k—1 o0
Then the pair of sequences { H (1-— ai)} and {¢(x)}32, recursively defined as
i=—1 k=0

@) = (1= an)on@) + a [ () + (VF i) @ — yp) + 5 e — i3]

is an estimate sequence.

Proof:

Let us prove by induction in k. For k =0, ¢o(x) = (1 — (1 — a—1)) f(x) + (1 — a—1)po(x) since
a—1 = 0. Suppose that the induction hypothesis is valid for any index equal or smaller than k.
Since f € SL(]R"),

ry1(z) =

<

> b(@) + o [Flyp) + (VF(e) @ — i) + Sl — gl
() + arf(x)

k 1 k—1
(1 —(1—a) [JTO- a¢)> fl®) + (1 — ay) (Qbk(x) - <1 - 'H (1- az-)) f(m))
k—1

k 1 -
< <1 — (1 —ayg) (1 — ai)> flx)+ (1 —ap) H (1 — a;)go(x)

i=—1 i=—1

- (1_1_[(1—@1) +H 1 — aq)do(

i=—1 i=—1

(1-
(1-

Now, it remains to show that H ' (1—a;) — 0. This is equivalent to show that log H (-
a;) — —oo. Using the inequality log(l —a) < —a for a € (—o0, 1), we have

due to our assumption. 1

Lemma 8.4 Let f : R” — R be an arbitrary continuously differentiable function. Also let ¢ € R,
p=>0,7% >0, vy € R, {y,}72,, and {ax}3, given arbitrarily sequences such that a_; = 0,
ar € (0,1 (k = 0,1,...). In the special case of u = 0, we further assume that 79 > 0 and
ar <1 (k=0,1,...). Let ¢o(x) = ¢} + 2| l@ — vo||3. If we define recursively ¢x41(x) such as the
previous lemma:

Ora1(@) = (1= a)on(@) + a [Fyp) + (Vi) @ —yp) + Sl —uil3]

then ¢g1(x) preserve the canonical form

bra1(@) = 61 + Lot @ — v 3 (15)
for
Y1 = (1 — o) + axp,
Vpp1 = 7:H[(l — ag) vk + appyy, — oV f(yg)l,

2

G = (L= e+ onflu) — 5 IV F )l

ag(l —a
OO (B B (V) on - 9)
VE+1
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Proof:
We will use again the induction hypothesis in k. Note that V¢, (x) = voI. Now, for any k > 0,

Vi1 (x) = (1 — ar) V() + o = (1 — )y + ) I = ypqa 1.

Therefore, ¢ry1(x) is a quadratic function of the form (15). Also, xy+1 > 0 since g > 0 and
ap >0 (k=0,1,...); or if u =0, we assumed that 79 > 0 and oy, € (0,1) (k=0,1,...).
From the first-order optimality condition

Vopi(x) = (1-ap)Voy(x) +arVf(y) + arp(e — yy)
= (1—oap)vw(x—vr)+ . VF(y,) + app(x —y;,) = 0.
Thus,

1
@ =vpp1 = — [(1 — ) Wevk + owpyy — VI (yy)]
V41
is the minimal optimal solution of ¢ ().

Finally, from what we proved so far and from the definition

k() = Oryr + 25 lye — vkpal3
= (11— ar)or(yr) + o f(yr) (16)
= (1—ap) (0 + Fllye — vill3) + onf(yp)-
Now,
1
Vet —Yp = — [(1— aw)me(vr — yp) — eV ()]
VE+1
Therefore,
T g —yell3 = o (1= an)* 3@ lok — yell3 + oIV F (w13 (17)
—20a,(1 = ap) (VI (Yr) vk — yi)] -
Substituting (17) into (16), we obtain the expression for ¢y ;. 1

Theorem 8.5 Let L > p > 0. Consider f € SL’}L(R”), possible with 1 = 0 (which means that

fe f}:’l(R”)). For given xg € R", let us choose ¢f = f(xo) and vy := xy. Consider also 79 > 0
such that L > v9 > 1 > 0. Define the sequences {a}32 1, {7 )20, {¥etiso: {Zr}i2os {vk}ilos
{71172, and {¢r(x)}32, for the iteration k starting at & := 0:

a_1 = 0,
a € (0,1] root of Laz = (1 — )Yk + Qg := Vi1,
O VEVE + Ve+1Tk
Vi + o p

Y =

. 1
xpq1 s such that  f(zrg1) < f(yg) — EHVf(yk)H%7

1
vppr = —[(1 = ar) vk + arpyr — 'V F (Y],
V41
* of 2
Ppr = (I —ar)op +arf(yy) — 5 IV £(ye)ll2
V41
(1 — )y (1
OO (B 34 (V £ ) ok~ )
Ve+1
* Yk+1
Pri(x) = dppg + TJFHCB — vkt
k—1
Then, we satisfy all the conditions of Lemma 8.2 for A\, = H (1 — ).
i=—1
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Proof:
In fact, due to Lemmas 8.3 and 8.4, it just remains to show that o € (0,1] for (k = 0,1,...)

o
such that Z aj = 00. In the special case of u = 0, we must show that o, <1 (k=0,1,...). And

k=0
finally that f(xx) < ¢5.

Let us show both using induction hypothesis.

Consider the quadratic equation in «, go(a) := La® + (y0 — p)a — 70 = 0. Notice that its
discriminant A := (79— p)? +4vL is always positive by the hypothesis. Also, go(0) = —vo < 0, due
to the hypothesis again. Therefore, this equation always has a root ap > 0. Since go(1) = L—pu > 0,
ap < 1, and we have ag € (0,1]. If x = 0, and a9 = 1, we will have L = 0 which implies y9 = 0
which contradicts our hypothesis. Then «g < 1 in this case. In addition, v1 := (1 — )0+ aop > 0
and v9 + app > 0. The same arguments are valid for any k. Therefore, oy, € (0,1], and oy <
1 (k=0,1,...,)if p=0.

Finally, La% = (1 —ap)w +app > (1 — o)+ agp = p. And we have oy, > /%, and
o
therefore, Z ap = 00, if u > 0. For the case p = 0, let us prove first that vz = v9A;x. Obviously
k=0
Y0 = Yo o(=10(1 — a—1) = 70), and assuming the induction hypothesis,

Y1 = (1 = ap)ye + app = (1 — o) v = (1 — ar)yo ke = YoAet1-

Therefore, Lai = Yg+1 = YoAk+1. Since Ag is a decreasing sequence and A\, > 0,

L VA= VA Ak — Akl
VA1 VA VAR AR+1 VA1 (VAR + V Akt1)
Ak — Akt1 MMt A (T —ap) Mg

VAN (VA V) 20 e 2% e
_o_% 1w
2/ Ak 2V L

Thus
1 1 k /v k /v
> =t o[ 2 =142y
VAE T VAo 2V L 2V L
Finally,
4L
A < — 0,
=21 k7o)

which is equivalent to Y ;2 ;o = oo as we saw before.
Now for k =0, f(xo) < ¢§. Suppose that the induction hypothesis is valid for any index equal
or smaller than k. Due to the previous lemma,

2

b = (1= adh+anflye) = 5oV £ (i3
Yi+1
1—
DL (o4 (9 5 )0 - )
2
> (1= an)f(@e) + anf (i) — 51V w3

2Vk41

p OO (B g8 (9 F ). vk 9.

VE+1
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