Then the pair of sequences $\left\{\prod_{i=-1}^{k-1}(1-\alpha_i)\right\}_{k=0}^{\infty}$ and $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$ recursively defined as

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2 \right]$$

is an estimate sequence.

Proof:

Let us prove by induction in k. For k = 0, $\phi_0(\mathbf{x}) = (1 - (1 - \alpha_{-1})) f(\mathbf{x}) + (1 - \alpha_{-1})\phi_0(\mathbf{x})$ since $\alpha_{-1} = 0$. Suppose that the induction hypothesis is valid for any index equal or smaller than k. Since $f \in \mathcal{S}^1_u(\mathbb{R}^n)$,

$$\phi_{k+1}(\mathbf{x}) = (1 - \alpha_k)\phi_k(\mathbf{x}) + \alpha_k \left[f(\mathbf{y}_k) + \langle \nabla f(\mathbf{y}_k), \mathbf{x} - \mathbf{y}_k \rangle + \frac{\mu}{2} \|\mathbf{x} - \mathbf{y}_k\|_2^2 \right]
\leq (1 - \alpha_k)\phi_k(\mathbf{x}) + \alpha_k f(\mathbf{x})
= \left(1 - (1 - \alpha_k) \prod_{i=-1}^{k-1} (1 - \alpha_i) \right) f(\mathbf{x}) + (1 - \alpha_k) \left(\phi_k(\mathbf{x}) - \left(1 - \prod_{i=-1}^{k-1} (1 - \alpha_i) \right) f(\mathbf{x}) \right)
\leq \left(1 - (1 - \alpha_k) \prod_{i=-1}^{k-1} (1 - \alpha_i) \right) f(\mathbf{x}) + (1 - \alpha_k) \prod_{i=-1}^{k-1} (1 - \alpha_i) \phi_0(\mathbf{x})
= \left(1 - \prod_{i=-1}^{k} (1 - \alpha_i) \right) f(\mathbf{x}) + \prod_{i=-1}^{k} (1 - \alpha_i) \phi_0(\mathbf{x}).$$

Now, it remains to show that $\prod_{i=-1}^{k-1}(1-\alpha_i)\to 0$. This is equivalent to show that $\log\prod_{i=-1}^{k-1}(1-\alpha_i)\to -\infty$. Using the inequality $\log(1-\alpha)\leq -\alpha$ for $\alpha\in(-\infty,1)$, we have

$$\log \prod_{i=-1}^{k-1} (1 - \alpha_i) = \sum_{i=-1}^{k-1} \log(1 - \alpha_i) \le -\sum_{i=-1}^{k-1} \alpha_i \to -\infty$$

due to our assumption.

Lemma 8.4 Let $f: \mathbb{R}^n \to \mathbb{R}$ be an arbitrary continuously differentiable function. Also let $\phi_0^* \in \mathbb{R}$, $\mu \geq 0$, $\gamma_0 \geq 0$, $v_0 \in \mathbb{R}^n$, $\{y_k\}_{k=0}^{\infty}$, and $\{\alpha_k\}_{k=0}^{\infty}$ given arbitrarily sequences such that $\alpha_{-1} = 0$, $\alpha_k \in (0,1]$ $(k=0,1,\ldots)$. In the special case of $\mu=0$, we further assume that $\gamma_0 > 0$ and $\alpha_k < 1$ $(k=0,1,\ldots)$. Let $\phi_0(\boldsymbol{x}) = \phi_0^* + \frac{\gamma_0}{2} \|\boldsymbol{x} - \boldsymbol{v}_0\|_2^2$. If we define recursively $\phi_{k+1}(\boldsymbol{x})$ such as the previous lemma:

$$\phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k)\phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{y}_k) + \langle \nabla f(\boldsymbol{y}_k), \boldsymbol{x} - \boldsymbol{y}_k \rangle + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{y}_k\|_2^2 \right],$$

then $\phi_{k+1}(\boldsymbol{x})$ preserve the canonical form

$$\phi_{k+1}(\mathbf{x}) = \phi_{k+1}^* + \frac{\gamma_{k+1}}{2} \|\mathbf{x} - \mathbf{v}_{k+1}\|_2^2$$
(15)

for

$$\gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k \mu,
v_{k+1} = \frac{1}{\gamma_{k+1}} [(1 - \alpha_k)\gamma_k \mathbf{v}_k + \alpha_k \mu \mathbf{y}_k - \alpha_k \nabla \mathbf{f}(\mathbf{y}_k)],
\phi_{k+1}^* = (1 - \alpha_k)\phi_k^* + \alpha_k f(\mathbf{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}} \|\nabla \mathbf{f}(\mathbf{y}_k)\|_2^2
+ \frac{\alpha_k (1 - \alpha_k)\gamma_k}{\gamma_{k+1}} \left(\frac{\mu}{2} \|\mathbf{y}_k - \mathbf{v}_k\|_2^2 + \langle \nabla \mathbf{f}(\mathbf{y}_k), \mathbf{v}_k - \mathbf{y}_k \rangle \right).$$

