QIP Course 6: Matrix Expression of Quantum States

Ryutaroh Matsumoto

Nagoya University, Japan Send your comments to ryutaroh.matsumoto@nagoya-u.jp

> August 2019 @ Tokyo Tech.

Materials presented here can by reused under the Creative Commons Attribution 4.0 International License

https://creativecommons.org/licenses/by/4.0.

Answers of prev. exercises

1-3. Omitted.

4. Prove that the measurement outcome is *k* if the state **before** measurement is $|\varphi_k\rangle$ in page ?.

Answer: Recall that the probability of getting outcome *j* is

 $|||\varphi_j\rangle\langle\varphi_j||\varphi_k\rangle||^2 = \delta_{jk}.$

Therefore the measurement outcome must be k under the given assumption.

Caution: Many students (in Japan) somehow computed $A|\varphi\rangle$. But $A|\varphi\rangle$ has no physical meaning in this context. Such an answer was evaluated as incorrect.

5. Prove that the state **before measurement** is $|\varphi_k\rangle$ if the measurement outcome is *k* in page 5-10.

Answer: It is enough to prove the contraposition: If the state before measurement is not $|\varphi_k\rangle$ then the measurement outcome is not *k*. We see that from the answer to Q4 that the contraposition obviously holds.

- density matrix
- privacy of superdense coding (next unit)
- The density matrix is another representation for quantum states of physical objects.
- The privacy means that nobody can steal any information from the transmitted qubit of the superdense coding.
- Don't you think such proof may be difficult?
- The use of density matrix seems the easiest way to prove it.

 $|\varphi_1\rangle$, ..., $|\varphi_n\rangle$: orthonormal basis.

$$TrA = \langle \varphi_1 | A | \varphi_1 \rangle + \dots + \langle \varphi_n | A | \varphi_n \rangle. (Definition)$$
(1)

The value of the trace does not depend on the choice of ONB $\{|\varphi_1\rangle, ..., |\varphi_n\rangle$, i.e., two different ONBs give the same value of the trace. See your linear algebra textbook for these facts.

$$Tr[\alpha A] = \alpha TrA.$$

$$Tr[AB] = Tr[BA].$$

$$Tr[A \otimes B] = TrA \cdot TrB.$$
(2)

Suppose that we do not completely know the state of a system, and that we know the state is $|\varphi_i\rangle$ with probability p_i .

Suppose also that we measure an observable

$$A = \sum_{k=1}^{n} k |\psi_k\rangle \langle \psi_k |,$$

where all eigenspaces are of dimension 1.

The probability of getting the measurement outcome k is

$$\Pr[\text{outcome} = k] = \sum_{i=1}^{n} \Pr[\text{outcome} = k \text{ and state} = |\varphi_i\rangle]$$
$$= \sum_{i=1}^{n} \underbrace{\Pr[\text{state} = |\varphi_i\rangle]}_{=p_i} \underbrace{\Pr[\text{outcome} = k|\text{state} = |\varphi_i\rangle]}_{=|||\psi_k\rangle\langle\psi_k||\varphi_i\rangle||^2}$$

$$Pr[outcome = k] = \sum_{i=1}^{n} p_{i} |||\psi_{k}\rangle\langle\psi_{k}||\varphi_{i}\rangle||^{2}$$

$$= \sum_{i=1}^{n} p_{i}\langle\varphi_{i}||\psi_{k}\rangle\langle\psi_{k}||\psi_{k}\rangle\langle\psi_{k}||\varphi_{i}\rangle$$

$$= \sum_{i=1}^{n} p_{i}\langle\varphi_{i}||\psi_{k}\rangle\langle\psi_{k}||\varphi_{i}\rangle$$

$$= \sum_{i=1}^{n} p_{i}Tr[|\varphi_{i}\rangle\langle\varphi_{i}||\psi_{k}\rangle\langle\psi_{k}|] \qquad (4)$$

$$= Tr\left[\underbrace{\left(\sum_{i=1}^{n} p_{i}|\varphi_{i}\rangle\langle\varphi_{i}|\right)}_{=\rho \text{ in p. 10}}|\psi_{k}\rangle\langle\psi_{k}|\right] \qquad (5)$$

