Communications and Computer
Engineering II:

Microprocessor 2:
Processor Micro-Architecture

Lecturer : Tsuyoshi Isshiki

Dept. Information and Communications Engineering,
Tokyo Institute of Technology

isshiki@ict.e.titech.ac.jp

mailto:isshiki@vlsi.ss.titech.ac.jp

QU kW=

Lecture Outline

Looking back at CISC vs. RISC
Processor micro-architecture
CISC microcode architecture
RISC Processor pipeline

Cache memory
Instruction-level parallelism

Looking Back at CISC vs. RISC

1) CISC: Complex Instruction-Set Computer (Intel x86)
— Variable instruction length - complex instruction decoder
- Rich addressing mode : many ways to access memory

2) RISC: Reduced Instruction-Set Computer (MIPS, ARM)
— Fixed instruction length - simple instruction decoder
— Memory access : load or store only
— Compute operands & results : registers

e Early computers were all CISC : WHY?

— Programs were most written in assembly language - good
compilers were not available at that time

— Made sense to put more functionality into each instruction
- variable instruction length, rich addressing mode

e What "were” the essential CISC building blocks?
- Microcode-based controller

Processor Micro-Architecture

e Micro-architecture: detail hardware architecture and
behavior of the instruction execution flow

e All CISC architectures used microcode-based
controller, so "micro-architecture” used to mean
microcode architecture - today the terminology
applies to all kinds of processor architecture (since
microcode architectures are mostly non-existence)

Instructio truction] | €Ontrol signals to HW:
program = decoder e Memory: R/W, addr, din

memory PC] [e ALU/FPU inputs
_________ — ~, | * ALU/FPU op-type
e Register inputs, outputs
data /- e Register write enable
memory) [_eeee FPU e PC-update enable

_ /| * And a lot more...

Uk wh =

Lecture Outline

Looking back at CISC vs. RISC
Processor micro-architecture
CISC microcode architecture
RISC Processor pipeline

Cache memory
Instruction-level parallelism

CISC Microcode Architecture

e Microcode: hardware-level “instructions” for
implementing finite state machine(FSM)
(“programmable state machine”) that generates

all control signals to the hardware
Micro-
microcode| _code

FSM memory

instructior . .
program ginstruction Control signals to HW:

memory K= decoder e Memory: R/W, addr, din
PC] [e ALU/FPU inputs
--------- — ~ | ALU/FPU op-type
registers e Register inputs, outputs
data e Register write enable
memory) Y _eees EPU e PC-update enable
e And alot more...

N /

CISC Microcode Architecture

Horizontal microcode: entries in the microcode
represent control signal outputs
FSM state transition: “jmp-type” “jmp-addr”
contains the next microcode address and necessary
action (next, jump, call, dec-jump)

m.r/w || m.addr | m.di alu.i0 | alu.il || alu.op | ®® |jmp-type|jmp-addr
0:none O:pc.o O:pc.o O0:m.do O:m.do O:NOP 0: next
l:read 1l:alu.o 1l:alu.o 1lireg.0 1l:irimm 1:ADD 1: jump
2: write 2:reg.0 2:reg.0 2:reg.l 2:reg.0 2:.... 2: call
3:reg.l 3:reg.l 3:reg.2 3:reg.l 3: dec-jump
4:reg... A4.reg... 4:reg... 4:reg... Micro-
pc.o0 pcC.i code
PC instruction | | memory
deco microcode
(reg.xx reg.xx > DO o FSM
memory /] 3:' =
XXX =
m.do .
—,—> registers 7

Instruction Execution Cycle

1. Fetch: read instruction at PC
2. Decode: decode instruction

3.

a) PC < PC+ 1

ir: instruction register
reg-ID - ir.ra
imm =2 ir.imm

Execute (ADD: M[reg] €« M[reg] + imm)
a) Load: alu.i0 €« Mlir.ra]
b) Move: alu.il € ir.imm
c) Add: alu.o € alu.i0 + alu.il
d) Store: Mlir.ra] € alu.o

memory

iﬁ>

pc.o0

PC

pC.i

< r:—l—eg.xx

N
reg.xx)

registers

instruction

decol” microcode
FSM

ALU
alu.o

Micro

brogram

m.r/w

m.addr

m.di

alu.io

alu.il

alu.op

FETCH: fetch and decod

jmp-type

jmp-addr

Load instruction
- p_p/

PC €< PC + 1 (not shown here)

