4.4 Algorithms for Minimizing Smooth Functions
4.4.1 Steepest Descent Method

Consider f : R"™ — R a differentiable function on its domain.

Steepest Descent Method
Choose: xy € R"
Iterate: xp41 = —hiVf(xg), k=0,1,...

We consider four strategies for the step-size hy:

1. Constant Step
The sequence {hy}7° is chosen in advance. For example
hi :=h >0,
h
VE+1

hy =
This is the simplest strategy.
2. Exact Line Search (Cauchy Step-Size)
The sequence {hy}72, is chosen such that
hy == in f(xr — hV f(xy)).
k= argmin f (xy f (k)
This choice is only theoretical since even for the one dimensional case, it is very difficult and
expensive.
3. Goldstein-Armijo Rule

Find a sequence {hy}72 such that

AV f(xr), T — Ty 1)
BV f(xr), xp — Tpt1)

IV IA

where 0 < o < 8 < 1 are fixed parameters.
Since f(@k+1) = f(xp — eV f (k).
Flaw) = Bl V F (@) |3 < flanr) < flan) — ahil|[VF(@)]3:
The acceptable steps exist unless f(xr11) = f(xr — hV f(xr)) is not bounded from below.

4. Barzilai-Borwein Step-Size!

Let us define s;_1 := xp — xx—1 and y;,_; := V f(xr) — Vf(xr—1). Then, we can define the
Barzilai-Borwein (BB) step sizes {h},}?°, and {h2}2°:

1 sl
k- )
(Sk—1,Yp_1)
B2 .— (Sk—1,Yk_1)
k- 2
||yk—1H2

The first step-size is the one which minimizes the following secant condition ||%sk,1 — Y13
while the second one minimizes ||sy_1 — hyj_1||3.

1J. Barzilai and J. M. Borwein, “Two-point step size gradient methods,” IMA Journal of Numerical Analysis, 8
(1988), pp. 141-148.

14



Now, consider the problem

where f € Ci’l(R”), and f(zx) is bounded from below.

Let us evaluate the result of one step of the steepest descent method.
Consider y =  — hV f(x). From Lemma 3.6,

) < f@)+ (V@)Y -2+ %y -l

h2L
= f(=) - h|Vf(@)|5+ TIIVf(w)H%

= fla)-n (1= 51) IVF@IE 6

Thus, one step of the steepest descent method decreases the value of the objective function at

least as follows for h* = 1/L.
F) < f@) — 5 IV F@)I3
Now, for the Goldstein-Armijo Rule, since @y = xp — hy V f (), we have:
Flan) = f(@r) < BhillV £ ()3,
and from (5)
) = flon) = b (1= L) 19 5@l

Therefore, hy, > 2(1 — )/L.

Also, substituting in

flax) = flarin) > ahil|V F ()3 > %04(1 ~ BV f () II5.

Thus, in the three step-size strategies excepting the BB step size considered here, we can say
that

@) = f@i) > SV @)l

for some positive constant w.
Summing up the above inequality we have:

N
=Y IVE@I; < fl@o) - flani) < flzo) - f°
k=0

where f* is the optimal value of the problem.
As a simple consequence we have

IVf(xg)l]2 =0 as k— oo.

Finally,

) ' 1 I ) 1/2
divi= i 19 F @0l < —— Lt - )] )
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Remark 4.14 g3 — 0, but we cannot say anything about the rate of convergence of the sequence

{f(zx)} or {z}.

Example 4.15 Consider the function f(z,y) = 32 + jy* — 33° (0,—1)" and (0,1)" are local
minimal solutions, but (0,0)7 is a stationary point.

If we start the steepest descent method from (1,0)”, we will only converge to the stationary
point.

We focus now on the following problem class:

Model: 1. min f(x)
xecR"

2. fecy (RY)

3. f(x) is bounded from below

Oracle: Only function and gradient values are available
Approximate solution: | Find & € R" such that f(&) < f(xo) and ||V f(Z)|2 < €

From (6), we have

. L .

Remark 4.16 This is much better than the result of Theorem 4.6, since it does not depend on n.

Finally, consider the following problem under Assumption 4.17.

min f(x)

xecR"

Assumption 4.17
2,2
L. fecCy (R");
2. There is a local minimum «* of the function f(x);
3. We know some bound 0 < ¢ < L < oo for the Hessian at x*:

(I X V*f(x*) < LI,

4. Our starting point xg is close enough to x*.

Theorem 4.18 Let f(x) satisfy our assumptions above and let the starting point xg be close

enough to a local minimum:

leo — @*||z < 7 = o
ro = — = —.
0 0 2 M

Then, the steepest descent method with step-size h* = 2/(L + ) converges as follows:

_ k
. Tro 2/
s wH2F—7’0< L+3€>

This rate of convergence is called (R-)linear.

