Lemma 3.7 Let $f \in \mathcal{C}_{M}^{2,2}\left(\mathbb{R}^{n}\right)$. Then for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^{n}$, we have

$$
\begin{gathered}
\left\|\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y})-\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x})\right\|_{2} \leq \frac{M}{2}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{2}, \\
\left|f(\boldsymbol{y})-f(\boldsymbol{x})-\langle\boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\rangle-\frac{1}{2}\left\langle\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x})(\boldsymbol{y}-\boldsymbol{x}), \boldsymbol{y}-\boldsymbol{x}\right\rangle\right| \leq \frac{M}{6}\|\boldsymbol{y}-\boldsymbol{x}\|_{2}^{3} .
\end{gathered}
$$

Lemma 3.8 Let $f \in \mathcal{C}_{M}^{2,2}\left(\mathbb{R}^{n}\right)$, with $\left\|\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x})-\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{y})\right\|_{2} \leq M\|\boldsymbol{x}-\boldsymbol{y}\|_{2}$. Then

$$
\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x})-M\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \boldsymbol{I} \preceq \boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{y}) \preceq \boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x})+M\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \boldsymbol{I} .
$$

Proof:
Since $f \in \mathcal{C}_{M}^{2,2}\left(\mathbb{R}^{n}\right),\left\|\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{y})-\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x})\right\|_{2} \leq M\|\boldsymbol{y}-\boldsymbol{x}\|_{2}$. This means that the eigenvalues of the symmetric matrix $\nabla^{2} \boldsymbol{f}(\boldsymbol{y})-\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x})$ satisfy:

$$
\left|\lambda_{i}\left(\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{y})-\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x})\right)\right| \leq M\|\boldsymbol{y}-\boldsymbol{x}\|_{2}, \quad i=1,2, \ldots, n
$$

Therefore,

$$
-M\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \boldsymbol{I} \preceq \boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{y})-\boldsymbol{\nabla}^{2} \boldsymbol{f}(\boldsymbol{x}) \preceq M\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \boldsymbol{I} .
$$

3.1 Exercises

1. Prove Lemma 3.7.

4 Optimality Conditions and Algorithms for Minimizing Functions

4.1 General Minimization Problem and Terminologies

Definition 4.1 We define the general minimization problem as follows

$$
\begin{cases}\text { minimize } & f(\boldsymbol{x}) \tag{1}\\ \text { subject to } & f_{j}(\boldsymbol{x}) \& 0, \quad j=1,2, \ldots, m \\ & \boldsymbol{x} \in S,\end{cases}
$$

where $f: \mathbb{R}^{n} \rightarrow \mathbb{R}, f_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}(j=1,2, \ldots, m)$, the symbol \& could be $=, \geq$, or \leq, and $S \subseteq \mathbb{R}^{n}$.
Definition 4.2 The feasible set Q of (1) is

$$
Q=\left\{\boldsymbol{x} \in S \mid f_{j}(\boldsymbol{x}) \& 0,(j=1,2, \ldots, m)\right\}
$$

In the following, we assume $S \equiv \mathbb{R}^{n}$.

- If $Q \equiv \mathbb{R}^{n}$, (1) is a unconstrained optimization problem.
- If $Q \subsetneq \mathbb{R}^{n}$, (1) is a constrained optimization problem.
- If all functionals $f(\boldsymbol{x}), f_{j}(\boldsymbol{x})$ are differentiable, (1) is a smooth optimization problem.
- If one of functionals $f(\boldsymbol{x}), f_{j}(\boldsymbol{x})$ is non-differentiable, (1) is a non-smooth optimization problem.
- If all constraints are linear $f_{j}(\boldsymbol{x})=\left\langle\boldsymbol{a}_{j}, \boldsymbol{x}\right\rangle+b_{j}(j=1,2, \ldots, m),(1)$ is a linear constrained optimization problem.
- In addition, if $f(\boldsymbol{x})$ is linear, (1) is a linear programming problem.
- In addition, if $f(\boldsymbol{x})$ is quadratic, (1) is a quadratic programming problem.
- If $f(\boldsymbol{x}), f_{j}(\boldsymbol{x})(j=1,2, \ldots, m)$ are quadratic, (1) is a quadratically constrained quadratic programming problem.

