
Example 5.4 The function − log x is convex on (0,+∞). Let a, b ∈ (0,+∞) and 0 ≤ θ ≤ 1. Then,
from the definition of the convexity, we have

− log(θa+ (1− θ)b) ≤ −θ log a− (1− θ) log b.

If we take the exponential of both sides, we obtain

aθb1−θ ≤ θa+ (1− θ)b.

For θ = 1
2 , we have the arithmetic-geometric mean inequality:

√
ab ≤ a+ b

2
.

Let x,y ∈ Rn\{0}, p > 1, and q such that 1
p + 1

q = 1. Consider

a =
|[x]i|p
n∑

j=1

|[x]j |p
, b =

|[y]i|q
n∑

j=1

|[y]j |q
, θ =

1

p
, and (1− θ) =

1

q
.

Then we have 
|[x]i|p
n∑

j=1

|[x]j |p



1
p


|[y]i|q
n∑

j=1

|[y]j |q



1
q

≤ |[x]i|p

p
n∑

j=1

|[x]j |p
+

|[y]i|q

q
n∑

j=1

|[y]j |q
.

and summing over i, we obtain the Hölder inequality:

|⟨x,y⟩| ≤ ∥x∥p∥y∥q

where ∥x∥p :=

(
n∑

i=1

|[x]i|p
) 1

p

.

Theorem 5.5 (Jensen’s inequality) A function f : Rn → R is convex if and only if for any
positive integer m, the following condition is valid

x1,x2, . . . ,xm ∈ Rn

α1, α2, . . . , αm ≥ 0
m∑
i=1

αi = 1

⇒ f

(
m∑
i=1

αixi

)
≤

m∑
i=1

αif(xi).

Proof:
Left for exercise.

Theorem 5.6 Let {fi}i∈I be a family of (finite or infinite) functions which are bounded from above
and fi ∈ F(Rn). Then, f(x) := sup

i∈I
fi(x) is convex on Rn.

Proof:
For each i ∈ I, since fi ∈ F(Rn), its epigraph Ei = {(x, y) ∈ Rn+1 | fi(x) ≤ y} is convex on

Rn+1 by Theorem 5.2. Also their intersection∩
i∈I

Ei =
∩
i∈I

{
(x, y) ∈ Rn+1 | fi(x) ≤ y

}
=

{
(x, y) ∈ Rn+1

∣∣∣∣ sup
i∈I

fi(x) ≤ y

}
is convex by Exercise 2 of Section 1, which is exactly the epigraph of f(x).
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5.2 Differentiable Convex Functions

Theorem 5.7 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. f ∈ F1(Rn).

2. f(y) ≥ f(x) + ⟨∇f(x),y − x⟩, ∀x,y ∈ Rn.

3. ⟨∇f(x)−∇f(y),x− y⟩ ≥ 0, ∀x,y ∈ Rn.

Proof:
Left for exercise.

Theorem 5.8 (First-order sufficient optimality condition) If f ∈ F1(Rn) and ∇f(x∗) = 0,
then x∗ is the global minimum of f(x) on Rn.

Proof:
Left for exercise.

Lemma 5.9 If f ∈ F1(Rm), b ∈ Rm, and A : Rn → Rm, then

ϕ(x) = f(Ax+ b) ∈ F1(Rn).

Proof:
Left for exercise.

Example 5.10 The following functions are differentiable and convex:

1. f(x) = ex

2. f(x) = |x|p, p > 1

3. f(x) = x2

1+|x|

4. f(x) = |x| − ln(1 + |x|)

5. f(x) =
∑m

i=1 e
αi+⟨ai,x⟩

6. f(x) =
∑m

i=1 |⟨ai,x⟩ − bi|p, p > 1

Theorem 5.11 Let f be a twice continuously differentiable function. Then f ∈ F2(Rn) if and only
if

∇2f(x) ⪰ O, ∀x ∈ Rn.

