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1. Trends



ANERAN

Intel Acquisition of Altera nowpartof intel

 CPU market reaches to the end of growing?
* FPGA “potential” for non-Neumann model

e Stratix 10 series (toward data center)

INTEL" PAC WITH INTEL” STRATIX" 10 FPGA

Highest bandwidth programmable
acceleration platform with

data center-grade software stack
enabling in-line processing and
memory-intensive applications

FEATURES

2.8M DDR4 DIMM 2% 100G Y length, full B 40 5o 51

logic memory, height, dual :
elements 4 channels, 32GB PCle Gen3 x16 slot PCle card el




Data Center FPGA Acceleration

* Up to 1/3 of cloud service provider nodes to use
FPGAs by 2020

* Al (Neural network), security, big-data

Image Identification Security Big Data
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Algorithms: Convolutional Neural Encryption Comprression

Applications:

Network

CPU FPGA CPU FPGA CPU + FPGA

Discrete FPGA Co-Packaged CPU + FPGA Integrated CPU + FPGA

>2X performance increase through integration
Reduces total cost of ownership (TCO) by using standard server infrastructure
Increases flexibility by allowing for rapid implementation of customer IP and algorithms




Requirements for Al Computing

Cloud Embedded

Many classes (1000s) Few classes (<10)

Large workloads Frame rates (15-30 FPS)
High efficiency Low cost & low power
(Performance/W) (1W-5W)

Server form factor Custom form factor

J. Freeman (Intel), “FPGA Acceleration in the era of high level design”, HEART2017 6



AWS supports FPGA Instance

e As an EC2 Instances
e Xilinx FPGA

* OpenCL-based programming
e SDAccel 2019.1
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Microsoft Datacenter Server

e Catapult project
* Bing and Azure deployed new multi-FPGA

* Arrial0 FPGAs on Azure cloud system

https://www.microsoft.com/en-us/research/project/project-catapult/



IBM put big data FPGA design in
Cloud

IBM's cloud service will host the Xilinx
RECOMMENDED ,
ARTICLES SDAccel development environment
— which will allow developers to
[

describe their algorithms in OpenCL,

C, and C++ and then compile directly

to Xilinx FPGA-based acceleration boards.

ARM TechCon: FPGA
module has 16Gbit/s This is an open access cloud service, called SuperVessel,

/0 which can be used by application developers, system
designers, and academic researchers to create, test and

pilot their FPGA designs for big data analytic processors

and even data gathering loT node devices.

http://www.electronicsweekly.com/news/xilinx-and-ibm-put-big-data-fpga-design-
in-the-cloud-2016-04/



2. Killer Applications
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JP Morgan

* FPGA implementation of derivative risk analysis

e Reduced company-wide risk analysis from 8H to 4min
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igh Frequency Trading (HFT)

e Buy and sell in microseconds
* Not in time for software

* Send trading packets while receiving stock price
packets

https://www.youtube.com/watch?v=uDy_8Q0GdTk
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Bitcoin Mining

e Brute force hash value

* Flexible response to specification changes

https://en.bitcoin.it/wiki/Open_Source_FPGA_Bitcoin_Miner
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Tsunami Simulator

* Tsunami prediction by grid method
* Qutperforms the GPU with a 3000-stage pipeline
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Bing Search by Microsoft

e Feagture extraction and neural network inference

e 2x increase in Throughput

95% Query Latency vs. Throughput

| SW + EPGA
2x Increase in .

Throughput 4
29% Latency -
Reduction / : < 30% Cost
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https://www.microsoft.com/en-us/research/publication/a-reconfigurable-fabric-for-
accelerating-large-scale-datacenter-
services/?from=http%3A%2F%2Fresearch.microsoft.com%2Fpubs%2F212001%2Fcatap
ult_isca_2014.pdf 15



Azure Translation Service

e CPU: 14 seconds, FPGA: 2.6 secs
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Why?

 Microsoft thinks that the Moore’s low reaches to
the end

 Hardware specialization

Chart 8: IBS Calculation of Cost per Transistor by Node

» Economics will increasingly
drive silicon ecosystem

« Number of leading-edge fab
vendors shrinking

« Cost of performance growth
will increase

» Hardware specialization will be
critical

17



What’s next of CPUs?

