Example 5.4 The function $-\log x$ is convex on $(0, +\infty)$. Let $a, b \in (0, +\infty)$ and $0 \le \theta \le 1$. Then, from the definition of the convexity, we have

$$-\log(\theta a + (1-\theta)b) \le -\theta \log a - (1-\theta)\log b.$$

If we take the exponential of both sides, we obtain

$$a^{\theta}b^{1-\theta} \le \theta a + (1-\theta)b.$$

For $\theta = \frac{1}{2}$, we have the arithmetic-geometric mean inequality: $\sqrt{ab} \leq \frac{a+b}{2}$. Let $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n \setminus \{\boldsymbol{0}\}, \ p > 1$, and q such that $\frac{1}{p} + \frac{1}{q} = 1$. Consider

$$a = \frac{|[\boldsymbol{x}]_i|^p}{\sum_{j=1}^n |[\boldsymbol{x}]_j|^p}, \ b = \frac{|[\boldsymbol{y}]_i|^q}{\sum_{j=1}^n |[\boldsymbol{y}]_j|^q}, \ \theta = \frac{1}{p}, \text{ and } (1-\theta) = \frac{1}{q}.$$

Then we have

$$\left(\frac{|[\boldsymbol{x}]_i|^p}{\sum\limits_{j=1}^n |[\boldsymbol{x}]_j|^p}\right)^{\frac{1}{p}} \left(\frac{|[\boldsymbol{y}]_i|^q}{\sum\limits_{j=1}^n |[\boldsymbol{y}]_j|^q}\right)^{\frac{1}{q}} \leq \frac{|[\boldsymbol{x}]_i|^p}{p\sum\limits_{j=1}^n |[\boldsymbol{x}]_j|^p} + \frac{|[\boldsymbol{y}]_i|^q}{q\sum\limits_{j=1}^n |[\boldsymbol{y}]_j|^q}.$$

and summing over i, we obtain the Hölder inequality:

$$|\langle oldsymbol{x}, oldsymbol{y}
angle| \leq \|oldsymbol{x}\|_p \|oldsymbol{y}\|_q$$

where
$$\| \boldsymbol{x} \|_p := \left(\sum_{i=1}^n |[\boldsymbol{x}]_i|^p \right)^{\frac{1}{p}}$$
.

Theorem 5.5 (Jensen's inequality) A function $f: \mathbb{R}^n \to \mathbb{R}$ is convex if and only if for any positive integer m, the following condition is valid

$$\left. \begin{array}{l} \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_m \in \mathbb{R}^n \\ \alpha_1, \alpha_2, \dots, \alpha_m \geq 0 \\ \sum_{i=1}^m \alpha_i = 1 \end{array} \right\} \Rightarrow f\left(\sum_{i=1}^m \alpha_i \boldsymbol{x}_i\right) \leq \sum_{i=1}^m \alpha_i f(\boldsymbol{x}_i).$$

Proof:

Left for exercise.

Theorem 5.6 Let $\{f_i\}_{i\in I}$ be a family of (finite or infinite) functions which are bounded from above and $f_i \in \mathcal{F}(\mathbb{R}^n)$. Then, $f(\boldsymbol{x}) := \sup_{i \in I} f_i(\boldsymbol{x})$ is convex on \mathbb{R}^n .

Proof:

For each $i \in I$, since $f_i \in \mathcal{F}(\mathbb{R}^n)$, its epigraph $E_i = \{(\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid f_i(\boldsymbol{x}) \leq y\}$ is convex on \mathbb{R}^{n+1} by Theorem 5.2. Also their intersection

$$\bigcap_{i \in I} E_i = \bigcap_{i \in I} \left\{ (\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid f_i(\boldsymbol{x}) \le y \right\} = \left\{ (\boldsymbol{x}, y) \in \mathbb{R}^{n+1} \mid \sup_{i \in I} f_i(\boldsymbol{x}) \le y \right\}$$

is convex by Exercise 2 of Section 1, which is exactly the epigraph of f(x).

5.2 Differentiable Convex Functions

Theorem 5.7 Let f be a continuously differentiable function. The following conditions are equivalent:

1. $f \in \mathcal{F}^1(\mathbb{R}^n)$.

