Only in this part, we adopt the following rule:
0-c0=00-0=0-(—00) =(—00)-0=0. (10)
Definition 5.27 A function f:R" — [—o00, +00] is called lower semicontinuous at © € R if

f(x) <lim inf f(x,)

n—o0

for any sequence {x,}° for which x,, — x. Therefore, a function f : R" — [—o0,+0o0] is called
lower semicontinous if it is lower semicontinuous at each point of R™.

Theorem 5.28 Let f : R" — [—00, +00]. Then the following conditions are equivalent:

1. f is lower semicontinuous.
2. f is closed.

3. For any A € R, the A-level sets Ly of f are closed.

Proof:

We need to show that the epigraph E of f is closed. Let {x,yn}72; a sequence of R" xR
such that (x,,y,) € E for any n > 1 and (x,,y,) — (Z,7). Then f(x,) < y, and taking the lim
infimum on both sides of the inequality:

f(®) <lim inf f(x,) <lim inf y, =7,
n—oo n—oo
which shows that (z,7) € E.

If Ly = 0, there is nothing to do. Therefore, suppose that theres is sequence {x,, }5°; C Ly
that converges to ®. That is f(x,) < X and since the epigraph of f is closed, (Z,A) € E, and
therefore, f(Z) < A which implies that & € L.

Suppose to the contrary that f is not lower semicontinuous. That is, there exists &, a
sequence {xy}2° such that , — &, and lim nglgo f(xn) < f(2). Consider A € R such that

lim inf f(z,) < < f(2). (11)

Therefore, we can consider a subsequence {x,, }7°  such that f(x,,) < A and then x,, € L. Since
the A-level sets are closed, x,, — & € Ly and f(&) < A contradicting (11). 1

The definition of convex function for usual functions (Definition 5.1) is valid for extended real-
valued functions using the rule (10).

Theorem 5.29

1. Let f; : R" — [—o00,4+00] (¢ € I) be a family of (finite or infinite) extended real-valued
functions which are closed and convex. Then the function f(z) := sup fi(z) is also closed and
convex. e

2. Let f; : R" — [—o0,+o0] (1 < i < m) be a family of finite extended real-valued functions
which are closed and convex, and a1, ag, ...,y > 0. Then the function f(z) = > 1%, o fi(x)
is also closed and convex.

3. If f: R™ — [—00, +00] is an extended real-valued function which is closed and convex, b € R,
and A € R™ " then ¢(x) := f(Ax + b) is also a closed and convex function.
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5.6 Exercises

1. Given a convex set S C R™ and an arbitrarily norm || - || in R", define the distance of a point
x € R" to the set S as
dist(zx, S) := inf ||z — y|.
ist(z, 5) ;fésll Y

Show that the distance function dist(x, S) is convex on x.

2. Give an example of a function f : R — R and a nonempty set C' C R illustrating each of the
following facts:

(a) fis non convex on R, C is convex, and f is convex on C.

(b) f is non convex on R, C'is non convex, and f is convex on C.

Prove Theorem 5.5.
Prove Theorem 5.7.
Prove Theorem 5.8.
Prove Lemma 5.9.
Prove Corollary 5.12.
Prove Corollary 5.17.

© ° N o ook W

Prove Theorem 5.18.
10. Prove Theorem 5.21.
11. Prove Corollary 5.22.
12. Prove Theorem 5.29.

6 Worse Case Analysis for Gradient Based Methods

6.1 Lower Complexity Bound for the class F;'(R")

Gradient Based Method: Iterative method M generated by a sequence such that

@ € xo + span{V f(xg), Vf(x1),...,Vf(xr_1)}, k>1.

Consider the problem class as follows

min f(x)
xcR"”
Model:
e

Oracle: Only function and gradient values are available
Approximate solution: | Find & € R" such that f(&) — f(x*) < e

Theorem 6.1 For any 1 < k < ”T_l, and any xy € R", there exists a function f € fzo’l(R”) such
that for any gradient based method of type M, we have

3L||zo — "3

v

1
e — 713 gllwo — "5,
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where z* is the minimum of f(x).