Proof:
In the steepest descent method, the iterates are g1 = @ — hi V f (k).
Since V f(x*) = 0,
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1
Vf(xy)=Vf(xy) — Vf(x") = /0 V2f(x* + 7(x) — x*))(x) — x¥)dr = Gp(T) — T*),

and therefore,
Tpp1 — & =2 — " — W Gr(xp — ) = (I — hyGy)(z), — 7).

Let rp = ||@) — *||2. From Lemma 3.8,

V2f(x*) — TMril < V2f(x* + 7(x) — x*)) < V2f(x*) + 7Mry 1.
Integrating all parts from 0 to 1 and using our hypothesis,
(- %M)I <Gy =< (L+ %’“M)I.

Therefore,
(1 — hi(L + %’“M)) =<1 h,Gy < (1 — gl - %’“M)) I.

We arrive at
1 — heGrll2 < max{|ak(hg)], [bx (P )|}

where ay(h) =1 —h({ — % M) and b (h) = h(L + M) — 1.

Notice that a;(0) = 1 and b;(0) = —1.
Now, let us use our hypothesis that rg < 7.

When ay(h) = by(h), we have 1 — h(¢ — M) = h(L + " M) — 1, and therefore
2
hy = ——.
FTL4d
(Surprisingly, it does not depend neither on M nor r). Finally,

* 2 Tk *
e = llows — %l < (1= 2y (0= 201) ) o = o7l

That is,
L—t¢ rM >
Tg.

< (= 4 R
Tht1 = <L+£ e
and rgq <rp < T
Now, let us analyze the rate of convergence. Multiplying the above inequality by M /(L + ¢),

Mryy,  M(L—0) M?r?
< Tk + .
L+0 — (L+0)2 (L +0)2

Calling ay, = ]‘L{:’z and ¢ = Lz—fg, we have

ag(1— (ag — q)*
ape1 < (1 =@+ of = ap(l+ap — q) = k(ll_ ((a:_ 5) ). (7)

2 Mre _ 200 <0, and 1+ () — q) = % + ]Z[J:’g > 0. Therefore,

: 14 _
Now, since 1y < 57, ap —q¢ = T L7
k

—1 < g —q <0, and (7) becomes < k.

1 >1+q

Qp+1 Qg

— 1.
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1
a —12q<+q>—q—1:(1+q)<q—1>.
k41 (677 g

and then,
— —1>(1 — -1 =(1 —_— —1]=(1 ——1].
o > (1+9) (ao ) (1+9) (L+€ Mrq (1+9) 0

Finally, we arrive at
TTro 20 k
= ||z — a2 < 1-— .
e = e H2_f—r0< L+3£)

4.4.2 The Newton Method

Example 4.19 Let us apply the Newton method to find the root of the following function

T

x) = ——.
=T
Clearly z* = 0.
The Newton method will give:
Tpr1 = T — g/(xk) = —ap(1 4 22) = —a3.
g (zy)

Therefore, the method converges if |xg| < 1, it oscillates if |xg| = 1, and finally, diverges if |zo| > 1.
Assumption 4.20
2,2 ,
L. feCy (R");
2. There is a local minimum «* of the function f(x);
3. The Hessian is positive definite at x*:

Vif(x*) =4I, 0> 0;
4. Qur starting point xg is close enough to x*.

Theorem 4.21 Let the function f(x) satisfy the above assumptions. Suppose that the initial
starting point x( is close enough to x*:

L
~ <Fi=
lwo =™l <7:= 337

Then ||z — x*||2 < 7 for all k of the Newton method and it converges (Q-)quadratically:

M|z, — z*||3
= M|z — z*[|2)

*
— <
s — 'l < 5

Proof:
Let r, = ||xrx — *||2. From Lemma 3.8 and the assumption, we have for k£ = 0,

V2f(xg) = V2f(x*) — Mrol = (£ — Mro)I. (8)

Since rg < T = 32—]\@4 < %, we have £ — Mrq > 0 and therefore, V2 f(x0) is invertible.
Consider the Newton method for k = 0, 21 = xq — [V f(x0)] "'V £ (o).
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