Definition $4.3 \boldsymbol{x}^{*}$ is called a global optimal solution of (1) if $f\left(\boldsymbol{x}^{*}\right) \leq f(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in Q$. Moreover, $f\left(\boldsymbol{x}^{*}\right)$ is called the global optimal value. \boldsymbol{x}^{*} is called a local optimal solution of (1) if there exists an open ball $B\left(\boldsymbol{x}^{*}, \varepsilon\right):=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{2}<\varepsilon\right\}$ such that $f\left(\boldsymbol{x}^{*}\right) \leq f(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in B\left(\boldsymbol{x}^{*}, \varepsilon\right) \cap Q$. Moreover, $f\left(\boldsymbol{x}^{*}\right)$ is called a local optimal value.

4.2 Complexity Bound for a Global Optimization Problem on the Unit Box

Consider one of the simplest problems in optimization, that is, minimizing a function on the n dimensional box.

$$
\begin{cases}\text { minimize } & f(\boldsymbol{x}) \tag{2}\\ \text { subject to } & \boldsymbol{x} \in B_{n}:=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid 0 \leq[\boldsymbol{x}]_{i} \leq 1, i=1,2, \ldots, n\right\}\end{cases}
$$

To be coherent, we use the ℓ_{∞}-norm:

$$
\|\boldsymbol{x}\|_{\infty}=\max _{1 \leq i \leq n}\left|[\boldsymbol{x}]_{i}\right| .
$$

Let us also assume that $f(\boldsymbol{x})$ is Lipschitz continuous on B_{n} :

$$
|f(\boldsymbol{x})-f(\boldsymbol{y})| \leq L\|\boldsymbol{x}-\boldsymbol{y}\|_{\infty}, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in B_{n}
$$

Let us define a very simple method to solve (2), the uniform grid method.

Given a positive integer $p>0$,

1. Form $(p+1)^{n}$ points

$$
\boldsymbol{x}_{i_{1}, i_{2}, \ldots, i_{n}}=\left(\frac{i_{1}}{p}, \frac{i_{2}}{p}, \ldots, \frac{i_{n}}{p}\right)^{T}
$$

where $\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in\{0,1, \ldots, p\}^{n}$.
2. Among all points $\boldsymbol{x}_{i_{1}, i_{2}, \ldots, i_{n}}$, find a point $\overline{\boldsymbol{x}}$ which has the minimal value for the objective function.
3. Return the pair $(\overline{\boldsymbol{x}}, f(\overline{\boldsymbol{x}}))$ as the result.

Theorem 4.4 Let $f\left(\boldsymbol{x}^{*}\right)$ be the global optimal value for (2). Then the uniform grid method yields

$$
f(\overline{\boldsymbol{x}})-f\left(\boldsymbol{x}^{*}\right) \leq \frac{L}{2 p}
$$

Proof:
Let \boldsymbol{x}^{*} be a global optimal solution. Then there are coordinates $\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ such that $\boldsymbol{x}:=$ $\boldsymbol{x}_{i_{1}, i_{2}, \ldots, i_{n}} \leq \boldsymbol{x}^{*} \leq \boldsymbol{x}_{i_{1}+1, i_{2}+1, \ldots, i_{n}+1}=: \boldsymbol{y}$. Observe that $[\boldsymbol{y}]_{i}-[\boldsymbol{x}]_{i}=1 / p$ for $i=1,2, \ldots, n$ and $\left[\boldsymbol{x}^{*}\right]_{i} \in\left[[\boldsymbol{x}]_{i},[\boldsymbol{y}]_{i}\right](i=1,2, \ldots, n)$.

Consider $\hat{\boldsymbol{x}}=(\boldsymbol{x}+\boldsymbol{y}) / 2$ and form a new point $\tilde{\boldsymbol{x}}$ as:

$$
[\tilde{\boldsymbol{x}}]_{i}:= \begin{cases}{[\boldsymbol{y}]_{i},} & \text { if }\left[\boldsymbol{x}^{*}\right]_{i} \geq[\hat{\boldsymbol{x}}]_{i} \\ {[\boldsymbol{x}]_{i},} & \text { otherwise. }\end{cases}
$$

