Mathematical Optimization: Theory and Algorithms

Tokyo Institute of Technology
School of Computing
Department of Mathematical and Computing Science
Mituhiro Fukuda
3rd Quarter of 2019

Course description and aims

This course will cover basic notions to comprehend the gradient-based methods for convex optimization problems considered in mathematical optimization, machine learning and image processing. It starts with the basics, from the definition of convex sets in convex optimization, and will gradually focus on continuously differentiable convex functions. Along the lectures, it will also cover the characterization of solutions of optimization problems (optimality conditions), and numerical methods for general problems such as steepest descent methods, Newton method, conjugate gradient methods, and quasi-Newton methods. In the latter part, the accelerated gradient method of Nesterov for Lipschitz continuous differentiable convex functions will be detailed.

Student learning outcomes

Objectives: Learn the mathematical concepts and notions from the basics necessary for numerical methods for convex optimization problems. Definitions and proofs of theorems will be carefully explained. The objective is to understand the role of basic theorems of convex optimization in scientific articles, and to be prepared to apply them for other problems in mathematical optimization and machine learning.
Theme: In the first part, important theorems to analyze convex optimization problems will be introduced. In the second part, the Nesterov's accelerated gradient method which has received a lot of attention in the recent years will be explained from the mathematical point of view.

Keywords

Convex function, algorithm analysis, convex optimization problem, numerical methods in optimization, differentiable convex functions with Lipschitz continuous gradients, accelerated gradient method

Plan of the Lecture (tentative)

1. Convex sets and related results
2. Lipschitz continuous differentiable functions
3. Optimal conditions for differentiable functions
4. Minimization algorithms for unconstrained optimization problems
5. Steepest descent method and Newton method
6. Conjugate gradient methods, quasi-Newton methods
7. General assignment to check the comprehension
8. Convex differentiable function
9. Differentiable Convex functions with Lipschitz continuous gradients
10. Worse case analysis for gradient based methods
11. Steepest descent method for differentiable convex functions
12. Estimate sequence in accelerated gradient methods for differentiable convex functions
13. Accelerated gradient method for differentiable convex functions
14. Accelerated gradient methods for min-max problems
15. Extensions of the accelerated gradient methods

References

[Bertsekas] D. P. Bertsekas, Nonlinear Programming, 2nd edition, (Athena Scientific, Belmont, Massachusetts, 2003).
[Luenberger-Ye] D. G. Luenberger and Y. Ye, Linear and Nonlinear Programming, 3rd edition, (Springer, New York, 2008).
[Mangasarian] O. L. Mangasarian, Nonlinear Programming, (SIAM, Philadelphia, PA, 1994).
[Nesterov03] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, (Kluwer Academic Publishers, Boston, 2004).
[Nesterov18] Y. Nesterov, Lectures on Convex Optimization, 2nd edition, (Springer, Cham, Switzerland, 2018).
[Nocedal] J. Nocedal and S. J. Wright, Numerical Optimization, 2nd edition, (Springer, New York, 2006).

Prerequisites

It is preferred that the attendees have basic notions of mathematics such as linear algebra, calculus, and elementary topology, as well as understand basic methodologies to prove.

Assessment criteria and methods/Evaluation

Understand the basic theorems related to convex sets and convex functions, and the basic numerical methods to solve mathematical optimization problems. Grade will be based on mid-term and final exams or on reports along the course.

1 Convex Sets

Definition 1.1 A subset C of \mathbb{R}^{n} is convex if for $\forall \boldsymbol{x}, \boldsymbol{y} \in C$ and $\forall \alpha \in[0,1], \alpha \boldsymbol{x}+(1-\alpha) \boldsymbol{y} \in C$.
Example 1.2 Examples of convex sets.
Definition 1.3 We define as a polyhedron the set which can be represented as an intersection of finitely many closed half spaces of \mathbb{R}^{n}. Due to exercise 2 , polyhedra are convex sets.

Definition 1.4 Given $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m} \in \mathbb{R}^{n}$, a point $\boldsymbol{y} \in \mathbb{R}^{n}$ is said to be a convex combination of $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m} \in \mathbb{R}^{n}$ if there exists non-negative $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m} \in \mathbb{R}$ such that $\sum_{i=1}^{m} \lambda_{i}=1$ and $\boldsymbol{y}=\sum_{i=1}^{m} \lambda_{i} \boldsymbol{x}_{i}$.

