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Answers of prev. exercises

1. Yes.
2.

𝑋 = +1 ⋅ 12 (
1 1
1 1 ) + (−1) ⋅ 12 (

1 −1
−1 1 )

3. outcome probability state

+1 0.5 1
2
( 1 + 𝑖
1 + 𝑖 )

−1 0.5 1
2
( 1 − 𝑖
𝑖 − 1 )

4. The observable 𝑋 distinguishes the / and \ polarizations.
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Orthonormal basis (Preparation for Q5)
{|𝜑1⟩, …, |𝜑𝑛⟩}: an orthonormal basis of 𝑉.
|𝜓⟩ ∈ 𝑉 can be written as

𝑎1|𝜑1⟩ +⋯+ 𝑎𝑛|𝜑𝑛⟩.

We have

(
𝑛
∑
𝑖=1

|𝜑𝑖⟩⟨𝜑𝑖|) |𝜓⟩ =
𝑛
∑
𝑖=1

|𝜑𝑖⟩⟨𝜑𝑖|𝜓⟩ =
𝑛
∑
𝑖=1

|𝜑𝑖⟩𝑎𝑖 = |𝜓⟩.

Thus 𝑛
∑
𝑖=1

|𝜑𝑖⟩⟨𝜑𝑖| = 𝐼. (1)

Assume 𝑖 ≠ 𝑗.

|𝜑𝑖⟩⟨𝜑𝑖||𝜑𝑗⟩⟨𝜑𝑗| = 0, (2)
|𝜑𝑖⟩⟨𝜑𝑖||𝜑𝑖⟩⟨𝜑𝑖| = |𝜑𝑖⟩⟨𝜑𝑖|, (3)

(|𝜑𝑖⟩⟨𝜑𝑖|)∗ = (⟨𝜑𝑖|)∗(|𝜑𝑖⟩)∗ = |𝜑𝑖⟩⟨𝜑𝑖|. (4)
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Properties of a projector

𝑃1 = |𝜑1⟩⟨𝜑1| +⋯ + |𝜑𝑚⟩⟨𝜑𝑚|
𝑃2 = |𝜑𝑚+1⟩⟨𝜑𝑚+1| +⋯ + |𝜑𝑛⟩⟨𝜑𝑛|

𝑃∗1 = 𝑃1 (by Eq. (4)) (5)
𝑃1𝑃2 = 0 (by Eq. (2)) (6)
𝑃1𝑃1 = 𝑃1 (by Eqs. (2) and (3)) (7)
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Answer to Q5

5. Prove 𝑛
∑
𝑗=1

‖
‖𝑃𝑗|𝜑⟩

‖
‖
2
= 1.

𝐴: Hermitian matrix
𝐴 = 𝜆1𝑃1 +⋯+ 𝜆𝑛𝑃𝑛

Two eigenvectors belonging to different eigenvalues are orthogonal (see
your linear algebra textbook).

⇓

There exists an orthonormal basis {|𝜓𝑖𝑗⟩} such that {|𝜓𝑖1⟩, …, |𝜓𝑖𝑚𝑖⟩} is an
orthonormal basis of the eigenspace belonging to 𝜆𝑖.

⇓
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𝑃𝑖 = |𝜓𝑖1⟩⟨𝜓𝑖1| +⋯ + |𝜓𝑖𝑚𝑖⟩⟨𝜓𝑖𝑚𝑖|.

𝑃∗𝑖 = 𝑃𝑖 (by Eq. (5)),

𝑃𝑖𝑃𝑗 = { 𝑃𝑖(𝑖 = 𝑗),
0(𝑖 ≠ 𝑗) (by Eqs. (6) and (7)),

𝑃1 +⋯+ 𝑃𝑛 = 𝐼 (by Eq. (1)).

𝑛
∑
𝑖=1

‖𝑃𝑖|𝜑⟩‖
2 =

𝑛
∑
𝑖=1
⟨𝜑|𝑃∗𝑖 𝑃𝑖|𝜑⟩ =

𝑛
∑
𝑖=1
⟨𝜑|𝑃𝑖𝑃𝑖|𝜑⟩

=
𝑛
∑
𝑖=1
⟨𝜑|𝑃𝑖|𝜑⟩ = ⟨𝜑| (

𝑛
∑
𝑖=1

𝑃𝑖) |𝜑⟩

= ⟨𝜑|𝜑⟩ = 1.
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Answer to Q6
Prove that Eq. (1) (defining 𝑃𝑊) is the projection onto𝑊 in the sense of the
previous unit of this course.

𝑉: linear space
𝑊: linear subspace of 𝑉
𝑊⟂: orthogonal complement of𝑊 in 𝑉
One has to prove

1 𝑃𝑊|𝜑⟩ ∈ 𝑊 for any |𝜑⟩, and
2 |𝜑⟩ − 𝑃𝑊|𝜑⟩ ∈ 𝑊⟂ for any |𝜑⟩.

