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Inverse QFT

Answers to the previous exercises will be given on the blackboard.

Let |0), ..., N — 1) be an orthonormal basis of an N-dimensional space. The
QFT transforms
;] N-1
1)) » —= D exp(27ijk/N)|k).

The inverse of QFT (IQFT) is given by

1 N-1
k) > — 3 exp(—27ike/N)|&). 1)
=3

=0

IQFT can be realized by applying R ! and H™! in the reverse order.
= IQFT can also be realized with the same efficiency (n(n + 1)/2
operations of Ri' and H™1) as QFT.
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Phase estimation 1

Suppose that we have a unitary matrix U and its eigenvector vector |u). Let

exp(27i) be the eigenvalue to which |u) belongs to. We shall show how
we can compute 6.

Assumption: We are able to do the Contrc_)lled—UZj operation for any j > 0.
Suppose that we apply the controlled-U?’ to (|0) + |1))|u), with |u) being
the target (we omit the normalizing factor 1/4/2). Then the result is

10)u) + 1) ® U |us)
|0)|u) + 1) ® exp(27i2/0)|u)
(10) + exp(27i2/0)|1)) ® |u)
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Assume we have ¢ qubits that are initialized to (|0) +[1))/ \/5 and apply the
controlled-U? to the j-th qubit (the rightmost is the zero-th). The result is

L

2t/2(|0> + exp(27i2t710)[1)) ® --- ® (|0) + exp(27i2°0)|1))

2t

= % Z exp(27ikd)|k). 2)
k=0

Applying the IQFT (1) to (2) yields

1 —2mik€ .
> >0 exp( > )exp(2mk6)|€>.
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Probability distribution of the measurement outcomes 1

1 - —27ik€ ;
o Z Z exp ( > ) exp(27ikd)|€).
We shall compute the probability distribution of the mesurement in the

{0}, |1), |2), ..., |2¢ — 1)} basis. (The observable is th:_ol Jli){jl.) Recall that
0 < 8 < 1, and we can write

9 = O.blbz .. btbt+1 tt.

Let b = byb, --- b;. We have 0 < b < 2! — 1. b is the nearest t-bit integer
< 2!'6. When m is the measurement outcome, we regard m/2! as our
estimate of 6. I will explain that m ~ 2!0 ~ 2!b with large
probability.
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1 — —27iké .
o> Z Z exp( o )exp(2mk6)|€>.

Let o, be the coefficient of |(b + ¢) mod 2¢) in the result of the IQFT (the
above). We shall show that if c is large then |«,| is small. Observe that the
coefficient of |¢) is

2t—1

)exp(ka@) = % D [exp (27i(6 — ¢/2Y))
k=0

2t—1

7 5 o5

Substituting € with b + ¢ we have

2f—1

a, = % Z [exp (27i(6 — (b + ¢)/21))]¥
k=0
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2f—1

1 .
o =5 kzo[exp (27i(6 — (b + ¢)/2Y))]¥
is the sum of a geometric series, so it is equal to

1 1-exp27i(2'6 — (b +0)))
A T exp(27i(6 — (b + ¢)/2t))’

Define § = 8 — b/2!, then

0 = 1 1= exp(27i(2!6 — ¢))
€72t 1 —exp2mi(8 — c/2Y))

We shall upper bound the probability of getting a measurement outcome
m such that |m — b| > e. Observe Pr[m = b + ¢] = |a.|*
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We shall upper bound the probability of getting a measurement outcome
m such that [m — b| > e. We have

p(lm —b| > e) = > Jocel?.

—2t-l<c<—e—1,e+1<c<2t-1

Since |1 — exp(ix)| < 2,

2
< .
ol < 2t|1 — exp(27i(& — c/21))|

We have |1 — exp(ix)| > 2|x|/7 for -7 < x < w7 and
—7 < 27(8 — ¢/2Y) < 7, it follows

1
0| £ =———-
joel < 2t+11§ — ¢/2t]
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Therefore we have

1 1
4p(lm—b| >e) < - 4
—2“1<Zcﬁ—e—l (26 —c¢)? e+1§;<21—1 (216 —c)?
1 1
< —+ 3
< > —
—2t-l<c<—e—1 e+1<c<2t-1 (C 1)
< 2 lz
e<c<2t-1-1 ¢
2t-1_1
< 2 / de
e—1 ¢
<

o0
d
2] _g
e—lc
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Sufficiently many qubits ensure the accuracy with high

probability

Suppose that we want an accuracy of 27", that is, |6 — m/2!| < 27"

|6 —m/2t < 27"
& 216 —m| < 27"
< |b-m| <27 —1.
We can see that e = 2~ — 1 ensures the desired accuracy. The probability

of the accuracy below 27" is 1/2(2!=" — 2). In order for 1/2(2'™" — 2) < ¢,
we need ¢ > n + log,(2 + 1/2¢).
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Exercise

1. Let

1 0
U =< 0 exp(27i5/16) )

Find the all eigenvalues of U.

2. Let |u) be the eigenvector of U and assume U|u) # |u). Assume that we
do the phase estimation with ¢t = 3. Then there is eight possible
measurement outcomes. Compute the probability distiribution of
outcomes and their corresponding estimates of 6. I recommend you to
use Mathematica, Matlab, Maple, and so on.

3. By using p(|m — b| > e) < 2(:_1)
probability of the event that the mesurement outcome of 6 is within 3/8
from the true value 6 = 5/16. How much difference exists between the
lower bound and the true probability?

compute the lower bound on the
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