Example 1.5 Given $\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m} \in \mathbb{R}^{n}, m+1$ distinct point of $\mathbb{R}^{n}(m \leq n)$ such that $\boldsymbol{x}_{1}-\boldsymbol{x}_{0}, \boldsymbol{x}_{2}-$ $\boldsymbol{x}_{0}, \ldots, \boldsymbol{x}_{m}-\boldsymbol{x}_{0}$ are linear independent, the set formed by all convex combination of $\boldsymbol{x}_{0}, \boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{m}$ is called an m-simplex in \mathbb{R}^{n}.

Theorem 1.6 A subset of \mathbb{R}^{n} is convex if and only if it contains all the convex combinations of its elements.

Proof:
\Leftarrow Trivial.
Let us show by induction on the number of elements m. For $m=2$, it follows from the definition of convexity. Let us assume that the claim is valid for any convex combination of m or fewer elements. Consider $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{m+1}$ elements of the set and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m+1} \geq 0$ such that $\sum_{i=1}^{m+1} \lambda_{i}=1$. If $\lambda_{m+1}=0$ or $\lambda_{m+1}=1$, it falls in the previous cases. Therefore, let $0<\lambda_{m+1}<1$. Then $\sum_{i=1}^{m+1} \lambda_{i} \boldsymbol{x}_{i}=\left(\sum_{j=1}^{m} \lambda_{j}\right) \frac{\sum_{i=1}^{m} \lambda_{i} \boldsymbol{x}_{i}}{\sum_{j=1}^{m} \lambda_{j}}+\lambda_{m+1} \boldsymbol{x}_{m+1}=\left(1-\lambda_{m+1}\right) \sum_{i=1}^{m} \frac{\lambda_{i}}{\sum_{j=1}^{m} \lambda_{j}} \boldsymbol{x}_{i}+\lambda_{m+1} \boldsymbol{x}_{m+1}$ belongs to the set due to the induction hypothesis and definition of convexity.

Definition 1.7 The intersection of all convex sets containing a given set $S \subseteq \mathbb{R}^{n}$ is called convex hull of S and is denoted by hull (S). Again due to Exercise 2 , hull (S) is convex.

The following theorem shows that a $\operatorname{hull}(S)$ can be constructed from the convex combination consisting only by its elements.

Theorem 1.8 The convex hull of $S \subseteq \mathbb{R}^{n}$, hull (S), consists of all convex combinations of elements of S.

Proof:
Let $B:=\left\{\sum_{i=1}^{k} \lambda_{i} \boldsymbol{x}_{i} \mid \exists k, \lambda_{i} \geq 0, \sum_{i=1}^{k} \lambda_{i}=1, \boldsymbol{x}_{i} \in S(i=1,2, \ldots, k)\right\}$ be the later set. If $\boldsymbol{y}_{1}, \boldsymbol{y}_{2} \in B$, then $\exists \ell, m \in \mathbb{N}, \boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \ldots, \boldsymbol{a}_{\ell}, \boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{m} \in S$, and non-negative $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\ell}, \beta_{1}, \beta_{2}, \ldots, \beta_{m} \in$ \mathbb{R} such that $\boldsymbol{y}_{1}=\sum_{i=1}^{\ell} \alpha_{i} \boldsymbol{a}_{i}, \boldsymbol{y}_{2}=\sum_{j=1}^{m} \beta_{j} \boldsymbol{b}_{j}, \sum_{i=1}^{\ell} \alpha_{i}=1$, and $\sum_{j=1}^{m} \beta_{j}=1$. Then for $0 \leq \lambda \leq 1$, $\lambda \boldsymbol{y}_{1}+(1-\lambda) \boldsymbol{y}_{2}=\sum_{i=1}^{\ell} \lambda \alpha_{i} \boldsymbol{a}_{i}+\sum_{j=1}^{m}(1-\lambda) \beta_{j} \boldsymbol{b}_{j}$ with $\lambda \alpha_{i},(1-\lambda) \beta_{j} \geq 0, \sum_{i=1}^{\ell} \lambda \alpha_{i}+\sum_{j=1}^{m}(1-\lambda) \beta_{j}=$ 1. Therefore, B is convex (alternatively, note the observation at Definition 1.7). It is also clear that $S \subseteq B$, and therefore, $\operatorname{hull}(S) \subseteq B$. From Theorem 1.6 the convex set hull (S) must contain all convex combinations of elements of S. Hence $B \subseteq \operatorname{hull}(S)$.