#

read | pc.o /% * */K* ee | next &
* % * N Z * ee (dec-jump|| JP_TBL
ADD: Mireg] € Mireg] +irimm _| Read mem-operand |
read ir.ra =71 ¥ - ee® | next *
none * * m.do | irimm | ADD |ee| next *
write ir.ra alu.o * \\ ~ ®® | jump FET%
—/ <
Store ALU output Set ALU input ports & op Z
a) Load: alu.i0 € MJir.ra] —
b) Move: alu.il € ir.imm ADD finished...

c)
d)

Add: alu.o € alu.i0 + alu.il

Store: M[ir.ra] € alu.o

Go back to FETCH

9

Instruction Decode and Jump

m.r/w

m.addr

m.di

alu.io alu.il

alu.op

FETCH: fetch and decode-jump

jmp-type

jmp-addr

ir € M[PC] (not shown here)

read

pc.o

*

/K

*

*

*

*

% %

*

NOP: JP_TBL+0

4 microcodes

ADD: JP_TBL + 4

4 microcodes

#SUB: JP_TBL+8

4 microcodes /|

AND: JP_TBL + 12

If cannot fit within
4 microcodes, use “cal

I”

next

dec-jump

JP_TBL

g

ir.opcode:

000 > JP_TBL + 0 : NOP
001 -> JP_TBL + 4 : ADD
010> JP_TBL + 8 : SUB
011 - JP_TBL + 12 : AND

10

CISC = RISC Transition (Late 1980's)

e Microcode-based controller: enabled flexible
architecture extension while maintaining
instruction-set backward compatibility

— To gain performance, instructions became even
more complex

e Game-changing technology trends:

- Good compilers began to emerge: easier to
program at high-level language - compilers tend
to use only a fraction of the rich instruction-set

— VLSI technology: single-chip "microprocessor”,
advance in VLSI design CAD tools, faster memory
(near-chip cache) = gain performance through

higher clock frequency operation
- RISC (Reduced Instruction-Set Computer)!!!
- Key architecture feature : PIPELINING!

11

QU wWwh =

Lecture Outline

Looking back at CISC vs. RISC
Processor micro-architecture
CISC microcode architecture
RISC Processor pipeline

Cache memory
Instruction-level parallelism

12

Instruction
fetch

IF

PC

Inst.
MEM

nextPC

I
I
1

MIPS Pipeline

Instruction

decode

ID

Sign

ext

Reg
File

Execute

EX

-
i

imm

ALU

<<2

e

T_ din

Memory
access

MEM

Data
MEM

1

| dst-ID

alu

Write
back

WB

kb

=t e o

=t e o

-]

=t e o

13

CISC Microcode vs. RISC Pipeline

IF

ID

EX

MEM

WB

IF

ID

EX MEM|WB | IF | ID | EX MEM| WB

>

microcode execution

CISC Microcode-based control
e Requires multiple cycles per instruction

IF | ID | EX MEM| WB
IF | ID | EX IMEM| WB
IF | ID | EX IMEM| WB
..

RISC pipeline

e 1 instruction per cycle
(ideal case) > non-ideal
cases : pipeline hazards

e Hard-wired FSM control
- simple instructions

14

Pipeline Hazards

Data hazards: read-after-write (RAW)
dependency on a register among multiple

Instructions
R1 &€ R1 + R2
R3 € R1 + R3

Control hazards: dependency on PC in
conditional branch

if (R1 == 0) PC € PC + imm16

Structural hazards: HW resource shared by
multiple stages

mem mem

IF ID EX MEM| WB

15

e Data hazards: read-after-write (RAW)

Data Hazards

dependency on a register among multiple
instructions > how to avoid pipeline stall ?

R1 ¢ R1 + R2
R3 ¢ R1 + R3

3 stall cycles

R1 ¢ R1 + R2
R2 &< R2 + R3
R3 ¢ R1 + R3

2 stall cycles

IF

ID

EX

MEM

WB

R1

IF

ID

ID

ID

ID

EX

MEM

WB

pipeline stall

R1 ¢ R1 + R2
R2 & R2 + R3
R4 &< R3 + R5
R3 ¢ R1 + R3

1 stall cycles

Data Forwarding

Directly forward the data from MEM/WB
stages to DC/EX stage

R1 ¢ R1 + R2
R3 ¢ R1 + R3

IF

ID

EX k\/IEM
\

WB

IF

ID

NEX

WB

R1 ¢ R1 + R2
R2 &< R2 + R3
R3 ¢ R1 + R3

IF

ID

EX

IF

ID

WB

IF

MEM

WB

R1 ¢ R1 + R2
R2 &€ R2 + R3
R4 < R3 + R5
R3 ¢ R1 + R3

IF

ID

EX

MEM

IF

ID

WB

IF

ID

MEM

WB

IF

EX

MEM

WB

17

Data Forwarding Paths

PC

R1 < R1 + R? IF | ID | EX [MEM| WB
R3 € R1 + R3 F | 10 NEX [MEM WE
IF || ID [EX | MEM |
Inst. Reg
MEM | File tﬂé 1
> - —>| |
sign ALU | %m’:\j‘
alu