Proof:

We will use again the induction hypothesis in k. Note that $\nabla^2 \phi_0(x) = \gamma_0 I$. Now, for any $k \geq 0$,

$$\nabla^2 \phi_{k+1}(\mathbf{x}) = (1 - \alpha_k) \nabla^2 \phi_k(\mathbf{x}) + \alpha_k \mu \mathbf{I} = ((1 - \alpha_k) \gamma_k + \alpha_k \mu) \mathbf{I} = \gamma_{k+1} \mathbf{I}.$$

Therefore, $\phi_{k+1}(\boldsymbol{x})$ is a quadratic function of the form (15). Also, $\gamma_{k+1} > 0$ since $\mu > 0$ and $\alpha_k > 0$ $(k = 0, 1, \ldots)$; or if $\mu = 0$, we assumed that $\gamma_0 > 0$ and $\alpha_k \in (0, 1)$ $(k = 0, 1, \ldots)$.

From the first-order optimality condition

$$\nabla \phi_{k+1}(\boldsymbol{x}) = (1 - \alpha_k) \nabla \phi_k(\boldsymbol{x}) + \alpha_k \nabla f(\boldsymbol{y}_k) + \alpha_k \mu(\boldsymbol{x} - \boldsymbol{y}_k)$$
$$= (1 - \alpha_k) \gamma_k(\boldsymbol{x} - \boldsymbol{v}_k) + \alpha_k \nabla f(\boldsymbol{y}_k) + \alpha_k \mu(\boldsymbol{x} - \boldsymbol{y}_k) = 0.$$

Thus,

$$\boldsymbol{x} = \boldsymbol{v}_{k+1} = \frac{1}{\gamma_{k+1}} \left[(1 - \alpha_k) \gamma_k \boldsymbol{v}_k + \alpha_k \mu \boldsymbol{y}_k - \alpha_k \nabla \boldsymbol{f}(\boldsymbol{y}_k) \right]$$

is the minimal optimal solution of $\phi_{k+1}(x)$.

Finally, from what we proved so far and from the definition

$$\phi_{k+1}(\boldsymbol{y}_{k}) = \phi_{k+1}^{*} + \frac{\gamma_{k+1}}{2} \|\boldsymbol{y}_{k} - \boldsymbol{v}_{k+1}\|_{2}^{2}
= (1 - \alpha_{k})\phi_{k}(\boldsymbol{y}_{k}) + \alpha_{k}f(\boldsymbol{y}_{k})
= (1 - \alpha_{k})\left(\phi_{k}^{*} + \frac{\gamma_{k}}{2} \|\boldsymbol{y}_{k} - \boldsymbol{v}_{k}\|_{2}^{2}\right) + \alpha_{k}f(\boldsymbol{y}_{k}).$$
(16)

Now,

$$\boldsymbol{v}_{k+1} - \boldsymbol{y}_k = \frac{1}{\gamma_{k+1}} \left[(1 - \alpha_k) \gamma_k (\boldsymbol{v}_k - \boldsymbol{y}_k) - \alpha_k \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_k) \right].$$

Therefore,

$$\frac{\gamma_{k+1}}{2} \|\boldsymbol{v}_{k+1} - \boldsymbol{y}_{k}\|_{2}^{2} = \frac{1}{2\gamma_{k+1}} \left[(1 - \alpha_{k})^{2} \gamma_{k}^{2} \|\boldsymbol{v}_{k} - \boldsymbol{y}_{k}\|_{2}^{2} + \alpha_{k}^{2} \|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_{k})\|_{2}^{2} -2\alpha_{k} (1 - \alpha_{k}) \gamma_{k} \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}_{k}), \boldsymbol{v}_{k} - \boldsymbol{y}_{k} \rangle \right].$$

$$(17)$$

Substituting (17) into (16), we obtain the expression for ϕ_{k+1}^* .