* ASIC

* Mass production costs tens of millions to hundreds of millions of yen, development

period is months to years

* Best performance and power

* GPU

Very good at performance a large amount of floating-point arithmetic and SIMD
arithmetic throughput

Software engineers can develop relatively easily with CUDA and OpenCL

Flexible circuit design like ASIC and FPGA is not possible, it is not good at
application specified

* FPGA

The upper limit of the clock is about several hundred MHz, and the circuit scale
that can be assembled is much smaller than that of ASIC and GPU

Development is not as easy as GPU

Circuit configuration can be freely rewritten according to the application, so, some
applications can get a great effect

Compared to ASIC, the development period is short and it is strong against
application specification changes 18



Microsoft Strategy

e With ASIC, development costs and time are large
* Development and operation in units of 5 years
* Prediction (additional functions and load) after 5 years is
impossible

* There are 200 other cloud services besides Bing

* FPGA that can update circuit design every day

* Flexibility to adapt to various
@ FPGAs

application requirements and changes

* High efficiency of dedicated hardware
* Not as good as ASIC

Generality 3
(CPUs)

Accelerators

19



3. Al (Deep-Learning)
Accelerator

20



Artificial Intelligence is everywhere




Deep-Learning for Embedded Vision System




Object Detection

J. Redmon and A. Farhadi, "YOLOv3: An Incremental Improvement," arXiv, 2018 23



Semantic Segmentation

-

E. Shelhamer, J. Long and T. Darrell, "Fully Convolutional Networks for Semantic Segmentation," IEEE Trans. on 24
Pattern Analysis and Machine Intelligence, Vol.39, No.4, 2017, pp. 640 - 651.



Pose Estimation

AW

Z. Cao, T. Simon, S.-E. Wei and Y. Sheikh, " Realtime Multi-Person 2D Pose Estimation
using Part Affinity Fields," CVPR, 2017.
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Depth Estimation
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D. Eigen, C. Puhrsch and R. Fergus, "Depth Map Prediction from a Single Image using a
Multi-Scale Deep Network," arXiv:1406.2283, 2014. 26



Intelligence and Deep Learning

Brain Inspired

Al

Machine
Learning

J. Park, “Deep Neural Network SoC: Bringing deep learning to mobile

devices,” Deep Neural Network SoC Workshop, 2016. 7



Artificial Neuron (AN)

XO:]-
W, (Bias) y = f(u)

Xl Wl N

u y —
W, : f(u) = Ywx

X2 l=0

X;: Input signal
Wi w;: Weight

u: Internal state

XN f(u): Activation function

(Sigmoid, RelU, etc.)
y: Output signal
28



Deep Neural Network (DNN)

) hidden layer 1 hidden layer 2 hidden layer 3
input layer

output layer

happy

sad

mad

curious

Hi B1: imotionsglobal.com 59



Brief History: DNNs
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Accuracy of a DNN

Deep Convolutional

Neural Network (CNN)

30
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Human
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Technological singularity

* The technological singularity (also, simply,
the singularity)!!l is the hypothesis that the
invention of artificial superintelligence will abruptly

trigger runaway technological growth, resulting in
unfathomable changes to human civilization|3]

e Ray Kurzweil predicts the singularity to occur around
2045V

[1] M. John, "When Is the Singularity”? Probably Not in Your Lifetime." The New
York Times. The New York Times Company, 2016.

[2] Singularity hypotheses: A Scientific and Philosophical Assessment. Dordrecht:
Springer. 2012. pp. 1-2.1ISBN 9783642325601.

[3] R. Kurzweil, “The Singularity is Near”, pp. 135-136. Penguin Group, 2005.
32



Why Deep Neural Networks?

omputational Power

33



Computational Power and Big Data

Single-Threaded Integer Performance

100000 . YOU

10000

1000

100

10

° o IBM POWER
* PowerPC

Internet Peak Traffic [Gbps]

Yoo g 0 Fujitsu SPARC
+52% Sun SPARC
peryear DEC Alph

MIPS
* HP PA-RISC

ooooooooooooooooo
ooooooooooooooooo
NNNNNNNNNNNNNNNNNN

High performance computation,
big data, and a progress of Algorithms

(Left): “Single-Threaded Integer Performance,” 2016
(Right): Nakahara, “4>9—2YMHBIFBIRFEI> S > OFGEIR(IN Japanese),” 2014 34



Inference Device

* Flexibility: R&S const, especially for new commoner Algs.

* Power performance efficiency

« FPGA—>Better flexibility and power efficiency

ASIC
(Raspberry Pi3) (Jetson TX2) (UltraZed) (Movidius)

Power Performance

Flexibility Efficiency

35



Requirements for DNNs

7\

M
it ~

Memory
Performance . Storage Power
Bandwidth d
Teraflops 100s of GB/s 10s of GBs 100s of Watts

e 20 Billion MACs (Multiply ACcumulation operation)/image

J. Park, “Deep Neural Network SoC: Bringing dee learning to mobile
dewces " Deep Neural Network SoC Workshop, 2016.

J. Cong and B. Xiao, “Minimizing computation in convolutional
neural networks,” Artificial Neural Networks and Machine Learning
(ICANN2014), 2014, pp. 281-290.
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Machine Learning Arxiv Papers per Year

= ML Arxiv Papers = Moore's Law growth rate (2x/2 years)

