Then the pair of sequences $\left\{\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right\}_{k=0}^{\infty}$ and $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ recursively defined as

$$
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right]
$$

is an estimate sequence.

Proof:

Let us prove by induction in k. For $k=0, \phi_{0}(\boldsymbol{x})=\left(1-\left(1-\alpha_{-1}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{-1}\right) \phi_{0}(\boldsymbol{x})$ since $\alpha_{-1}=0$. Suppose that the induction hypothesis is valid for any index equal or smaller than k. Since $f \in \mathcal{S}_{\mu}^{1}\left(\mathbb{R}^{n}\right)$,

$$
\begin{aligned}
\phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right] \\
& \leq\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k} f(\boldsymbol{x}) \\
& =\left(1-\left(1-\alpha_{k}\right) \prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{k}\right)\left(\phi_{k}(\boldsymbol{x})-\left(1-\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})\right) \\
& \leq\left(1-\left(1-\alpha_{k}\right) \prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\left(1-\alpha_{k}\right) \prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right) \phi_{0}(\boldsymbol{x}) \\
& =\left(1-\prod_{i=-1}^{k}\left(1-\alpha_{i}\right)\right) f(\boldsymbol{x})+\prod_{i=-1}^{k}\left(1-\alpha_{i}\right) \phi_{0}(\boldsymbol{x}) .
\end{aligned}
$$

Now, it remains to show that $\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right) \rightarrow 0$. This is equivalent to show that $\log \prod_{i=-1}^{k-1}(1-$ $\left.\alpha_{i}\right) \rightarrow-\infty$. Using the inequality $\log (1-\alpha) \leq-\alpha$ for $\alpha \in(-\infty, 1)$, we have

$$
\log \prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)=\sum_{i=-1}^{k-1} \log \left(1-\alpha_{i}\right) \leq-\sum_{i=-1}^{k-1} \alpha_{i} \rightarrow-\infty
$$

due to our assumption.
Lemma 8.4 Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be an arbitrary continuously differentiable function. Also let $\phi_{0}^{*} \in \mathbb{R}$, $\mu \geq 0, \gamma_{0} \geq 0, \boldsymbol{v}_{0} \in \mathbb{R}^{n},\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty}$, and $\left\{\alpha_{k}\right\}_{k=0}^{\infty}$ given arbitrarily sequences such that $\alpha_{-1}=0$, $\alpha_{k} \in(0,1] \quad(k=0,1, \ldots)$. In the special case of $\mu=0$, we further assume that $\gamma_{0}>0$ and $\alpha_{k}<1 \quad(k=0,1, \ldots)$. Let $\phi_{0}(\boldsymbol{x})=\phi_{0}^{*}+\frac{\gamma_{0}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{0}\right\|_{2}^{2}$. If we define recursively $\phi_{k+1}(\boldsymbol{x})$ such as the previous lemma:

$$
\phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \phi_{k}(\boldsymbol{x})+\alpha_{k}\left[f\left(\boldsymbol{y}_{k}\right)+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{x}-\boldsymbol{y}_{k}\right\rangle+\frac{\mu}{2}\left\|\boldsymbol{x}-\boldsymbol{y}_{k}\right\|_{2}^{2}\right]
$$

then $\phi_{k+1}(\boldsymbol{x})$ preserve the canonical form

$$
\begin{equation*}
\phi_{k+1}(\boldsymbol{x})=\phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k+1}\right\|_{2}^{2} \tag{15}
\end{equation*}
$$

for

$$
\begin{aligned}
\gamma_{k+1}= & \left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \\
\boldsymbol{v}_{k+1}= & \frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right] \\
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right) .
\end{aligned}
$$

Proof:

We will use again the induction hypothesis in k. Note that $\boldsymbol{\nabla}^{2} \boldsymbol{\phi}_{0}(\boldsymbol{x})=\gamma_{0} \boldsymbol{I}$. Now, for any $k \geq 0$,

$$
\boldsymbol{\nabla}^{2} \phi_{k+1}(\boldsymbol{x})=\left(1-\alpha_{k}\right) \boldsymbol{\nabla}^{2} \phi_{k}(\boldsymbol{x})+\alpha_{k} \mu \boldsymbol{I}=\left(\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu\right) \boldsymbol{I}=\gamma_{k+1} \boldsymbol{I} .
$$

Therefore, $\phi_{k+1}(\boldsymbol{x})$ is a quadratic function of the form (15). Also, $\gamma_{k+1}>0$ since $\mu>0$ and $\alpha_{k}>0 \quad(k=0,1, \ldots) ;$ or if $\mu=0$, we assumed that $\gamma_{0}>0$ and $\alpha_{k} \in(0,1) \quad(k=0,1, \ldots)$.

From the first-order optimality condition

$$
\begin{aligned}
\boldsymbol{\nabla} \phi_{k+1}(\boldsymbol{x}) & =\left(1-\alpha_{k}\right) \boldsymbol{\nabla} \phi_{k}(\boldsymbol{x})+\alpha_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} \mu\left(\boldsymbol{x}-\boldsymbol{y}_{k}\right) \\
& =\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{x}-\boldsymbol{v}_{k}\right)+\alpha_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} \mu\left(\boldsymbol{x}-\boldsymbol{y}_{k}\right)=0 .
\end{aligned}
$$

Thus,

$$
\boldsymbol{x}=\boldsymbol{v}_{k+1}=\frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right]
$$

is the minimal optimal solution of $\phi_{k+1}(\boldsymbol{x})$.
Finally, from what we proved so far and from the definition

$$
\begin{align*}
\phi_{k+1}\left(\boldsymbol{y}_{k}\right) & =\phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k+1}\right\|_{2}^{2} \\
& =\left(1-\alpha_{k}\right) \phi_{k}\left(\boldsymbol{y}_{k}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right) \tag{16}\\
& =\left(1-\alpha_{k}\right)\left(\phi_{k}^{*}+\frac{\gamma_{k}}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right) .
\end{align*}
$$

Now,

$$
\boldsymbol{v}_{k+1}-\boldsymbol{y}_{k}=\frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k}\left(\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right)-\alpha_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right] .
$$

Therefore,

$$
\begin{align*}
\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{v}_{k+1}-\boldsymbol{y}_{k}\right\|_{2}^{2}= & \frac{1}{2 \gamma_{k+1}}\left[\left(1-\alpha_{k}\right)^{2} \gamma_{k}^{2}\left\|\boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\|_{2}^{2}+\alpha_{k}^{2}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}\right. \tag{17}\\
& \left.-2 \alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right] .
\end{align*}
$$

Substituting (17) into (16), we obtain the expression for ϕ_{k+1}^{*}.
Theorem 8.5 Let $L \geq \mu \geq 0$. Consider $f \in \mathcal{S}_{\mu, L}^{1,1}\left(\mathbb{R}^{n}\right)$, possible with $\mu=0$ (which means that $f \in \mathcal{F}_{L}^{1,1}\left(\mathbb{R}^{n}\right)$). For given $\boldsymbol{x}_{0} \in \mathbb{R}^{n}$, let us choose $\phi_{0}^{*}=f\left(\boldsymbol{x}_{0}\right)$ and $\boldsymbol{v}_{0}:=\boldsymbol{x}_{0}$. Consider also $\gamma_{0}>0$ such that $L \geq \gamma_{0} \geq \mu \geq 0$. Define the sequences $\left\{\alpha_{k}\right\}_{k=-1}^{\infty},\left\{\gamma_{k}\right\}_{k=0}^{\infty},\left\{\boldsymbol{y}_{k}\right\}_{k=0}^{\infty},\left\{\boldsymbol{x}_{k}\right\}_{k=0}^{\infty},\left\{\boldsymbol{v}_{k}\right\}_{k=0}^{\infty}$, $\left\{\phi_{k}^{*}\right\}_{k=0}^{\infty}$, and $\left\{\phi_{k}(\boldsymbol{x})\right\}_{k=0}^{\infty}$ for the iteration k starting at $k:=0$:

$$
\begin{array}{cl}
\alpha_{k} \in(0,1] & \begin{aligned}
& \alpha_{-1}=0, \\
& \text { root of } \\
& \boldsymbol{y}_{k}= \frac{\alpha_{k} \gamma_{k} \boldsymbol{v}_{k}+\gamma_{k+1} \boldsymbol{x}_{k}}{\gamma_{k}+\alpha_{k} \mu},
\end{aligned} \\
\boldsymbol{x}_{k+1} \text { is such that } & f\left(\boldsymbol{x}_{k+1}\right) \leq f\left(\boldsymbol{y}_{k}\right)-\frac{1}{2 L}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2}, \\
\boldsymbol{v}_{k+1}= & \frac{1}{\gamma_{k+1}}\left[\left(1-\alpha_{k}\right) \gamma_{k} \boldsymbol{v}_{k}+\alpha_{k} \mu \boldsymbol{y}_{k}-\alpha_{k} \boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right], \\
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right), \\
\phi_{k+1}(\boldsymbol{x})= & \phi_{k+1}^{*}+\frac{\gamma_{k+1}}{2}\left\|\boldsymbol{x}-\boldsymbol{v}_{k+1}\right\|_{2}^{2} .
\end{array}
$$

Then, we satisfy all the conditions of Lemma 8.2 for $\lambda_{k}=\prod_{i=-1}^{k-1}\left(1-\alpha_{i}\right)$.

Proof:

In fact, due to Lemmas 8.3 and 8.4, it just remains to show that $\alpha_{k} \in(0,1]$ for $(k=0,1, \ldots)$ such that $\sum_{k=0}^{\infty} \alpha_{k}=\infty$. In the special case of $\mu=0$, we must show that $\alpha_{k}<1 \quad(k=0,1, \ldots)$. And finally that $f\left(\boldsymbol{x}_{k}\right) \leq \phi_{k}^{*}$.

Let us show both using induction hypothesis.
Consider the quadratic equation in $\alpha, q_{0}(\alpha):=L \alpha^{2}+\left(\gamma_{0}-\mu\right) \alpha-\gamma_{0}=0$. Notice that its discriminant $\Delta:=\left(\gamma_{0}-\mu\right)^{2}+4 \gamma_{0} L$ is always positive by the hypothesis. Also, $q_{0}(0)=-\gamma_{0}<0$, due to the hypothesis again. Therefore, this equation always has a root $\alpha_{0}>0$. Since $q_{0}(1)=L-\mu \geq 0$, $\alpha_{0} \leq 1$, and we have $\alpha_{0} \in(0,1]$. If $\mu=0$, and $\alpha_{0}=1$, we will have $L=0$ which implies $\gamma_{0}=0$ which contradicts our hypothesis. Then $\alpha_{0}<1$ in this case. In addition, $\gamma_{1}:=\left(1-\alpha_{0}\right) \gamma_{0}+\alpha_{0} \mu>0$ and $\gamma_{0}+\alpha_{0} \mu>0$. The same arguments are valid for any k. Therefore, $\alpha_{k} \in(0,1]$, and $\alpha_{k}<$ $1 \quad(k=0,1, \ldots$,$) if \mu=0$.

