Example 5.4 The function — log z is convex on (0, +00). Let a,b € (0,+00) and 0 < 6 < 1. Then,
from the definition of the convexity, we have

—log(fa + (1 — 0)b) < —Ologa — (1 — 0) logb.
If we take the exponential of both sides, we obtain
a’b' =% < fa + (1 - 0)b.

. . . . . a+b
For 6 = %, we have the arithmetic-geometric mean inequality: vab < —

Let ,y € R"\{0}, p > 1, and ¢ such that % + % = 1. Consider
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Then we have . N
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and summing over i, we obtain the Holder inequality:

{2, 9)| < l=lpllyllq

P

where ||z||, := (Z H“’]Z|p>
i=1

Theorem 5.5 (Jensen’s inequality) A function f : R" — R is convex if and only if for any
positive integer m, the following condition is valid

n
T, T2,..., Ly €ER
a17a27-"704m20

m = f aizi | <> aif(x).
i1

Proof:
Left for exercise. ]

Theorem 5.6 Let {f;}icr be a family of (finite or infinite) functions which are bounded from above
and f; € F(R"™). Then, f(x) := sup fi(x) is convex on R".
el

Proof:
For each i € I, since f; € F(R"), its epigraph E; = {(z,y) € R"™! | fi(x) < y} is convex on
R™ ! by Theorem 5.2. Also their intersection

ﬂEi = ﬂ {(m,y) c Rl | fi(x) < y} = {(a:,y) c R+

i€l i€l

ap 0 <)

i€l
is convex by Exercise 2 of Section 1, which is exactly the epigraph of f(x). 1
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5.2 Differentiable Convex Functions

Theorem 5.7 Let f be a continuously differentiable function. The following conditions are equiv-
alent:

1. feFY(RM).
2. fly) = f(z) +(Vf(z),y —z), VYo,yeR™
3. (Vf(x) - Vf(y),z—y) =0, Ve,y € R".

Proof:
Left for exercise. 1

Theorem 5.8 (First-order sufficient optimality condition) If f € F'(R") and V f(x*) = 0,
then x* is the global minimum of f(x) on R".

Proof:
Left for exercise. ]

Lemma 5.9 If f ¢ F1(R™), b€ R™, and A : R” — R™, then
d(x) = f(Axz +b) € FL(R").

Proof:
Left for exercise. ]

Example 5.10 The following functions are differentiable and convex:
1. f(z

2. f(x) =z, p>1

x 1+\x\

)=
fla) =
flx) =
4. f(z) = || — In(1 + |z|)
f(zx) = Z a;+(a;,T)
f®) =

T
x) = Kai ) = bifP, p>1

Theorem 5.11 Let f be a twice continuously differentiable function. Then f € F2(R") if and only

if
Vif(x) = O, VxcR"
Proof:
Let f € F%(R"), and denote &, = « + 75, 7 > 0. Then, from the previous result
1 1
0 <= S (Vfzr) - V(@) 2 —a) = (Vf(xr) - Vf(z)s)
1 T
= / (V2f(x + \s)s, s)d\
T Jo
_ F(r) - F(0)
N T
where F(7) = [; (V?f(z+\s)s, s)d\. Therefore, tending 7 to 0, we get 0 < F'(0) = (V> f(x)s, s),

and we have the result.
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Conversely, Vo € R",

1 T
f@) = f@)+(VF@)y- o)+ / / (V2f(z + Ay — ) (y — z),y — x)dAdr
> f(@)+ (V) - ).

5.3 Differentiable Convex Functions with Lipschitz Continuous Gradients

Corollary 5.12 Let f be a two times continuously differentiable function. f € f%l(R") if and
only if O < V2f(x) < LI, VYx cR".

Proof:
Left for exercise. 1

Theorem 5.13 Let f be a continuously differentiable function on R", x,y € R", and « € [0, 1].
Then the following conditions are equivalent:

1. feF (R,

2. 0< f(y) — f(x) — (Vf(=),y — =) < &z -yl
3. f(@) +(Vf(x),y — =) + 57| VF(z) = V)3 < fy)
1 0< HVF@) - Vi3 < (Vi) - Vi) -y).

5. 0<(Vf(x) - Vf(y),z—y) < Llz—yl3

6. flaz+ (1 —a)y) + G2 V(@) - V() < af(@) + (1-a)f(y).
7. 0<af(@)+(1-a)f(y) - flaz+ (1-a)y) <al— )|z - y|3
Proof:

It follows from Lemmas 5.7 and 3.6.
Fix € R", and consider the function ¢(y) = f(y) — (Vf(x),y). Clearly ¢(y) satisfies

2. Also, y* = x is a minimal solution. Therefore from 2,

L 2

@) = o) <o (v- Vo)) <o)+ 5 | Vo) +(Voly).~1 Vo)

2
1 1 1
= o)+ 57 1IVeWlz - £ 1VeWllz = () - 57 [IVow)I.
Since Vo (y) = Vf(y) — V f(x), finally we have

F(@) ~ (Vf(@).2) < fy) ~ (VF@).9) ~ 5 |VFy) - VI3

Adding two copies of 3 with « and y interchanged, we obtain 4.

Applying the Cauchy-Schwarz inequality to 4, we obtain ||V f(x)—V f(y)|l2 < L||z—y||2.
Also from Theorem 5.7, f(x) is convex.
2=5| Adding two copies of 2 with  and y interchanged, we obtain 5.

5=2

1
fy) - (@) — (Vi@)y—=z) = /0 (VF(@+7(y — @) — VF@),y - z)dr

IN

! 2 L 2
| 7ty ==lBir = Sy -l
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