It is clear that $\left|[\tilde{\boldsymbol{x}}]_{i}-\left[\boldsymbol{x}^{*}\right]_{i}\right| \leq 1 /(2 p)$ for $i=1,2, \ldots, n$. Then $\left\|\tilde{\boldsymbol{x}}-\boldsymbol{x}^{*}\right\|_{\infty}=\max _{1 \leq i \leq n}\left|[\tilde{\boldsymbol{x}}]_{i}-\left[\boldsymbol{x}^{*}\right]_{i}\right| \leq$ $1 /(2 p)$. Since $\tilde{\boldsymbol{x}}$ belongs to the grid,

$$
f(\overline{\boldsymbol{x}})-f\left(\boldsymbol{x}^{*}\right) \leq f(\tilde{\boldsymbol{x}})-f\left(\boldsymbol{x}^{*}\right) \leq L\left\|\tilde{\boldsymbol{x}}-\boldsymbol{x}^{*}\right\|_{\infty} \leq L /(2 p) .
$$

Let us define our goal

$$
\text { Find } \boldsymbol{x} \in B_{n} \text { such that } f(\boldsymbol{x})-f\left(\boldsymbol{x}^{*}\right)<\varepsilon .
$$

Corollary 4.5 The number of iterations necessary for the problem (2) to achieve the above goal using the uniform grid method is at most

$$
\left(\left\lfloor\frac{L}{2 \varepsilon}\right\rfloor+2\right)^{n} .
$$

Proof:
Take $p=\lfloor L /(2 \varepsilon)\rfloor+1$. Then, $p>L /(2 \varepsilon)$ and from the previous theorem, $f(\overline{\boldsymbol{x}})-f\left(\boldsymbol{x}^{*}\right) \leq$ $L /(2 p)<\varepsilon$. Observe that we constructed $(p+1)^{n}$ points.

Consider the class of problems \mathcal{P} defined as follows:

Model:	$\min _{\boldsymbol{x} \in B_{n}} f(\boldsymbol{x})$
	$f(\boldsymbol{x})$ is ℓ_{∞}-Lipschitz continuous on B_{n}.
Oracle:	Only function values are available Approximate solution:
Find $\overline{\boldsymbol{x}} \in B_{n}$ such that $f(\overline{\boldsymbol{x}})-f\left(\boldsymbol{x}^{*}\right)<\varepsilon$	

Theorem 4.6 For $\varepsilon<\frac{L}{2}$, the number of iterations necessary for the class of problems \mathcal{P} using any method which uses only function evaluations is always at least $\left(\left\lfloor\frac{L}{2 \varepsilon}\right\rfloor\right)^{n}$.

Proof:

Let $p=\left\lfloor\frac{L}{2 \varepsilon}\right\rfloor$ (which is ≥ 1 from the hypothesis).
Suppose that there is a method which requires $N<p^{n}$ calls of the oracle to solve the problem in \mathcal{P}.

Then, there is a point $\hat{\boldsymbol{x}} \in B_{n}=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid 0 \leq[\boldsymbol{x}]_{i} \leq 1, i=1,2, \ldots, n\right\}$ where there is no test points in the interior of $B:=\{\boldsymbol{x} \mid \hat{\boldsymbol{x}} \leq \boldsymbol{x} \leq \hat{\boldsymbol{x}}+\boldsymbol{e} / p\}$ where $\boldsymbol{e}=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{n}$.

Let $\boldsymbol{x}^{*}:=\overline{\hat{\boldsymbol{x}}+\boldsymbol{e} /(2 p)}$ and consider the function $\bar{f}(\boldsymbol{x}):=\min \left\{0, L\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{\infty}-\varepsilon\right\}$. Clearly, \bar{f} is ℓ_{∞}-Lipschitz continuous with constant L and its global minimum is $-\varepsilon$. Moreover, $\bar{f}(\boldsymbol{x})$ is non-zero valued only inside the box $B^{\prime}:=\left\{\boldsymbol{x} \mid\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{\infty} \leq \varepsilon / L\right\}$.

Since $2 p \leq L / \varepsilon, B^{\prime} \subseteq\left\{\boldsymbol{x} \mid\left\|\boldsymbol{x}-\boldsymbol{x}^{*}\right\|_{\infty} \leq 1 /(2 p)\right\}=B$.
Therefore, $\bar{f}(\boldsymbol{x})$ is equal to zero to all test points of our method and the accuracy of the method is ε.

If the number of calls of the oracle is less than p^{n}, the accuracy can not be better than ε.
Theorem 4.6 supports the claim that the general optimization problem is unsolvable.
Example 4.7 Consider a problem defined by the following parameters. $L=2, n=10$, and $\varepsilon=0.01$.