Theorem 1.9 (Carathéodory's Theorem) Let $S \subseteq \mathbb{R}^{n}$. If \boldsymbol{x} is a convex combination of elements of S, then \boldsymbol{x} is a convex combination of $n+1$ or fewer elements of S.

Proof:

Let $\boldsymbol{x}=\sum_{i=1}^{m} \alpha_{i} \boldsymbol{x}_{i}, \boldsymbol{x}_{i} \in S, \alpha_{i} \geq 0, \sum_{i=1}^{m} \alpha_{i}=1$. We will show that if $m>n+1$, then \boldsymbol{x} can be written as a convex combination of $m-1$ elements of S. Therefore, suppose that all $0<\alpha_{i}<1$. Since $m-1>n, \exists \beta_{1}, \beta_{2}, \ldots, \beta_{m-1} \in \mathbb{R}$ not all zeros such that

$$
\beta_{1}\left(\boldsymbol{x}_{1}-\boldsymbol{x}_{m}\right)+\beta_{2}\left(\boldsymbol{x}_{2}-\boldsymbol{x}_{m}\right)+\cdots+\beta_{m-1}\left(\boldsymbol{x}_{m-1}-\boldsymbol{x}_{m}\right)=\mathbf{0} .
$$

Define $\beta_{m}=-\sum_{i=1}^{m-1} \beta_{i}$. Then

$$
\sum_{i=1}^{m} \beta_{i}=0 \quad \text { and } \quad \sum_{i=1}^{m} \beta_{i} \boldsymbol{x}_{i}=\mathbf{0} .
$$

Since $0<\alpha_{i}<1, \exists \gamma>0$ such that $\delta_{i}:=\alpha_{i}-\gamma \beta_{i} \geq 0(i=1,2, \ldots, m)$ and at least one δ_{i}, say $\delta_{j}=0$. Then

$$
\boldsymbol{x}=\sum_{i=1}^{m} \alpha_{i} \boldsymbol{x}_{i}=\sum_{i=1}^{m} \delta_{i} \boldsymbol{x}_{i}+\sum_{i=1}^{m} \gamma \beta_{i} \boldsymbol{x}_{i}=\sum_{i=1, i \neq j}^{m} \delta_{i} \boldsymbol{x}_{i},
$$

and $\delta_{i} \geq 0(i=1,2, \ldots, m), \sum_{i=1}^{m} \delta_{i}=\sum_{i=1}^{m} \alpha_{i}-\gamma \sum_{i=1}^{m} \beta_{i}=1$.
We can do this procedure whenever $m>n+1$.
Proposition 1.10 If C_{1} and C_{2} are convex sets in \mathbb{R}^{n}, then so is their sum:

$$
C_{1}+C_{2}:=\left\{\boldsymbol{x}_{1}+\boldsymbol{x}_{2} \in \mathbb{R}^{n} \mid \boldsymbol{x}_{1} \in C_{1}, \boldsymbol{x}_{2} \in C_{2}\right\} .
$$

Proposition 1.11 The product of a convex set in \mathbb{R}^{n}, C with a scalar $\alpha \in \mathbb{R}$:

$$
\alpha C:=\left\{\alpha \boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{x} \in C\right\}
$$

is a convex set.

1.1 Exercises

1. Show that the set of $n \times n$ symmetric and positive definite matrices is a convex set.
2. Show that the intersection of an arbitrary collection of convex sets is a convex set.
3. Show that the closed ball centered at $\overline{\boldsymbol{x}} \in \mathbb{R}^{n},\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid\|\boldsymbol{x}-\overline{\boldsymbol{x}}\| \leq \varepsilon\right\}$, with $\varepsilon>0$ is a convex set.
4. Show that the interior of a convex set is a convex set.
5. Show that the closure of a convex set is a convex set.
6. Show that the convex hull of a set $S \subseteq \mathbb{R}^{n}$ is the unique and the smallest convex set containing S.
7. Prove Proposition 1.10.
8. Find an example where the sum of two closed sets is not a closed set.
9. Prove Proposition 1.11.

2 Separation Theorems for Convex Sets

The separation theorem for convex sets can be proved using the Farka's Lemma. Here, we follow [Bertsekas] and use a geometric fact of (orthogonal) projection to a convex set.