Finally, $L \alpha_{k}^{2}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu \geq\left(1-\alpha_{k}\right) \mu+\alpha_{k} \mu=\mu$. And we have $\alpha_{k} \geq \sqrt{\frac{\mu}{L}}$, and therefore, $\sum_{k=0}^{\infty} \alpha_{k}=\infty$, if $\mu>0$. For the case $\mu=0$, let us prove first that $\gamma_{k}=\gamma_{0} \lambda_{k}$. Obviously $\gamma_{0}=\gamma_{0} \lambda_{0}\left(=\gamma_{0}\left(1-\alpha_{-1}\right)=\gamma_{0}\right)$, and assuming the induction hypothesis,

$$
\gamma_{k+1}=\left(1-\alpha_{k}\right) \gamma_{k}+\alpha_{k} \mu=\left(1-\alpha_{k}\right) \gamma_{k}=\left(1-\alpha_{k}\right) \gamma_{0} \lambda_{k}=\gamma_{0} \lambda_{k+1}
$$

Therefore, $L \alpha_{k}^{2}=\gamma_{k+1}=\gamma_{0} \lambda_{k+1}$. Since λ_{k} is a decreasing sequence and $\lambda_{k}>0$,

$$
\begin{aligned}
\frac{1}{\sqrt{\lambda_{k+1}}}-\frac{1}{\sqrt{\lambda_{k}}} & =\frac{\sqrt{\lambda_{k}}-\sqrt{\lambda_{k+1}}}{\sqrt{\lambda_{k} \lambda_{k+1}}}=\frac{\lambda_{k}-\lambda_{k+1}}{\sqrt{\lambda_{k} \lambda_{k+1}}\left(\sqrt{\lambda_{k}}+\sqrt{\lambda_{k+1}}\right)} \\
& \geq \frac{\lambda_{k}-\lambda_{k+1}}{\sqrt{\lambda_{k} \lambda_{k+1}}\left(\sqrt{\lambda_{k}}+\sqrt{\lambda_{k}}\right)}=\frac{\lambda_{k}-\lambda_{k+1}}{2 \lambda_{k} \sqrt{\lambda_{k+1}}}=\frac{\lambda_{k}-\left(1-\alpha_{k}\right) \lambda_{k}}{2 \lambda_{k} \sqrt{\lambda_{k+1}}} \\
& =\frac{\alpha_{k}}{2 \sqrt{\lambda_{k+1}}}=\frac{1}{2} \sqrt{\frac{\gamma_{0}}{L}}
\end{aligned}
$$

Thus

$$
\frac{1}{\sqrt{\lambda_{k}}} \geq \frac{1}{\sqrt{\lambda_{0}}}+\frac{k}{2} \sqrt{\frac{\gamma_{0}}{L}}=1+\frac{k}{2} \sqrt{\frac{\gamma_{0}}{L}}
$$

Finally,

$$
\lambda_{k} \leq \frac{4 L}{\left(2+k \sqrt{\gamma_{0}}\right)^{2}} \longrightarrow 0
$$

which is equivalent to $\sum_{k=0}^{\infty} \alpha_{k}=\infty$ as we saw before.
Now for $k=0, f\left(\boldsymbol{x}_{0}\right) \leq \phi_{0}^{*}$. Suppose that the induction hypothesis is valid for any index equal or smaller than k. Due to the previous lemma,

$$
\begin{aligned}
\phi_{k+1}^{*}= & \left(1-\alpha_{k}\right) \phi_{k}^{*}+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right) \\
\geq & \left(1-\alpha_{k}\right) f\left(\boldsymbol{x}_{k}\right)+\alpha_{k} f\left(\boldsymbol{y}_{k}\right)-\frac{\alpha_{k}^{2}}{2 \gamma_{k+1}}\left\|\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right)\right\|_{2}^{2} \\
& +\frac{\alpha_{k}\left(1-\alpha_{k}\right) \gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\left\|\boldsymbol{y}_{k}-\boldsymbol{v}_{k}\right\|_{2}^{2}+\left\langle\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{y}_{k}\right), \boldsymbol{v}_{k}-\boldsymbol{y}_{k}\right\rangle\right)
\end{aligned}
$$

