Lemma 3.7 Let $f \in \mathcal{C}_M^{2,2}(\mathbb{R}^n)$. Then for all $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^n$, we have

$$\| \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{y}) - \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}) - \boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{x})(\boldsymbol{y} - \boldsymbol{x}) \|_2 \leq rac{M}{2} \| \boldsymbol{y} - \boldsymbol{x} \|_2^2,$$

 $f(\boldsymbol{y}) - f(\boldsymbol{x}) - \langle \boldsymbol{\nabla} \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x}
angle - rac{1}{2} \langle \boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{x})(\boldsymbol{y} - \boldsymbol{x}), \boldsymbol{y} - \boldsymbol{x}
angle \| \leq rac{M}{6} \| \boldsymbol{y} - \boldsymbol{x} \|_2^3.$

Lemma 3.8 Let $f \in \mathcal{C}_M^{2,2}(\mathbb{R}^n)$, with $\|\nabla^2 f(x) - \nabla^2 f(y)\|_2 \leq M \|x - y\|_2$. Then

$$\nabla^2 f(\boldsymbol{x}) - M \| \boldsymbol{y} - \boldsymbol{x} \|_2 \boldsymbol{I} \preceq \nabla^2 f(\boldsymbol{y}) \preceq \nabla^2 f(\boldsymbol{x}) + M \| \boldsymbol{y} - \boldsymbol{x} \|_2 \boldsymbol{I}.$$

Proof:

Since $f \in \mathcal{C}_M^{2,2}(\mathbb{R}^n)$, $\|\nabla^2 f(y) - \nabla^2 f(x)\|_2 \le M \|y - x\|_2$. This means that the eigenvalues of the symmetric matrix $\nabla^2 f(y) - \nabla^2 f(x)$ satisfy:

$$|\lambda_i(\boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{y}) - \boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{x}))| \le M \|\boldsymbol{y} - \boldsymbol{x}\|_2, \quad i = 1, 2, \dots, n$$

Therefore,

$$-M \| \boldsymbol{y} - \boldsymbol{x} \|_2 \boldsymbol{I} \preceq \boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{y}) - \boldsymbol{\nabla}^2 \boldsymbol{f}(\boldsymbol{x}) \preceq M \| \boldsymbol{y} - \boldsymbol{x} \|_2 \boldsymbol{I}.$$

3.1Exercises

1. Prove Lemma 3.7.

4 Optimality Conditions and Algorithms for Minimizing Functions

4.1General Minimization Problem and Terminologies

Definition 4.1 We define the general minimization problem as follows

$$\begin{cases} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & f_j(\boldsymbol{x}) \& 0, \quad j = 1, 2, \dots, m \\ & \boldsymbol{x} \in S, \end{cases} \tag{1}$$

where $f : \mathbb{R}^n \to \mathbb{R}, f_j : \mathbb{R}^n \to \mathbb{R} \ (j = 1, 2, ..., m)$, the symbol & could be $=, \geq$, or \leq , and $S \subseteq \mathbb{R}^n$.

Definition 4.2 The *feasible set* Q of (1) is

$$Q = \{ \boldsymbol{x} \in S \mid f_j(\boldsymbol{x}) \& 0, \ (j = 1, 2, \dots, m) \}$$

In the following, we assume $S \equiv \mathbb{R}^n$.

- If $Q \equiv \mathbb{R}^n$, (1) is a unconstrained optimization problem.
- If $Q \subsetneq \mathbb{R}^n$, (1) is a constrained optimization problem.
- If all functionals $f(\mathbf{x}), f_j(\mathbf{x})$ are differentiable, (1) is a smooth optimization problem.
- If one of functionals $f(\mathbf{x})$, $f_j(\mathbf{x})$ is non-differentiable, (1) is a non-smooth optimization problem.
- If all constraints are linear $f_j(\boldsymbol{x}) = \langle \boldsymbol{a}_j, \boldsymbol{x} \rangle + b_j \ (j = 1, 2, \dots, m), \ (1)$ is a linear constrained optimization problem.

- In addition, if $f(\mathbf{x})$ is linear, (1) is a linear programming problem.
- In addition, if $f(\mathbf{x})$ is quadratic, (1) is a quadratic programming problem.
- If $f(\mathbf{x})$, $f_j(\mathbf{x})$ (j = 1, 2, ..., m) are quadratic, (1) is a quadratically constrained quadratic programming problem.