Theorem 8.5 Let $L \geq \mu \geq 0$. Consider $f \in \mathcal{S}_{\mu,L}^{1,1}(\mathbb{R}^n)$, possible with $\mu = 0$ (which means that $f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$). For given $\mathbf{x}_0 \in \mathbb{R}^n$, let us choose $\phi_0^* = f(\mathbf{x}_0)$ and $\mathbf{v}_0 := \mathbf{x}_0$. Consider also $\gamma_0 > 0$ such that $L \geq \gamma_0 \geq \mu \geq 0$. Define the sequences $\{\alpha_k\}_{k=-1}^{\infty}$, $\{\gamma_k\}_{k=0}^{\infty}$, $\{\mathbf{y}_k\}_{k=0}^{\infty}$, $\{\mathbf{x}_k\}_{k=0}^{\infty}$, $\{\mathbf{v}_k\}_{k=0}^{\infty}$, $\{\phi_k^*\}_{k=0}^{\infty}$, and $\{\phi_k(\mathbf{x})\}_{k=0}^{\infty}$ for the iteration k starting at k := 0:

$$\begin{split} \alpha_{-1} &= 0, \\ \alpha_k \in (0,1] \quad \text{root of} \quad L\alpha_k^2 &= (1-\alpha_k)\gamma_k + \alpha_k\mu := \gamma_{k+1}, \\ \boldsymbol{y}_k &= \quad \frac{\alpha_k\gamma_k\boldsymbol{v}_k + \gamma_{k+1}\boldsymbol{x}_k}{\gamma_k + \alpha_k\mu}, \\ \boldsymbol{x}_{k+1} \quad \text{is such that} \quad f(\boldsymbol{x}_{k+1}) \leq f(\boldsymbol{y}_k) - \frac{1}{2L}\|\boldsymbol{\nabla} f(\boldsymbol{y}_k)\|_2^2, \\ \boldsymbol{v}_{k+1} &= \quad \frac{1}{\gamma_{k+1}}[(1-\alpha_k)\gamma_k\boldsymbol{v}_k + \alpha_k\mu\boldsymbol{y}_k - \alpha_k\boldsymbol{\nabla} f(\boldsymbol{y}_k)], \\ \phi_{k+1}^* &= \quad (1-\alpha_k)\phi_k^* + \alpha_k f(\boldsymbol{y}_k) - \frac{\alpha_k^2}{2\gamma_{k+1}}\|\boldsymbol{\nabla} f(\boldsymbol{y}_k)\|_2^2 \\ &+ \frac{\alpha_k(1-\alpha_k)\gamma_k}{\gamma_{k+1}}\left(\frac{\mu}{2}\|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2 + \langle \boldsymbol{\nabla} f(\boldsymbol{y}_k), \boldsymbol{v}_k - \boldsymbol{y}_k\rangle\right), \\ \phi_{k+1}(\boldsymbol{x}) &= \quad \phi_{k+1}^* + \frac{\gamma_{k+1}}{2}\|\boldsymbol{x} - \boldsymbol{v}_{k+1}\|_2^2. \end{split}$$

Then, we satisfy all the conditions of Lemma 8.2 for $\lambda_k = \prod_{i=-1}^{k-1} (1 - \alpha_i)$.

Proof:

In fact, due to Lemmas 8.3 and 8.4, it just remains to show that $\alpha_k \in (0,1]$ for $(k=0,1,\ldots)$ such that $\sum_{k=0}^{\infty} \alpha_k = \infty$. In the special case of $\mu = 0$, we must show that $\alpha_k < 1 \quad (k=0,1,\ldots)$. And finally that $f(\boldsymbol{x}_k) \leq \phi_k^*$.

Let us show both using induction hypothesis.

Consider the quadratic equation in α , $q_0(\alpha) := L\alpha^2 + (\gamma_0 - \mu)\alpha - \gamma_0 = 0$. Notice that its discriminant $\Delta := (\gamma_0 - \mu)^2 + 4\gamma_0 L$ is always positive by the hypothesis. Also, $q_0(0) = -\gamma_0 < 0$, due to the hypothesis again. Therefore, this equation always has a root $\alpha_0 > 0$. Since $q_0(1) = L - \mu \ge 0$, $\alpha_0 \le 1$, and we have $\alpha_0 \in (0, 1]$. If $\mu = 0$, and $\alpha_0 = 1$, we will have L = 0 which implies $\gamma_0 = 0$ which contradicts our hypothesis. Then $\alpha_0 < 1$ in this case. In addition, $\gamma_1 := (1 - \alpha_0)\gamma_0 + \alpha_0\mu > 0$ and $\gamma_0 + \alpha_0\mu > 0$. The same arguments are valid for any k. Therefore, $\alpha_k \in (0, 1]$, and $\alpha_k < 1$ $(k = 0, 1, \ldots,)$ if $\mu = 0$.