Proposition 2.1 Let $C \subseteq \mathbb{R}^{n}$ a convex set and $\hat{\boldsymbol{x}} \in \mathbb{R}^{n}$ be a point that does not belong to the interior of C. Then there exists a vector $\boldsymbol{d} \neq \mathbf{0}$ such that

$$
\boldsymbol{d}^{T} \boldsymbol{x} \geq \boldsymbol{d}^{T} \hat{\boldsymbol{x}}, \quad \forall \boldsymbol{x} \in C
$$

Proof:

Since $\hat{\boldsymbol{x}} \notin \operatorname{int}(C)$, there is a sequence $\left\{\boldsymbol{x}_{k}\right\}$ which does not belong to the closure of C, \bar{C}, and converges to $\hat{\boldsymbol{x}}$. Now, denote by $p\left(\boldsymbol{x}_{k}\right)$ the orthogonal projection of \boldsymbol{x}_{k} into \bar{C} by a standard norm. One can see that by the convexity of \bar{C} [Bertsekas]

$$
\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T}\left(\boldsymbol{x}-p\left(\boldsymbol{x}_{k}\right)\right) \geq 0, \quad \forall \boldsymbol{x} \in \bar{C}
$$

Hence,
$\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T} \boldsymbol{x} \geq\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T} p\left(\boldsymbol{x}_{k}\right)=\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T}\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)+\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T} \boldsymbol{x}_{k} \geq\left(p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right)^{T} \boldsymbol{x}_{k}$.
Now, since $\boldsymbol{x}_{k} \notin \bar{C}$, calling $\boldsymbol{d}_{k}=\frac{p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}}{\left\|p\left(\boldsymbol{x}_{k}\right)-\boldsymbol{x}_{k}\right\|}$,

$$
\boldsymbol{d}_{k}^{T} \boldsymbol{x} \geq \boldsymbol{d}_{k}^{T} \boldsymbol{x}_{k}, \quad \forall \boldsymbol{x} \in \bar{C}
$$

Since $\left\|\boldsymbol{d}_{k}\right\|=1$, it has a converging subsequence which will converge to let us say \boldsymbol{d}. Taking the same indices for this subsequence for \boldsymbol{x}_{k}, we have the desired result.

Theorem 2.2 (Separation Theorem for Convex Sets) Let C_{1} and C_{2} nonempty non-intersecting convex subsets of \mathbb{R}^{n}. Then, $\exists \boldsymbol{d} \in \mathbb{R}^{n}, \boldsymbol{d} \neq 0$ such that

$$
\sup _{\boldsymbol{x}_{1} \in C_{1}} \boldsymbol{d}^{T} \boldsymbol{x}_{1} \leq \inf _{\boldsymbol{x}_{2} \in C_{2}} \boldsymbol{d}^{T} \boldsymbol{x}_{2}
$$

Proof:
Consider the set

$$
C:=\left\{\boldsymbol{x}_{2}-\boldsymbol{x}_{1} \in \mathbb{R}^{n} \mid \boldsymbol{x}_{2} \in C_{2}, \quad \boldsymbol{x}_{1} \in C_{1}\right\}
$$

which is convex by Propositions 1.10 and 1.11.
Since C_{1} and C_{2} are disjoint, the origin $\mathbf{0}$ does not belong to the interior of C. From Proposition 2.1, there is $\boldsymbol{d} \neq \mathbf{0}$ such that $\boldsymbol{d}^{T} \boldsymbol{x} \geq \mathbf{0}, \forall \boldsymbol{x} \in C$. Therefore

$$
\boldsymbol{d}^{T} \boldsymbol{x}_{1} \leq \boldsymbol{d}^{T} \boldsymbol{x}_{2}, \quad \forall \boldsymbol{x}_{1} \in C_{1} \text { and } \boldsymbol{x}_{2} \in C_{2}
$$

Finally, since both C_{1} and C_{2} are nonempty, it follows the result.
Remark 2.3 The Separation Theorem for Convex Sets is an essential result to show the strong duality theorem in convex optimization problems (see for example [Bertsekas]).

3 Lipschitz Continuous Differentiable Functions

Definition 3.1 Let $\boldsymbol{x} \in \mathbb{R}^{n}$ and $\boldsymbol{s} \in \mathbb{R}^{n}$ be a direction (vector) in \mathbb{R}^{n}. The directional derivative of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ in the direction \boldsymbol{s} is defined as

$$
f^{\prime}(\boldsymbol{x} ; \boldsymbol{s}):=\lim _{\alpha \rightarrow 0} \frac{f(\boldsymbol{x}+\alpha \boldsymbol{s})-f(x)}{\alpha} .
$$