2.
$$f(y) \ge f(x) + \langle \nabla f(x), y - x \rangle, \quad \forall x, y \in \mathbb{R}^n$$
.

3.
$$\langle \nabla f(x) - \nabla f(y), x - y \rangle \ge 0, \ \forall x, y \in \mathbb{R}^n$$
.

Proof:

Left for exercise.

Theorem 5.8 (First-order sufficient optimality condition) If $f \in \mathcal{F}^1(\mathbb{R}^n)$ and $\nabla f(x^*) = 0$, then x^* is the global minimum of f(x) on \mathbb{R}^n .

Proof:

Left for exercise.

Lemma 5.9 If $f \in \mathcal{F}^1(\mathbb{R}^m)$, $\mathbf{b} \in \mathbb{R}^m$, and $\mathbf{A} : \mathbb{R}^n \to \mathbb{R}^m$, then

$$\phi(\mathbf{x}) = f(\mathbf{A}\mathbf{x} + \mathbf{b}) \in \mathcal{F}^1(\mathbb{R}^n).$$

Proof:

Left for exercise.

Example 5.10 The following functions are differentiable and convex:

1.
$$f(x) = e^x$$

2.
$$f(x) = |x|^p$$
, $p > 1$

3.
$$f(x) = \frac{x^2}{1+|x|}$$

4.
$$f(x) = |x| - \ln(1 + |x|)$$

5.
$$f(\boldsymbol{x}) = \sum_{i=1}^{m} e^{\alpha_i + \langle \boldsymbol{a}_i, \boldsymbol{x} \rangle}$$

6.
$$f(\boldsymbol{x}) = \sum_{i=1}^{m} |\langle \boldsymbol{a}_i, \boldsymbol{x} \rangle - b_i|^p, \quad p > 1$$

Theorem 5.11 Let f be a twice continuously differentiable function. Then $f \in \mathcal{F}^2(\mathbb{R}^n)$ if and only if

$$\nabla^2 f(x) \succeq O, \quad \forall x \in \mathbb{R}^n.$$

Proof:

Let $f \in \mathcal{F}^2(\mathbb{R}^n)$, and denote $x_{\tau} = x + \tau s$, $\tau > 0$. Then, from the previous result

$$0 \leq \frac{1}{\tau^2} \langle \nabla f(x_\tau) - \nabla f(x), x_\tau - x \rangle = \frac{1}{\tau} \langle \nabla f(x_\tau) - \nabla f(x), s \rangle$$
$$= \frac{1}{\tau} \int_0^\tau \langle \nabla^2 f(x + \lambda s) s, s \rangle d\lambda$$
$$= \frac{F(\tau) - F(0)}{\tau}$$

where $F(\tau) = \int_0^{\tau} \langle \nabla^2 f(x + \lambda s) s, s \rangle d\lambda$. Therefore, tending τ to 0, we get $0 \le F'(0) = \langle \nabla^2 f(x) s, s \rangle$, and we have the result.

Conversely, $\forall x \in \mathbb{R}^n$,

$$f(\boldsymbol{y}) = f(\boldsymbol{x}) + \langle \nabla \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle + \int_0^1 \int_0^\tau \langle \nabla^2 \boldsymbol{f}(\boldsymbol{x} + \lambda(\boldsymbol{y} - \boldsymbol{x}))(\boldsymbol{y} - \boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle d\lambda d\tau$$

$$\geq f(\boldsymbol{x}) + \langle \nabla \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle.$$

5.3 Differentiable Convex Functions with Lipschitz Continuous Gradients

Corollary 5.12 Let f be a two times continuously differentiable function. $f \in \mathcal{F}_L^{2,1}(\mathbb{R}^n)$ if and only if $O \leq \nabla^2 f(x) \leq LI$, $\forall x \in \mathbb{R}^n$.

Proof:

Left for exercise.

Theorem 5.13 Let f be a continuously differentiable function on \mathbb{R}^n , $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, and $\alpha \in [0,1]$. Then the following conditions are equivalent:

1.
$$f \in \mathcal{F}_L^{1,1}(\mathbb{R}^n)$$
.