<<2
nextPC }

+4

WB

& "L

18

Data Forwarding Paths

WB

R1 & R1 + R2 IF | ID | EX MEMkWB
R2 € R2 + R3 IF | ID | EX MEM WB
R3 < R1 + R3 F | 0 |NEx |MEM| wB
IF | ID] EX | MEM ||
Inst. Reg
PC=>IMEM™ File tﬂé >\| B
e !
sign ALU Data | |
ext — | JMEM
<<2 r&/ alu
Wy nextPC } >\|, din
{ TF7 | dst-ID

19

Data Forwarding Paths

R1 < R1 + R2 IF | ID | EX [MEM\WB
R2 & R2 + R3 IF | ID | EX |0\EM WB
R4 & R3 + R5 IF | ID E\ MEM| WB
R3 € R1 + R3 IF | IDY EX [MEM| WB
IF | ID] EX | MEM
Inst. Reg
PC=>IMEM™ | File _tl}] B
sign ALU Data
ext — | JMEM
<<2 r&/ alu
Wy nextPC _)i:l% T din
{ \ + / J dst-ID

WB

20

Load Hazards

e Load hazards: read-after-write (RAW) dependency
after LOAD instruction

- Load data becomes available only after MEM stage

R1 < M[R2] - EX ~ MEM ~ WB
R3 < R1 +R3 0
—>| | N
1 stall cycles ' Data |
- ALU [1 1 -ﬂ
IF ID | EX MEM\WB ool
\ R1 . —
¥ .
IF | ID | ID |YEX |MEM| WB _)] din_ W 4 |
o X] dst-ID
pipeline stall cannot be avoided L L _j
even with data forwarding

21

Control Hazards

e Control hazards: dependency on PC in
conditional branch > how to avoid pipeline

stall ??

if (R1 == 0) PC ¢ PC + imm16

- IF

ID | EX MEM| WB

IF ID \
PC € PC+imm1l6
Inst.) Reg \
21 PCITIMEM | [T File iD* \
{ K M IF IF ID EX MEM| WB
SIgn
> ‘ext \
|
- pipeline stall
nextPC = (branch address not
g -»D9 available at this point)

Branch Delay Slot

Branch delay slot: one or more instructions after

the branch instruction (1 delay slot in MIPS case)
— Instruction at the delay slot is executed regardless

of the branch outcome
- Safest way is to put a NOP in the delay slot
— Clever use of delay slot decreases branch penalty

R2 < R1 + R3;
if (R1 == 0) goto L1; > | if (R1 == 0) goto L1;
NOP; // delay slot R2 < R1 + R3;

e Branch delay slots can be filled by instruction in the
branch-taken path or branch-not-taken path, as long
as these instructions does not have side effects on

the other branch path

23

Structural Hazards

e HW resource shared by multiple stages

— Multi-cycle instruction (such as DIV): occupies
EX stage continuously, preventing the following
instruction to enter EX stage

- Memory: simultaneous access can happen at IF
and MEM stages - Can we separate instruction

memory and data memory???

IF ID EX 1 MEM [‘a’
program
Inst. —> Reg memory
—>{ PC 4> ME |> Fil iD> -
M L=
> J ________
sSign Data
ALU i >
ext imm. MEM data
7] | memory
extPC -ZD> 7 din

+4 . |
ﬂL %Ff U dstiD alu
- — = all 24

Memory Architecture

Unified memory architecture: Program memory and data

memory located inside the same address (common for

general-purpose systems with complex SW layers)

Harvard architecture: separate program memory and data
memory - common for DSPs

Cache memory allows physical separation on unified
memory architecture

IF

ID

—I PC IS

Reg
File

EX

sSign

ext

extPC

i

m

MEM

7

alu

]

W

B

program
memory

data
memory

25

Uk W=

Lecture Outline

Looking back at CISC vs. RISC
Processor micro-architecture
CISC microcode architecture
RISC Processor pipeline

Cache memory
Instruction-level parallelism

26

Cache Memory

e (Cache memory : fast/small SRAM (near-chip or
on-chip) - smaller memory is faster in general