40000 35

~100 new ML

Al Platform e

30000

* Flexibility - R&D costs
100 ML papers/day !!
e Power performance

20000

ML Arxiv Papers

10000

Relative to 2009 ML Arxiv Papers

2009 2010 201 2012 2013 2014 2015 2016 2017 ?Oi\“’:

| FPGA ASIC
CPU GPU (Ultra96) (Edge TPU)

(Raspberry Pi3) (Jetson Nano)

Power Performance
Efficiency

37
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Hardware Platform Trend

Legend
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A. Reuther et al., "Survey and Benchmarking of Machine Learning Accelerators,"
arXiv:1908.11348, Aug., 2019. https://arxiv.org/abs/1908.11348 38



Convolution Operation

« Applying multiple-accumulation (MAC) operations
« Occupies more than 90% of computation

Center element of the kernel is placed over the
source pixel. The source pixel is then replaced
with a weighted sum of itself and nearby pixels.

Convolution kernel
(emboss)

New pixel value (destination pixel)

(4 x0)
(0x0)
(0 x0)
(0 x 0)
(0x1)
(0x1)
(0 x0)
(0x1)
+ (-4x2)

-8

XO:]-

W, (Bias)




Binarized Neural Network

e 2-valued (-1/+1) multiplication
* Realized by an XNOR gate

Y
-1 -1 1 0 1
1 +1 -1 » 0 0
+1 -1 -1 1 0
+1 +1 1 1 1

40



Binarized CNN by XNORs

Wy (BlaS)

Wy 7 ) Y
@ Z Jsen(Y) > Z
—>
Wn
. B XNOR multiplier — Area reduction

1 bit precision - Memory size reduction




igher Power Efficiency

e Distance for the memory and ALUxPower

— On-chip memory realization

Memory Read MAC’ Memory Write

R ALU
ef———

* multiply-and-accumulate

Normalized Enerqy Cost’

ALU 1x (Reference)
0.5-1.0 kB
NoC: 200 - 1000 PEs | PE ALU
100 - 500 kB W=]11i{:s ALU

E. Joel et al., “Tutorial on Hardware Architectures for Deep Neural Networks,” MICRO-49, 2016. 42



* FPGA on-chip memories

On-chip Memory Realization

« BRAM (Block RAM) = 100s~1,000s

* Distributed RAM (LUT) = 10,0005~ 100,000s

— Small size, however, wide band

Cf. Jetson TX1(GPU) LPDDR4, 25.6GB/s

10,000@100MHz - 125GB/s

[

Configurable

(

Embedded RAM  Clock Management

Logic Blocks

Embedded DSP
Resources

Circuitry

Resources

43
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Error Rate Reduction

e Introduce a batch normalization

g 100 e 100 w/satch Norm ]
§ 80 § 80
5 5 Ly L VT NSTRRTR A T
,5 60 .g 60
B = [ w/ Batch Norm ]
O 40 o 40
E= 6% Degree (VGG-16) = L—
T 20 g @ 20
O O
0 0
1 80 160 200 1 80 160 200
# of epochs # of epochs
(a) float32 bit precision CNN (b) Binarized CNN

H. Nakahara et al., “A memory-based binarized convolutional deep neural network,”

FPT2016, pp285-288, 2016.
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Ternary Weight Binary Activation Neuron

11 ” * Define the weight to ternary one
0

W WiE-1,0,41}, x, y E{-1,+1}
X 1 1 g ) V] y y
T

Efact y »mprove recognition accuracy by
: )\ expression ability
Xy, W

e Since multiplication by zero weight
Neuron Model is equal to skipping, the number of
mult. can be reduced

1 0 - 41 * Contributions
» Develop training method

0 -1 - O _ » Evaluation of reduction (zero)

ratio by using benchmark
Sparse Matrix

45



Skip Operation for Sparse Convolution

Feature map

X1

X

%

0

0

0
0

0

Sparse weight

0
0

oo
o [
0|0

fact

Only need to compute non-zero weights
and corresponding inputs
* Reduction of number of calculations

* Memory size reduction

Output map

Y

46



Mixed-Precision

* Mandatory for more complex detector
* Former: Binary precision ... Area and performance
 Latter: Higher precision ... Regression (Accuracy)

Binary

Feature maps

) g &)

= A‘ ~
N i
o ]

Class score

Detection

Input
Image CNN

(Frame)

Bounding Box

H. Nakahara et al., “A Lightweight YOLOv2: A Binarized CNN with A Parallel Support Vector Regression for an 47
FPGA,” Int’l Symp. on FPGA (ISFPGA), 2018.



omework 2

1. (Mandatory) How do you think a “Technological
singularity”? Near/Far/Never? why? and what’s happen?

Deadline is 25th, Nov., 2019
Send an E-mail to nakahara@ict.e.titech.ac.jp

with entitled “Homework 2 (your name)”