2.
$$0 \le f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle \nabla f(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle \le \frac{L}{2} \|\boldsymbol{x} - \boldsymbol{y}\|_2^2$$

3.
$$f(x) + \langle \nabla f(x), y - x \rangle + \frac{1}{2L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le f(y)$$
.

4.
$$0 \le \frac{1}{L} \|\nabla f(x) - \nabla f(y)\|_2^2 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle$$
.

5.
$$0 \le \langle \nabla f(x) - \nabla f(y), x - y \rangle \le L ||x - y||_2^2$$

6.
$$f(\alpha \boldsymbol{x} + (1 - \alpha)\boldsymbol{y}) + \frac{\alpha(1 - \alpha)}{2L} \|\nabla f(\boldsymbol{x}) - \nabla f(\boldsymbol{y})\|_2^2 \le \alpha f(\boldsymbol{x}) + (1 - \alpha)f(\boldsymbol{y}).$$

7.
$$0 \le \alpha f(x) + (1 - \alpha)f(y) - f(\alpha x + (1 - \alpha)y) \le \alpha (1 - \alpha) \frac{L}{2} ||x - y||_2^2$$

Proof:

 $1 \Rightarrow 2$ It follows from Lemmas 5.7 and 3.6.

 $2\Rightarrow 3$ Fix $\mathbf{x} \in \mathbb{R}^n$, and consider the function $\phi(\mathbf{y}) = f(\mathbf{y}) - \langle \nabla \mathbf{f}(\mathbf{x}), \mathbf{y} \rangle$. Clearly $\phi(\mathbf{y})$ satisfies 2. Also, $\mathbf{y}^* = \mathbf{x}$ is a minimal solution. Therefore from 2,

$$\begin{split} \phi(\boldsymbol{x}) &= \phi(\boldsymbol{y}^*) \leq \phi\left(\boldsymbol{y} - \frac{1}{L}\boldsymbol{\nabla}\phi(\boldsymbol{y})\right) \leq \phi(\boldsymbol{y}) + \frac{L}{2}\left\|\frac{1}{L}\boldsymbol{\nabla}\phi(\boldsymbol{y})\right\|_2^2 + \langle\boldsymbol{\nabla}\phi(\boldsymbol{y}), -\frac{1}{L}\boldsymbol{\nabla}\phi(\boldsymbol{y})\rangle \\ &= \phi(\boldsymbol{y}) + \frac{1}{2L}\|\boldsymbol{\nabla}\phi(\boldsymbol{y})\|_2^2 - \frac{1}{L}\|\boldsymbol{\nabla}\phi(\boldsymbol{y})\|_2^2 = \phi(\boldsymbol{y}) - \frac{1}{2L}\|\boldsymbol{\nabla}\phi(\boldsymbol{y})\|_2^2. \end{split}$$

Since $\nabla \phi(y) = \nabla f(y) - \nabla f(x)$, finally we have

$$f(x) - \langle \nabla f(x), x \rangle \le f(y) - \langle \nabla f(x), y \rangle - \frac{1}{2L} \| \nabla f(y) - \nabla f(x) \|_2^2.$$

 $3 \Rightarrow 4$ Adding two copies of 3 with x and y interchanged, we obtain 4.

4 \Rightarrow 1 Applying the Cauchy-Schwarz inequality to 4, we obtain $\|\nabla f(x) - \nabla f(y)\|_2 \le L \|x - y\|_2$. Also from Theorem 5.7, f(x) is convex.

 $2\Rightarrow 5$ Adding two copies of 2 with \boldsymbol{x} and \boldsymbol{y} interchanged, we obtain 5.

 $5\Rightarrow 2$

$$f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle = \int_0^1 \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x} + \tau(\boldsymbol{y} - \boldsymbol{x})) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x} \rangle d\tau$$

$$\leq \int_0^1 \tau L \|\boldsymbol{y} - \boldsymbol{x}\|_2^2 d\tau = \frac{L}{2} \|\boldsymbol{y} - \boldsymbol{x}\|_2^2.$$