{|𝜓1⟩, …, |𝜓𝑚⟩}: orthonormal basis of𝑊
{|𝜓𝑚+1⟩, …, |𝜓𝑛⟩}: orthonormal basis of𝑊⟂

𝑃𝑊 =
𝑚
∑
𝑖=1

|𝜓𝑖⟩⟨𝜓𝑖|,

𝑃𝑊⟂ =
𝑛
∑

𝑖=𝑚+1
|𝜓𝑖⟩⟨𝜓𝑖|.
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𝑃𝑊 + 𝑃𝑊⟂ = 𝐼, (by Eq. (1))
|𝜑⟩ = 𝑃𝑊|𝜑⟩ + 𝑃𝑊⟂|𝜑⟩

𝑃𝑊|𝜑⟩ =
𝑚
∑
𝑖=1

|𝜓𝑖⟩⟨𝜓𝑖|𝜑⟩ ∈ 𝑊,

|𝜑⟩ − 𝑃𝑊|𝜑⟩ = 𝑃𝑊⟂|𝜑⟩ =
𝑛
∑

𝑖=𝑚+1
|𝜓𝑖⟩⟨𝜓𝑖|𝜑⟩ ∈ 𝑊⟂

Observe that the above two equalities are what we had to verify.
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Manipulation of a quantum system
Manipulation of a quantum system without extracting information is
represented by a unitary matrix 𝑈.
A unitary matrix 𝑈 is a matrix such that 𝑈𝑈∗ = 𝐼.

Example:

|−⟩ = ( 1
0 ) , | | ⟩ = ( 0

1 ) , 𝑋 = ( 0 1
1 0 ) ,

𝑍 = ( 1 0
0 −1 ) ,

𝑋𝑋∗ = 𝐼,
𝑍𝑍∗ = 𝐼,
𝑋|−⟩ = | | ⟩,
𝑋| | ⟩ = |−⟩,
𝑍|−⟩ = |−⟩,
𝑍| | ⟩ = −| | ⟩,
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Example with polarization

The below is just rotating, neither 𝑋 or 𝑍. Source: OpenStax College.
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Tenser product, or Kronecker product

𝐴: 𝑚 × 𝑛matrix, 𝐵: 𝑝 × 𝑞matrix

𝐴⊗ 𝐵 =
⎛
⎜
⎜
⎝

𝐴11𝐵 𝐴12𝐵 ⋯ 𝐴1𝑛𝐵
𝐴21𝐵 𝐴22𝐵 ⋯ 𝐴2𝑛𝐵
⋮ ⋮ ⋮

𝐴𝑚1𝐵 𝐴𝑚2𝐵 ⋯ 𝐴𝑚𝑛𝐵

⎞
⎟
⎟
⎠

The tensor product of column vectors is defined by regarding column
vectors as𝑚 × 1 and 𝑝 × 1matrices.
The tensor product of row vectors is similarly defined.
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Properties of tensor products
𝛼: a complex number

𝛼(|𝜑⟩ ⊗ |𝜓⟩) = (𝛼|𝜑⟩) ⊗ |𝜓⟩
= |𝜑⟩ ⊗ (𝛼|𝜓⟩)

(|𝜑1⟩ + |𝜑2⟩) ⊗ |𝜓⟩ = |𝜑1⟩ ⊗ |𝜓⟩ + |𝜑2⟩ ⊗ |𝜓⟩
|𝜑⟩ ⊗ (|𝜓1⟩ + |𝜓2⟩) = |𝜑⟩ ⊗ |𝜓1⟩ + |𝜑⟩ ⊗ |𝜓2⟩

(similar relations hold for matrices)

(𝐴 ⊗ 𝐵)(|𝜑⟩ ⊗ |𝜓⟩) = (𝐴|𝜑⟩) ⊗ (𝐵|𝜓⟩)
= 𝐴|𝜑⟩ ⊗ 𝐵|𝜓⟩

(⟨𝜑1| ⊗ ⟨𝜑2|)(|𝜓1⟩ ⊗ |𝜓2⟩) = ⟨𝜑1|𝜓1⟩ ⋅ ⟨𝜑2|𝜓2⟩
(𝐴 ⊗ 𝐵)∗ = 𝐴∗ ⊗ 𝐵∗

(𝐴 ⊗ 𝐵)−1 = 𝐴−1 ⊗ 𝐵−1

𝑉,𝑊: linear spaces
𝑉 ⊗𝑊: linear space spanned by {|𝜑⟩ ⊗ |𝜓⟩ ∶ |𝜑⟩ ∈ 𝑉, |𝜓⟩ ∈ 𝑊}.
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Tensor product is not the direct product

dim𝑉 ⊗𝑊 = dim𝑉 × dim𝑊, while
dim𝑉 ×𝑊 = dim𝑉 + dim𝑊.

Suppose that ⃗𝑣 ∈ C2 and ⃗𝑤 ∈ C3.
The direct product ( ⃗𝑣, ⃗𝑤) has 5 numbers as its components,
while the tensor product ⃗𝑣 ⊗ ⃗𝑤 has 6 numbers as its component.
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Composite system

A quantum system 1 is represented by a linear spaceℋ1.
A quantum system 2 is represented by a linear spaceℋ2.

The quantum system consisting of system 1 and system 2 is represented by
a vector inℋ1 ⊗ℋ2.