Proof:

This type of methods are invariant with respect to a simultaneous shift of all objects in the
space of variables. Therefore, we can assume that gy = 0.

Consider the family of quadratic functions

I k—1
fre(x) = { + - H—l +[x]z _[w]l}v k=12, )
z:l
We can see that
for k=1, fi(z)=%([z]} - [z]),
for k=2, fa(z) = £([=]} + [} - [x][a]> — [z]1),
for k=3, fs(a)=¢([=]] + [z]3 + [x]3 - [x][x]s — [x]a[a]s — [2]1)
Therefore, fy(z) = £ [2(Ayz, ) — (€1, )], where e; = (1,0 0)7, and
2 -1 0 0
-1 2 —1 0
a_| 0 12 0 Opns
4
0 0 -1 2
On—k,k On—k,n—k

Also, Vfi(x) = %(Aka: —e1) and V2f, (x) = %Ak. After some calculations, we can show that
LI = V2f,(x) = O for k = 1,2,...,n, and therefore, fi(x) € fzo’l(R"), for k =1,2,...,n, due
to Corollary 5.12.

Then

fe(@y) = é( 1+]€J1r1>

k+1’ 1=1,2,...,k
, i=k+1,k+2,...,n,

=

—
(@)

are the minimum value and the minimal solution for fi(-), respectively.

Now, for 1 < k < 21 let us define f(z) := for+1(x), and therefore * := Togy1.

Note that x; € x¢ + span{V f(xo), Vf(x1),...,Vf(xr_1)} for &y = 0. Moreover, since
V(@) = L(Awz — e1), [z4], = 0 for p > k. Therefore, f,(zy) = fi(xy) for p > k.

Then forkzl,Q,...,L”T_lJ,

flzr) — f(&) = forp1(xr) — fors1(Tang1) = fu(zp) — % ( 1+ 1 >

2k + 2
L 1 L 1
= fk(mk)_8<_1+2k+2>:8< ) <_ 2k:+2>
L
- 16(k+1)°

We can obtain after some calculations,

2k+1 i 2
* (|12 — 2
— = — = ]_—
lwo— a3 = llwo — Tairal §i1:< 5ies)
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2k+1 . 2k+1

1
= 9 1— -2
b 2k+2;2k+2+(2k+2)2 ;Z
202k +2)(2k+1)  (2k+1+1)3
< 2%k+4+1-—
= ek @k+2)2 302k +2)
o 2E+D)
= 3
Then
flag) —fl=) L 3
Jxo— |2 = 16(k+1)2(k+1)
Also

2k-+1 2k-+1 Z 2
lex -3 = lox—mmll> Y (@ail)i= 3 (1 )

i=k+1 i=k+1 2k +2
_opaq 2 [CE4DEE+D  (k+DE] 1 Zilig
B 2k + 2 2 2 (2k 4 2)?

1=k+1

Y

1 1
g”fﬂo - 5'32k+1||% = g”ilfo - fB*H%

If we consider very large problems where we can not afford n number of iterations, the above
theorem says that:

e The function value can be expected to decrease fast.

e The convergence to the optimal solution x* can be arbitrarily slow.

6.2 Lower Complexity Bound for the class SZOLl ()

Gradient Based Method: Iterative method M generated by a sequence such that

xp € xo +span{V f(x9),Vf(x1),...,Vf(xr_1)}, k>1.

Let us define

= {{xl}fil

o
> a7 <oo}.
=1

Consider the problem class as follows

Model: min f(x)
xel?

fessie?
Oracle: Only function and gradient values are available

Approximate solution: | Find & € R™ such that fgsc) _*f(zw )<e
|z —z*[5 <e
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