Lemma 3.7 Let f € C?W’Q(R”). Then for all ,y € R", we have

IVH(y) ~ V(@) - V2 i)y~ )l < 5y~ w3,

7~ F@) ~ (VFw),y @)~ L (V*F @)y~ o)y — 2] < oy~ =l

Lemma 3.8 Let f € C37(R™), with |V2f(z) — V2f(y)|2 < M|z — y|j2. Then
V2 f(x) = Mlly — x| 2 V2 f(y) 2 Vf(x) + My — z[|21.

Proof:
Since f € C?\f(Rn), IV2f(y) — V2f(x)||2 < M|ly — z||2. This means that the eigenvalues of
the symmetric matrix V2 f(y) — V2f(x) satisfy:

’AZ(VQf(y)_V2f(x))‘ SMHy_w”Qv i:1a27'--7n-

Therefore,
~M|ly —z[2I < V*f(y) - V*f(z) < M|y — 2|1
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3.1 Exercises
1. Prove Lemma 3.7.
4 Optimality Conditions and Algorithms for Minimizing Func-
tions

4.1 General Minimization Problem and Terminologies
Definition 4.1 We define the general minimization problem as follows

minimize  f(x)

subject to  fj(x) &0, j=1,2,...,m (1)

x €S,
where f:R" = R, f; :R" =R (j =1,2,...,m), the symbol & could be =, >, or <, and § C R".
Definition 4.2 The feasible set Q of (1) is
Q={xecS| fi(x)&0, (j=12,...,m)}.
In the following, we assume S = R".

o If @ =R", (1) is a unconstrained optimization problem.

e If @ CR", (1) is a constrained optimization problem.

If all functionals f(x), fj(x) are differentiable, (1) is a smooth optimization problem.

If one of functionals f(x), fj(x) is non-differentiable, (1) is a non-smooth optimization prob-
lem.

If all constraints are linear fj(x) = (aj,x) +b; (j = 1,2,...,m), (1) is a linear constrained
optimization problem.



— In addition, if f(x) is linear, (1) is a linear programming problem.

— In addition, if f(x) is quadratic, (1) is a quadratic programming problem.

o If f(x), fj(x) (j = 1,2,...,m) are quadratic, (1) is a quadratically constrained quadratic
programming problem.

Definition 4.3 x* is called a global optimal solution of (1) if f(x*) < f(x), Vx € Q. Moreover,
f(x*) is called the global optimal value. x* is called a local optimal solution of (1) if there exists
an open ball B(z*,¢) := {x € R" | |[x — x*||2 < €} such that f(z*) < f(z), Vx € B(z*,e)NQ.
Moreover, f(x*) is called a local optimal value.

4.2 Complexity Bound for a Global Optimization Problem on the Unit Box

Consider one of the simplest problems in optimization, that is, minimizing a function on the n-
dimensional box.

minimize  f(x) )
subject to z € B, :={x eR" |0<[z]; <1, i=1,2,...,n}.

To be coherent, we use the ¢ -norm:

@l = max 2l

Let us also assume that f(x) is Lipschitz continuous on By:
[f(x) = f(y)| < Lll# - ylloo, Va,y € Bp.

Let us define a very simple method to solve (2), the uniform grid method.

Given a positive integer p > 0,
1. Form (p + 1)"™ points
iy o in\ "
xil,iQ,...,in - Ty T gy eeey T
p p p
where (i1,42,...,1,) € {0,1,...,p}"

2. Among all points x;, ;.. 4,, find a point & which has the minimal value for the
objective function.

3. Return the pair (Z, f(Z)) as the result.

Theorem 4.4 Let f(x*) be the global optimal value for (2). Then the uniform grid method yields

_ . L
f@) - fx") < %
Proof:
Let * be a global optimal solution. Then there are coordinates (i1, 12, ...,%,) such that  :=
T o, in < 5 < T 4141, in+1 =: Y. Observe that [y]; — [x]; = 1/p for i = 1,2,...,n and

[x*]; € [[z]i, [y]i] (=1,2,...,n).
Consider & = (« + y)/2 and form a new point & as:

o L Yl i 27 > (2]
(@i = { [Z]z, otherwise.



It is clear that |[z]; — [x*];] < 1/(2p) for i = 1,2,...,n. Then || — x*||x = max ] — [x7]i| <
<i<n

1/(2p). Since & belongs to the grid,

f(@) = f(&") < f(®) - f(2") < L]|Z — 2"[|oc < L/(2p).

Let us define our goal

Find « € By, such that f(x) — f(z*) <e. ‘

Corollary 4.5 The number of iterations necessary for the problem (2) to achieve the above goal
using the uniform grid method is at most
L n
— 2] .
(=] +2)
Proof:

Take p = [L/(2¢)] + 1. Then, p > L/(2¢) and from the previous theorem, f(&) — f(x*) <
L/(2p) < e. Observe that we constructed (p + 1)" points. 1

Consider the class of problems P defined as follows:

Model: min f(x),
TeB,
f(x) is {so-Lipschitz continuous on By,.
Oracle: Only function values are available
Approximate solution: | Find € B,, such that f(&) — f(z*) <¢

Theorem 4.6 For ¢ < %, the number of iterations necessary for the class of problems P using any
method which uses only function evaluations is always at least (| £ ])".

Proof:

Let p = [£] (which is > 1 from the hypothesis).

Suppose that there is a method which requires N < p™ calls of the oracle to solve the problem
in P.

Then, there is a point £ € B, = {x ¢ R" | 0 < [z]; <1, i =1,2,...,n} where there is no test
points in the interior of B := {z | # <z < & + e/p} where e = (1,1,...,1)T € R™

Let =* := & + e/(2p) and consider the function f(x) := min{0, L||z — x*||s — €}. Clearly, f is
{-Lipschitz continuous with constant L and its global minimum is —e. Moreover, f(z) is non-zero
valued only inside the box B’ :={zx | || — *||cc <¢/L}.

Since 2p < L/e, B’ C{x | |l — =*||-c < 1/(2p)} = B.

Therefore, f(x) is equal to zero to all test points of our method and the accuracy of the method
is €.

If the number of calls of the oracle is less than p™, the accuracy can not be better than . 1

Theorem 4.6 supports the claim that the general optimization problem is unsolvable.

Example 4.7 Consider a problem defined by the following parameters. L = 2, n = 10, and
e = 0.01.
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