Definition 4.3 \boldsymbol{x}^* is called a global optimal solution of (1) if $f(\boldsymbol{x}^*) \leq f(\boldsymbol{x})$, $\forall \boldsymbol{x} \in Q$. Moreover, $f(\boldsymbol{x}^*)$ is called the global optimal value. \boldsymbol{x}^* is called a local optimal solution of (1) if there exists an open ball $B(\boldsymbol{x}^*, \varepsilon) := \{ \boldsymbol{x} \in \mathbb{R}^n \mid ||\boldsymbol{x} - \boldsymbol{x}^*||_2 < \varepsilon \}$ such that $f(\boldsymbol{x}^*) \leq f(\boldsymbol{x}), \quad \forall \boldsymbol{x} \in B(\boldsymbol{x}^*, \varepsilon) \cap Q$. Moreover, $f(\boldsymbol{x}^*)$ is called a local optimal value.

4.2 Complexity Bound for a Global Optimization Problem on the Unit Box

Consider one of the simplest problems in optimization, that is, minimizing a function on the n-dimensional box.

$$\begin{cases} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & \boldsymbol{x} \in B_n := \{ \boldsymbol{x} \in \mathbb{R}^n \mid 0 \le [\boldsymbol{x}]_i \le 1, \ i = 1, 2, \dots, n \}. \end{cases}$$
(2)

To be coherent, we use the ℓ_{∞} -norm:

$$\|\boldsymbol{x}\|_{\infty} = \max_{1 \le i \le n} |[\boldsymbol{x}]_i|.$$

Let us also assume that $f(\mathbf{x})$ is Lipschitz continuous on B_n :

 $|f(\boldsymbol{x}) - f(\boldsymbol{y})| \le L \|\boldsymbol{x} - \boldsymbol{y}\|_{\infty}, \quad \forall \boldsymbol{x}, \boldsymbol{y} \in B_n.$

Let us define a very simple method to solve (2), the **uniform grid method**.

Given a positive integer p > 0,

1. Form $(p+1)^n$ points

$$oldsymbol{x}_{i_1,i_2,\ldots,i_n} = \left(rac{i_1}{p},rac{i_2}{p},\ldots,rac{i_n}{p}
ight)^T$$

where $(i_1, i_2, \dots, i_n) \in \{0, 1, \dots, p\}^n$.

- 2. Among all points $x_{i_1,i_2,...,i_n}$, find a point \bar{x} which has the minimal value for the objective function.
- 3. Return the pair $(\bar{\boldsymbol{x}}, f(\bar{\boldsymbol{x}}))$ as the result.

Theorem 4.4 Let $f(\mathbf{x}^*)$ be the global optimal value for (2). Then the uniform grid method yields

$$f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) \le \frac{L}{2p}$$

Proof:

Let \boldsymbol{x}^* be a global optimal solution. Then there are coordinates (i_1, i_2, \ldots, i_n) such that $\boldsymbol{x} := \boldsymbol{x}_{i_1,i_2,\ldots,i_n} \leq \boldsymbol{x}^* \leq \boldsymbol{x}_{i_1+1,i_2+1,\ldots,i_n+1} =: \boldsymbol{y}$. Observe that $[\boldsymbol{y}]_i - [\boldsymbol{x}]_i = 1/p$ for $i = 1, 2, \ldots, n$ and $[\boldsymbol{x}^*]_i \in [[\boldsymbol{x}]_i, [\boldsymbol{y}]_i]$ $(i = 1, 2, \ldots, n)$.

