > 2q,_,. Therefore N < 2log, max{p, q}.

Matsumoto (Nagoya U.) QIP Course 11: Quantum Factorization Algorith Sept. 2017 9/10



Exercise (15 min.?)

Let N’ = 35, x" = 4, and x = 0.0010101 =~ %. This can be a measurement
outcome of the phase estimation with t = 7.

1. Compute the continued fraction of x.

2. Let [ay, ..., an| be the continued fraction of x. Detemine an index n
such that g, is the order of X" modulo N’, where p,/q,, = [ag, ..., @y ]-

3. Compute a factor of N’ by using your answer to Q2.

Matsumoto (Nagoya U.) QIP Course 11: Quantum Factorization Algorith Sept. 2017 10/10