Applying a unitary operator𝑈1 to system 1 is equivalent to applying𝑈1⊗ 𝐼
to the composite system.

Measuring an observable 𝐴1 of system 1 is equivalent to measuring the
observable 𝐴1 ⊗ 𝐼 of the composite system.
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Entangled state
𝑉,𝑊: linear space
Some vector in 𝑉 ⊗𝑊 cannot be written as |𝜑⟩ ⊗ |𝜓⟩ for any |𝜑⟩ ∈ 𝑉 and
|𝜓⟩ ∈ 𝑊.

1
√2

{( 1
0 ) ⊗ ( 1

0 ) + ( 0
1 ) ⊗ ( 0

1 )} = 1
√2

⎛
⎜
⎜
⎝

1
0
0
1

⎞
⎟
⎟
⎠

(8)

( 𝑎
𝑏 ) ⊗ ( 𝑐

𝑑 ) =
⎛
⎜
⎜
⎝

𝑎𝑐
𝑎𝑑
𝑏𝑐
𝑏𝑑

⎞
⎟
⎟
⎠

(9)

If 𝑎𝑐 ≠ 0 and 𝑏𝑑 ≠ 0, then 𝑎 ≠ 0, 𝑏 ≠ 0, 𝑐 ≠ 0, and 𝑑 ≠ 0. Therefore,
Eq. (8) cannot be expressed as Eq. (9).

A quantum state that cannot be expressed as |𝜑⟩ ⊗ |𝜓⟩ is called an
entangled state.
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Subsystem of a composite system

A composite system consists of systems 1 and 2 is in an entangled state.

⇓

The state of system 1 cannot be expressed by a state vector.

The state vector is an incomplete expression of quantum states.

⇓ But

Any quantum state can always be expressed as a state vector of some
larger system (“purification” in unit 7).
Matrix expression of the quantum state does not have such a
drawback (“partial trace” in unit 6).
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Spectral decomposition of a tensor product

𝐴, 𝐵: Hermitian matrices
Spectral decompositions of 𝐴 and 𝐵:

𝐴 = 𝜆1𝑃1 +⋯+ 𝜆𝑚𝑃𝑚,
𝐵 = 𝜂1𝑄1 +⋯+ 𝜂𝑛𝑄𝑛.

The spectral decomposition of 𝐴⊗ 𝐵 is given by

𝐴⊗ 𝐵 =
𝑚
∑
𝑖=1

𝑛
∑
𝑗=1

𝜆𝑖𝜂𝑗𝑃𝑖 ⊗𝑄𝑗. (10)

Provide an example on the black board.
From the above equation, we can see that the set of eigenvalues of 𝐴⊗ 𝐵
is {𝜆𝑖𝜂𝑗 ∣ 𝑖 = 1, … ,𝑚, 𝑗 = 1, …, 𝑛}.

Matsumoto (Nagoya U.) QIP Course 3: Basics of QIP (Part 2) Aug. 2019 19 / 21



Exercises (60 min.?)
Please discuss them with other students. You are also welcomed to talk
with the lecturer.
You are not forced to solve the following problems, but you must
able to quickly solve them, in order to follow the subsequent
lectures.

|−⟩ = ( 1
0 ) , | | ⟩ = ( 0

1 ) , 𝑋 = ( 0 1
1 0 ) ,

𝑍 = ( 1 0
0 −1 ) , |Ψ⟩ =

|−⟩ ⊗ |−⟩ + | | ⟩ ⊗ | | ⟩
√2

𝐼 is the 2 × 2 identity matrix. When you answer to the following, avoid
expanding vectors into their components, and insteadly use the equalities
in p. 14 as much as possible.
1. Show that the length (norm) of |Ψ⟩ is 1.
2. Show that 𝑋 and 𝑍 are unitary matrices.
3. Express (𝑋 ⊗ 𝐼)|Ψ⟩ in terms of |−⟩ and | | ⟩. Hint: Use relations in p. 14.
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4. Express (𝑍 ⊗ 𝐼)|Ψ⟩ in terms of |−⟩ and | | ⟩. 5. Suppose that one
measures the observable 𝑍 ⊗ 𝐼 of the system in the state |Ψ⟩. For each
measurement outcome, calculate the probability of getting the outcome
and the state after measurement.
6. Is 𝑍 ⊗ 𝑍 a Hermitian matrix?
7. Is 𝑍 ⊗ 𝑍 a unitary matrix?
8. Write all the eigenvalues of 𝑍 ⊗ 𝑍, an orthonormal basis of each
eigenspace, and compute the spectral decomposition of 𝑍 ⊗ 𝑍.
9. Answer Question 5 with 𝑍 ⊗ 𝐼 replaced with 𝑍 ⊗ 𝑍.
10 (Optional for non-math students). Prove that Eq. (10) is the spectral
decomposition of 𝐴⊗ 𝐵. You must calculate the set of eigenvalues of
𝐴⊗ 𝐵 and the projectors onto its eigenspaces. It is not enough to simply
prove the equality in Eq. (10).

Matsumoto (Nagoya U.) QIP Course 3: Basics of QIP (Part 2) Aug. 2019 21 / 21