Finally, $L\alpha_k^2 = (1 - \alpha_k)\gamma_k + \alpha_k\mu \ge (1 - \alpha_k)\mu + \alpha_k\mu = \mu$. And we have $\alpha_k \ge \sqrt{\frac{\mu}{L}}$, and therefore, $\sum_{k=0}^{\infty} \alpha_k = \infty$, if $\mu > 0$. For the case $\mu = 0$, let us prove first that $\gamma_k = \gamma_0 \lambda_k$. Obviously $\gamma_0 = \gamma_0 \lambda_0 (= \gamma_0 (1 - \alpha_{-1}) = \gamma_0)$, and assuming the induction hypothesis,

$$\gamma_{k+1} = (1 - \alpha_k)\gamma_k + \alpha_k \mu = (1 - \alpha_k)\gamma_k = (1 - \alpha_k)\gamma_0 \lambda_k = \gamma_0 \lambda_{k+1}.$$

Therefore, $L\alpha_k^2 = \gamma_{k+1} = \gamma_0 \lambda_{k+1}$. Since λ_k is a decreasing sequence and $\lambda_k > 0$,

$$\frac{1}{\sqrt{\lambda_{k+1}}} - \frac{1}{\sqrt{\lambda_k}} = \frac{\sqrt{\lambda_k} - \sqrt{\lambda_{k+1}}}{\sqrt{\lambda_k \lambda_{k+1}}} = \frac{\lambda_k - \lambda_{k+1}}{\sqrt{\lambda_k \lambda_{k+1}}(\sqrt{\lambda_k} + \sqrt{\lambda_{k+1}})}$$

$$\geq \frac{\lambda_k - \lambda_{k+1}}{\sqrt{\lambda_k \lambda_{k+1}}(\sqrt{\lambda_k} + \sqrt{\lambda_k})} = \frac{\lambda_k - \lambda_{k+1}}{2\lambda_k \sqrt{\lambda_{k+1}}} = \frac{\lambda_k - (1 - \alpha_k)\lambda_k}{2\lambda_k \sqrt{\lambda_{k+1}}}$$

$$= \frac{\alpha_k}{2\sqrt{\lambda_{k+1}}} = \frac{1}{2}\sqrt{\frac{\gamma_0}{L}}.$$

Thus

$$\frac{1}{\sqrt{\lambda_k}} \geq \frac{1}{\sqrt{\lambda_0}} + \frac{k}{2} \sqrt{\frac{\gamma_0}{L}} = 1 + \frac{k}{2} \sqrt{\frac{\gamma_0}{L}}.$$

Finally,

$$\lambda_k \le \frac{4L}{(2+k\sqrt{\gamma_0})^2} \longrightarrow 0,$$

which is equivalent to $\sum_{k=0}^{\infty} \alpha_k = \infty$ as we saw before.

Now for k = 0, $f(x_0) \le \phi_0^*$. Suppose that the induction hypothesis is valid for any index equal or smaller than k. Due to the previous lemma,

$$\phi_{k+1}^{*} = (1 - \alpha_{k})\phi_{k}^{*} + \alpha_{k}f(\boldsymbol{y}_{k}) - \frac{\alpha_{k}^{2}}{2\gamma_{k+1}}\|\nabla f(\boldsymbol{y}_{k})\|_{2}^{2}$$

$$+ \frac{\alpha_{k}(1 - \alpha_{k})\gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\|\boldsymbol{y}_{k} - \boldsymbol{v}_{k}\|_{2}^{2} + \langle\nabla f(\boldsymbol{y}_{k}), \boldsymbol{v}_{k} - \boldsymbol{y}_{k}\rangle\right)$$

$$\geq (1 - \alpha_{k})f(\boldsymbol{x}_{k}) + \alpha_{k}f(\boldsymbol{y}_{k}) - \frac{\alpha_{k}^{2}}{2\gamma_{k+1}}\|\nabla f(\boldsymbol{y}_{k})\|_{2}^{2}$$

$$+ \frac{\alpha_{k}(1 - \alpha_{k})\gamma_{k}}{\gamma_{k+1}}\left(\frac{\mu}{2}\|\boldsymbol{y}_{k} - \boldsymbol{v}_{k}\|_{2}^{2} + \langle\nabla f(\boldsymbol{y}_{k}), \boldsymbol{v}_{k} - \boldsymbol{y}_{k}\rangle\right).$$