Let $\{|\varphi_i\rangle, |u_2\rangle, ..., |u_n\rangle\}$ be an ONB. We will use this ONB for computation of the trace below. Then by the definition of trace

 $Tr[|\varphi_{i}\rangle\langle\varphi_{i}||\psi_{k}\rangle\langle\psi_{k}|]$ $= \langle\varphi_{i}||\varphi_{i}\rangle\langle\varphi_{i}||\psi_{k}\rangle\langle\psi_{k}||\varphi_{i}\rangle + \sum_{j=2}^{n}\langle u_{j}||\varphi_{i}\rangle\langle\varphi_{i}||\psi_{k}\rangle\langle\psi_{k}||u_{j}\rangle$ $= \langle\varphi_{i}||\varphi_{i}\rangle\langle\varphi_{i}||\psi_{k}\rangle\langle\psi_{k}||\varphi_{i}\rangle$ (7) $= \langle\varphi_{i}||\psi_{k}\rangle\langle\psi_{k}||\varphi_{i}\rangle$ (8)

The previously presented state of the system can be represented by a density matrix

$$\rho = \sum_{i=1}^{n} p_i |\varphi_i\rangle \langle \varphi_i |,$$

and the probability of getting the measurement outcome *k* is given by $\text{Tr}[\rho|\psi_k\rangle\langle\psi_k|]$ as Eq. (5).

If we apply an unitary matrix U on a system, then the state of system is changed from ρ to $U\rho U^*$.

If the system 1 is in state ρ_1 , the system 2 is in state ρ_2 , and systems 1 and 2 are NOT entangled with each other, then the state of systems 1 and 2 is $\rho_1 \otimes \rho_2$.

Suppose that physical systems A and B are in the state

$$\tau_{AB} = \rho_1 \otimes \sigma_1 + \dots + \rho_n \otimes \sigma_n,$$

where ρ_i 's are matrices on the state space A and σ_i 's are those on B. Suppose that we measure an observable of the physical system A

$$M=\sum_{k=1}^m kP_k.$$

The probability of getting the measurement outcome k is

$$\operatorname{Tr}[\tau_{AB}(P_k \otimes I)] = \operatorname{Tr}\left[\sum_{i=1}^n (\rho_i \otimes \sigma_i)(P_k \otimes I)\right]$$
$$= \operatorname{Tr}\left[\sum_{i=1}^n \rho_i P_k \otimes \sigma_i\right]$$
$$= \sum_{i=1}^n \operatorname{Tr}[\rho_i P_k \otimes \sigma_i]$$
$$= \sum_{i=1}^n \operatorname{Tr}[\rho_i P_k]\operatorname{Tr}[\sigma_i]$$
$$= \sum_{i=1}^n \operatorname{Tr}[\operatorname{Tr}[\sigma_i]\rho_i P_k]$$
$$= \operatorname{Tr}\left[\left(\sum_{i=1}^n \operatorname{Tr}[\sigma_i]\rho_i\right)P_k\right]$$

The probability distribution of measurement outcomes (P_k) is the same as measuring the state

$$\sum_{i=1}^{n} \operatorname{Tr}[\sigma_i] \rho_i \tag{9}$$

of the system A. The state (9) is called the partial trace of τ_{AB} over B, and denoted by $\text{Tr}_B[\tau_{AB}]$.

Exercise

1. Suppose that the system is in the state $|0\rangle$ with probability 0.5 and $|1\rangle$ with probability 0.5. Write the corresponding density matrix as a 2 × 2 matrix.

2. Suppose that the system is in the state $(|0\rangle + |1\rangle)/\sqrt{2}$ with probability 0.5 and $(|0\rangle - |1\rangle)/\sqrt{2}$ with probability 0.5. Write the corresponding density matrix as a 2 × 2 matrix.