— Cache hit : accessed memory word exists in cache
- cache is effective only if cache hit-rate is high

e Relies on two “locality” properties

- Temporal locality : accessed memory word will
likely to be accessed again very soon -2 make
sense to put the accessed memory word to a faster
cache

— Spatial locality : accessed memory word will
likely have its “"neighboring words” accessed again
very soon =2 make sense to put multiple words on
the cache at once

27

Cache Memory

e (Cache line:
— Data : 32 bytes ~ 64 bytes per line (multiple words)
— Tag : indicates corresponding address of this line

e Associativity (N-way) : any word can be at N different
locations in the cache memory

- N = 1 : direct mapping (any word has a unique location)
e Address partition

Frame addr Entry addr Word addr
Stored in tag Cache line selection ~ Word/byte
selection

Ex: 32-bit address, 32 bytes/line, 2-way,

?ZKV?/SI? e S bit 16KB/way = 21* bytes/way
ord addr : > DIEs - entry-addr + word-addr = 14 bits

e Entry addr : 9 bits Coman _
e Frame addr : 18 bits - frame-addr ,_ 32 - 14 = 18 bits

28

Cache Access Flow

Frame (18-bits)

Entry (9-bits)

Word (5 bits)

2. Compare tags

hit/miss &~ \

N\

1. Access cache line

A

N

N

/ \
ﬁ \\ N Z
Y N
N Z N Z
\ /
3. Select byte\s/from hit-way

Cache Policies

e Replacement policy: which cache line to flush?

- Random : pick a “"way” randomly and replace the entry

— LRU (least recently used) : replace the entry with the
oldest access > complicated implementation if # ways is
large

— Round Robin : rotate replaced ways
e Write policy: what to do on cache writes?

- Write through : always write the new data to main
memory - easier to manage “coherency” but bus traffic
becomes heavy

— Write back : write to main memory only when replaced
(flushed) = less bus traffic, difficult to maintain
“coherency”

e Coherency: important for multi-core systems
— Cache snooping: monitor other cache states individually
— Directory-based: manage all cache states at one place

30

Memory Hierarchy

e Level-1 caches : on-chip
— Instruction cache: read-only
— Data cache: read-write

e Level-2 caches : on-chip or off-chip
— Instruction/data unified cache

<€ $ -]]] ¢ >
—{ PC IS B > Eﬁg ?D>] — L2S
¢

g ALU P DS |+

ext .
mm,
od | || E2 ij%/ F main
ex “ :
A e ||| | [memory

ﬂé‘i 1 ﬁ-Fj | 1 U dst-D 1 5

31

-

Lecture Outline

Looking back at CISC vs. RISC
Processor micro-architecture
CISC microcode architecture
RISC Processor pipeline

Cache memory
Instruction-level parallelism

32

RISC Architecture Enhancement
(MIPS case)

R2000/R3000 (1985, 1988): 5-stage, 1$/D%
R4000 (1991): 8-stage ("super-pipeline”)
— Additional pipe-stages on I$ and D$
— Data width : 64-bits

IF : IS : RF : EX : DF : DS : TC : WB
| I | Reg T | | | I | Reg
(1S Fef 708 [] Aw 1 DS | sl R
- I File I I - - I File

| | | |

| | |
R8000(1994): 4-way "“in-order” superscalar
— Superscalar: multiple execution pipelines
— In-order: instructions are issued and completed in order

R10000 (1996): 4-way “out-of-order” superscalar

— Out-of-order: instructions are issued and completes out
of order

— Techniques: register renaming, instruction reorder buffer,
branch prediction (speculative execution), etc.

-

\

33

Instruction-Level Parallelism

D E M| W F

D

E M| W F D E M | W

Sequential (microcode-based FSM)

F D E M | W
F D E M| W
F D E M | W

W F D E M| W

D|E | M]|W
F | D | E | M| W
F | D | E | M| W
F | D| E | M
“Scalar” Pipeline
D E|M]|W
D | E | M| W
F | D|E | M| W
F | D|E | M| W
F | D|E | M| W
F | D|E | M| W

Superscalar pipeline

Super-pipeline

Superscalar: multiple pipelines

e Works well if enough
instruction-level parallelism
exists

e What limits instruction-level
parallelisms?