Consider $\hat{\boldsymbol{x}} = (\boldsymbol{x} + \boldsymbol{y})/2$ and form a new point $\tilde{\boldsymbol{x}}$ as:

$$[ilde{oldsymbol{x}}]_i := \left\{egin{array}{cc} [oldsymbol{y}]_i, & ext{if } [oldsymbol{x}^*]_i \geq [\hat{oldsymbol{x}}]_i \ [oldsymbol{x}]_i, & ext{otherwise.} \end{array}
ight.$$

It is clear that $|[\tilde{\boldsymbol{x}}]_i - [\boldsymbol{x}^*]_i| \leq 1/(2p)$ for i = 1, 2, ..., n. Then $\|\tilde{\boldsymbol{x}} - \boldsymbol{x}^*\|_{\infty} = \max_{1 \leq i \leq n} |[\tilde{\boldsymbol{x}}]_i - [\boldsymbol{x}^*]_i| \leq 1/(2p)$. Since $\tilde{\boldsymbol{x}}$ belongs to the grid,

$$f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) \le f(\tilde{\boldsymbol{x}}) - f(\boldsymbol{x}^*) \le L \| \tilde{\boldsymbol{x}} - \boldsymbol{x}^* \|_{\infty} \le L/(2p).$$

Let us define our goal

Find
$$\boldsymbol{x} \in B_n$$
 such that $f(\boldsymbol{x}) - f(\boldsymbol{x}^*) < \varepsilon$.

Corollary 4.5 The number of iterations necessary for the problem (2) to achieve the above goal using the uniform grid method is at most

$$\left(\left\lfloor\frac{L}{2\varepsilon}\right\rfloor+2\right)^n$$
.

Proof:

Take $p = \lfloor L/(2\varepsilon) \rfloor + 1$. Then, $p > L/(2\varepsilon)$ and from the previous theorem, $f(\bar{x}) - f(x^*) \le L/(2p) < \varepsilon$. Observe that we constructed $(p+1)^n$ points.

Consider the class of problems \mathcal{P} defined as follows:

Model:	$\min_{\boldsymbol{x}\in B_n} f(\boldsymbol{x}),$
	$f(\boldsymbol{x})$ is ℓ_{∞} -Lipschitz continuous on B_n .
Oracle:	Only function values are available
Approximate solution:	Find $\bar{\boldsymbol{x}} \in B_n$ such that $f(\bar{\boldsymbol{x}}) - f(\boldsymbol{x}^*) < \varepsilon$

Theorem 4.6 For $\varepsilon < \frac{L}{2}$, the number of iterations necessary for the class of problems \mathcal{P} using any method which uses only function evaluations is always at least $(\lfloor \frac{L}{2\varepsilon} \rfloor)^n$.

Proof:

Let $p = \lfloor \frac{L}{2\epsilon} \rfloor$ (which is ≥ 1 from the hypothesis).

Suppose that there is a method which requires $N < p^n$ calls of the oracle to solve the problem in \mathcal{P} .

Then, there is a point $\hat{\boldsymbol{x}} \in B_n = \{\boldsymbol{x} \in \mathbb{R}^n \mid 0 \leq [\boldsymbol{x}]_i \leq 1, i = 1, 2, ..., n\}$ where there is no test points in the <u>interior</u> of $B := \{\boldsymbol{x} \mid \hat{\boldsymbol{x}} \leq \boldsymbol{x} \leq \hat{\boldsymbol{x}} + \boldsymbol{e}/p\}$ where $\boldsymbol{e} = (1, 1, ..., 1)^T \in \mathbb{R}^n$.

Let $\mathbf{x}^* := \hat{\mathbf{x}} + \mathbf{e}/(2p)$ and consider the function $\bar{f}(\mathbf{x}) := \min\{0, L \| \mathbf{x} - \mathbf{x}^* \|_{\infty} - \varepsilon\}$. Clearly, \bar{f} is ℓ_{∞} -Lipschitz continuous with constant L and its global minimum is $-\varepsilon$. Moreover, $\bar{f}(\mathbf{x})$ is non-zero valued only inside the box $B' := \{\mathbf{x} \mid \|\mathbf{x} - \mathbf{x}^*\|_{\infty} \le \varepsilon/L\}$.

Since $2p \leq L/\varepsilon$, $B' \subseteq \{\boldsymbol{x} \mid \|\boldsymbol{x} - \boldsymbol{x}^*\|_{\infty} \leq 1/(2p)\} = B$.

Therefore, $\bar{f}(\boldsymbol{x})$ is equal to zero to all test points of our method and the accuracy of the method is ε .

If the number of calls of the oracle is less than p^n , the accuracy can not be better than ε .

Theorem 4.6 supports the claim that the general optimization problem is unsolvable.

Example 4.7 Consider a problem defined by the following parameters. L = 2, n = 10, and $\varepsilon = 0.01$.