Proof:
Let f ∈ F2(Rn), and denote xτ = x+ τs, τ > 0. Then, from the previous result

0 ≤ 1

τ2
⟨∇f(xτ )−∇f(x),xτ − x⟩ = 1

τ
⟨∇f(xτ )−∇f(x), s⟩

=
1

τ

∫ τ

0
⟨∇2f(x+ λs)s, s⟩dλ

=
F (τ)− F (0)

τ

where F (τ) =
∫ τ
0 ⟨∇

2f(x+λs)s, s⟩dλ. Therefore, tending τ to 0, we get 0 ≤ F ′(0) = ⟨∇2f(x)s, s⟩,
and we have the result.
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Conversely, ∀x ∈ Rn,

f(y) = f(x) + ⟨∇f(x),y − x⟩+
∫ 1

0

∫ τ

0
⟨∇2f(x+ λ(y − x))(y − x),y − x⟩dλdτ

≥ f(x) + ⟨∇f(x),y − x⟩.

5.3 Differentiable Convex Functions with Lipschitz Continuous Gradients

Corollary 5.12 Let f be a two times continuously differentiable function. f ∈ F2,1
L (Rn) if and

only if O ⪯ ∇2f(x) ⪯ LI, ∀x ∈ Rn.

Proof:
Left for exercise.

Theorem 5.13 Let f be a continuously differentiable function on Rn, x,y ∈ Rn, and α ∈ [0, 1].
Then the following conditions are equivalent:

1. f ∈ F1,1
L (Rn).

2. 0 ≤ f(y)− f(x)− ⟨∇f(x),y − x⟩ ≤ L
2 ∥x− y∥22.

3. f(x) + ⟨∇f(x),y − x⟩+ 1
2L∥∇f(x)−∇f(y)∥22 ≤ f(y).

4. 0 ≤ 1
L∥∇f(x)−∇f(y)∥22 ≤ ⟨∇f(x)−∇f(y),x− y⟩.

5. 0 ≤ ⟨∇f(x)−∇f(y),x− y⟩ ≤ L∥x− y∥22.

6. f(αx+ (1− α)y) + α(1−α)
2L ∥∇f(x)−∇f(y)∥22 ≤ αf(x) + (1− α)f(y).

7. 0 ≤ αf(x) + (1− α)f(y)− f(αx+ (1− α)y) ≤ α(1− α)L2 ∥x− y∥22.

Proof:
1⇒2 It follows from Lemmas 5.7 and 3.6.

2⇒3 Fix x ∈ Rn, and consider the function ϕ(y) = f(y)− ⟨∇f(x),y⟩. Clearly ϕ(y) satisfies
2. Also, y∗ = x is a minimal solution. Therefore from 2,

ϕ(x) = ϕ(y∗) ≤ ϕ

(
y − 1

L
∇ϕ(y)

)
≤ ϕ(y) +

L

2

∥∥∥∥ 1L∇ϕ(y)

∥∥∥∥2
2

+ ⟨∇ϕ(y),− 1

L
∇ϕ(y)⟩

= ϕ(y) +
1

2L
∥∇ϕ(y)∥22 −

1

L
∥∇ϕ(y)∥22 = ϕ(y)− 1

2L
∥∇ϕ(y)∥22.

Since ∇ϕ(y) = ∇f(y)−∇f(x), finally we have

f(x)− ⟨∇f(x),x⟩ ≤ f(y)− ⟨∇f(x),y⟩ − 1

2L
∥∇f(y)−∇f(x)∥22.

3⇒4 Adding two copies of 3 with x and y interchanged, we obtain 4.

4⇒1 Applying the Cauchy-Schwarz inequality to 4, we obtain ∥∇f(x)−∇f(y)∥2 ≤ L∥x−y∥2.
Also from Theorem 5.7, f(x) is convex.

2⇒5 Adding two copies of 2 with x and y interchanged, we obtain 5.

5⇒2

f(y)− f(x)− ⟨∇f(x),y − x⟩ =

∫ 1

0
⟨∇f(x+ τ(y − x))−∇f(x),y − x⟩dτ

≤
∫ 1

0
τL∥y − x∥22dτ =

L

2
∥y − x∥22.
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