- Data dependencies, branches

34

Enhancing Instruction-Level Parallelism

|II

Register renaming: remove “artificia
dependencies

- Write-after-write(WAW)/Write-after-read(WAR) :
can be removed if write-target register is renamed

r3;&<rl+r2 L3¢ r1 + 12
é RAW N -~

WAW L2r5 €< r3)+ rd) r5}f‘§3+ rd
Y WAR g
r312— r4 +r2 r3’ & rd +r2

Speculative execution: remove basic-block

boundaries by branch prediction

— Branch prediction : predict “taken” or “not-taken”
based on branch history and other information

— Speculative execution : continue execution along

the predicted branch path, discard the results in
case of mis-prediction

35

Enhancing CISC Architecture (x86 case)

8086 (1978): 16-bit machine
80186/80286 (1982, 1984): 24-bit address space
80386 (1985): 32-bit machine

80486 (1989): on-chip cache/FPU, 5-stage pipeline
2 microcode-base to hard-wired control

Pentium (P5) (1993): 2-way "in-order” superscalar
Pentium Pro (P6) (1995): 3-way “out-of-order”
superscalar

Micro-operation : decompose CISC instruction into
“RISC-like” sub-instructions (hard-wired microcode!r)

Register renaming, speculative execution

10 ~ 14 pipe-stages 2 super-pipeline

FO | F1 | DO | D1 | D2 | RN |ROB|SCH | DP | EX

[fetth | decode | | [reorder) | [dispatch]
irename| |schedule| |execute|

36

Enhancing CISC Architecture (x86 case)

Pentium 4 (NetBurst) (2000~): Hyper-pipeline

20 pipe-stages (Willamette: 2000)

20 pipe-stages (Northwood: 2002) : Hyper-threading
(simultaneous multi-threading)

31 pipe-stages (Prescott: 2004) : 64-bit extension

Netburst roadmap : 40~50 pipe-stages, 10GHz clock >
abandoned due to thermal and power issues

Pentium M (2003): enhancement of P6
architecture

Better thermal and power efficiency than NetBurst

“Intel Core” (2006~present): multi-cores

Core Duo : Dual core, enhancement of Pentium M (32-
bit)
Core 2 Duo : Dual core, 64-bit extension

Core i3/i5/i7 : Nehalem micro-architecture (hyper-
threading, dual/quad/octal cores)

37

X86 Micro-Architectures

1978 | 8086 16-bits ~10MHz 29,000 Tr.

1982 80286 16-bits ~25MHz 134,000 Tr.
1985 80386 32-bits ~40MHz 275,000 Tr.
1989 80486 32-bits ~150MHz 1.2M Tr.

1993 Pentium 32-bits ~233MHz 3.1M~ 4.5M Tr.
1995 Pentium-Pro 32-bits ~200MHz 5.5M Tr.

1997 Pentium Il 32-bits ~450MHz 7.5M Tr.

1999 Pentium Il 32-bits 450M~1.4GHz | 9.5M ~ 21M Tr.
2000 Pentium 4 32/64-bits | 1.3~3.8GHz 42M ~ 184M Tr.
2003 Pentium M 32-bits 900M~2.6GHz | 140M Tr.

2006 Core 2 64-bits 1GHz~3.3GHz | 169M ~ 411M Tr.
2008 Core i7 64-bits ~3.2GHz 731M Tr.

38

CISC vs. RISC as of Today

1) RISC:
— (Scalar) pipeline > super-pipeline - superscalar (in-

order = out-of-order)
— Register renaming, instruction reorder buffer, branch

prediction, speculative execution
2) CISC:

— Microcode-based FSM - hard-wired control
pipelining = superscalar (in-order - out-of-order)

— CISC instruction - decomposition into RISC-like

micro-operations
e Difference of CISC vs. RISC on the instruction-set

level is no longer apparent on the micro-
architecture level - both uses out-of-order

superscalar super-pipelines

39

Summary

Processor micro-architecture
CISC microcode architecture
RISC Processor pipeline
Cache memory

Instruction-level parallelism
Super-pipeline
Superscalar : in-order, out-of-order

Instruction execution flow
Computer arithmetics
CISC vs. RISC (today)

Difference in instruction-set architectures is not
apparent in micro-architectures

40

Report Submission

e What will be the most important market(s) for
microprocessors 10 years from now?

e Which instruction-set architecture (existing or
new) will dominate this market(s)?

e What will be the deciding factor (key features) of
that dominating architecture?

- Describe your original views covering the technical
aspects including hardware architecture design
issues, software issues (compilers, programming
language, platforms), and manufacturing issues.

- Deadline : One Week from TODAY 11

- Submit your report (MS-WORD or PDF) by email
to:

isshiki@ict.e.titech.ac.jp
Subject: ICT-II Report submission

41