3. Let *P* be an $n \times n$ projection matrix of rank 1 ($n \ge 2$). Show that $\operatorname{Tr}[P] = 1$. (Hint: A projection matrix of rank 1 can be written as $|\varphi\rangle\langle\varphi|$ with some vector $|\varphi\rangle$ with $|||\varphi\rangle|| = 1$.)

4. Let *M* be a 2 × 2 Hermitian matrix with its spectral decomposition $M = \lambda_1 P_1 + \lambda_2 P_2$ with $\lambda_1 \neq \lambda_2$. Show that $\text{Tr}P_1 = \text{Tr}P_2 = 1$ by using your answer to Problem 3. (Hint: What are the ranks of P_1 and P_2 ?) 5. Let $\rho = I/2$, where *I* is the 2 × 2 identity matrix. Suppose that the system is in state ρ and we measure the observable *M* given in Problem 4. Compute the probabilities of getting outcomes λ_1 and λ_2 by using your answer to Problem 4. 6. Let $|\Psi\rangle = (|0_A 1_B\rangle + |1_A 0_B\rangle)/\sqrt{2}$ be a state of systems A and B. Compute the partial trace of $|\Psi\rangle\langle\Psi|$ over B. $\{|0_A\rangle, |1_A\rangle\}$ and $\{|0_B\rangle, |1_B\rangle\}$ are orthonormal bases of A and B, respectively. The state $|\Psi\rangle$ corresponds to the situation in which the sender applied *X* to his qubit for the superdense coding.

7. Suppose that we measure the observable $M \otimes I$ of the system with state $|\Psi\rangle$. Compute the probabilities of getting outcomes λ_1 and λ_2 by using your answers of Problems 5 and 6. (Hint: What density matrix on the system A represents the state $|\Psi\rangle$?)

Let $|\Phi\rangle = (|0_A 0_B\rangle + |1_A 1_B\rangle)/\sqrt{2}$. We can compute the partial trace of $|\Phi\rangle\langle\Phi|$ over B as follows: The density matrix corresponding $|\Phi\rangle\langle\Phi|$ is

$$\begin{split} |\Phi\rangle\langle\Phi| &= \frac{1}{2}(|0_A\rangle\langle 0_A|\otimes |0_B\rangle\langle 0_B| + |1_A\rangle\langle 1_A|\otimes |1_B\rangle\langle 1_B| + \\ &|0_A\rangle\langle 1_A|\otimes |0_B\rangle\langle 1_B| + |1_A\rangle\langle 0_A|\otimes |1_B\rangle\langle 0_B|) \end{split} \tag{10}$$

Observe that $\operatorname{Tr}[|0_B\rangle\langle 1_B|] = \operatorname{Tr}[|1_B\rangle\langle 0_B|] = 0$ and $\operatorname{Tr}[|0_B\rangle\langle 0_B|] = \operatorname{Tr}[|1_B\rangle\langle 1_B|] = 1$.

Thus, the partial trace of (10) over B is

$$\begin{aligned} &\frac{1}{2} \underbrace{\left(\operatorname{Tr}[|0_B\rangle\langle 0_B|] \right)}_{=1} |0_A\rangle\langle 0_A| + \underbrace{\operatorname{Tr}[|1_B\rangle\langle 1_B|]}_{=1} |1_A\rangle\langle 1_A| + \\ &\underbrace{\operatorname{Tr}[|0_B\rangle\langle 1_B|] }_{=0} |0_A\rangle\langle 1_A| + \underbrace{\operatorname{Tr}[|1_B\rangle\langle 0_B|] }_{=0} |1_A\rangle\langle 0_A|) \\ &= \frac{1}{2} (|0_A\rangle\langle 0_A| + |1_A\rangle\langle 1_A|) \\ &= I/2 \end{aligned}$$