
9 Extension of the Optimal Gradient Method (First-Order Method,
Accelerated Gradient Method, Fast Gradient Method) for the
Min-Max Problems over Simple Closed Convex Sets

Suppose we are given Q a closed convex subset of Rn, simple enough to have an easy projection
onto it. E.g., positive orthant, n-dimensional box, simplex, Euclidean ball, ellipsoids, etc.

Given fi ∈ S1,1
µ,L(Q) (i = 1, 2, . . . ,m), we define the following function f : Q → R,

f(x) := max
1≤i≤m

fi(x) for x ∈ Q. (18)

This function is non-differentiable in general, but convex (see Theorem 5.6). We will see that the
method discussed so far can be easily adapted for the following min-max-type convex optimization
problem. {

minimize f(x)
subject to x ∈ Q,

(19)

where Q is a closed convex set with a simple structure, and f(x) is defined as above.
For a given x̄ ∈ Q, let us define the following linearization of f(x) at x̄.

f(x̄;x) := max
1≤i≤m

[fi(x̄) + ⟨∇f i(x̄),x− x̄⟩] , for x ∈ Q.

Lemma 9.1 Let fi ∈ S1,1
µ,L(Q) (i = 1, 2, . . . ,m) and x̄ ∈ Q. For x ∈ Q, we have

f(x) ≥ f(x̄;x) +
µ

2
∥x− x̄∥22,

f(x) ≤ f(x̄;x) +
L

2
∥x− x̄∥22.

Proof:
It follows from the properties of fi ∈ S1,1

µ,L(Q).

Theorem 9.2 A point x∗ ∈ Q is an optimal solution of (19) with fi ∈ S1,1
µ,L(Q) (i = 1, 2, . . . ,m) if

and only if
f(x∗;x) ≥ f(x∗;x∗) = f(x∗), ∀x ∈ Q.

Proof:
Indeed, if the inequality is true, it follows from Lemma 9.1 that

f(x) ≥ f(x∗;x) +
µ

2
∥x− x∗∥22 ≥ f(x∗) +

µ

2
∥x− x∗∥22 ≥ f(x∗), ∀x ∈ Q.

For the converse, let x∗ be an optimal solution of the minimization problem (19). Assume by
contradiction that there is a x ∈ Q such that f(x∗;x) < f(x∗).

Therefore, from the definition of f(·), letting j ∈ {1, 2, . . . ,m} (which temporarily we assume is
unique) such that fj(x

∗) = max1≤i≤m fi(x
∗), we have

fi(x
∗) + ⟨∇f i(x

∗),x− x∗⟩ < fj(x
∗) for i = 1, 2, . . . ,m (20)

Notice that x∗ + α(x − x∗) ∈ Q for α ∈ [0, 1] since Q is convex. Then, calling ϕi(α) :=
fi(x

∗ + α(x − x∗)), we have ϕ′
i(0) = ⟨∇f i(x

∗),x − x∗⟩. Moreover, ϕi(0) = fi(x
∗) < fj(x

∗) for
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i = 1, 2, . . . ,m, i ̸= j, and ϕj(0) = fj(x
∗) = f(x∗) and ⟨∇f j(x

∗),x− x∗⟩ < 0 from (20) for i = j.
Therefore, there exists α̃ > 0 small enough such that

ϕj(α̃) = fj(x
∗ + α̃(x− x∗)) < ϕj(0) = fj(x

∗)

and
ϕi(α̃) = fi(x

∗ + α̃(x− x∗)) < fj(x
∗) for i = 1, 2, . . . ,m i ̸= j.

Finally, we have f(x∗ + α̃(x−x∗)) = max1≤i≤m fi(x
∗ + α̃(x−x∗)) < fj(x

∗) = max1≤i≤m fi(x
∗) =

f(x∗). Therefore, we arrived to a contradiction. In the case there exists j1, j2 such that f(x∗) =
fj1(x

∗) = fj2(x
∗) and fj1(x

∗ + α̃(x − x∗)) < fj2(x
∗ + α̃(x − x∗)), we choose j = j2 and still we

have the same conclusion.

Corollary 9.3 Let x∗ be a minimum of a max-type function f(x) over the set Q as (18). If
fi ∈ S1

µ(Q) (i = 1, 2, . . . ,m), then

f(x) ≥ f(x∗) +
µ

2
∥x− x∗∥22, ∀x ∈ Q.

Proof:
From Lemma 9.1 and Theorem 9.2, we have for ∀x ∈ Q,

f(x) ≥ f(x∗;x) +
µ

2
∥x− x∗∥22

≥ f(x∗;x∗) +
µ

2
∥x− x∗∥22 = f(x∗) +

µ

2
∥x− x∗∥22.

Lemma 9.4 Let fi ∈ S1
µ(Q) for (i = 1, 2, . . . ,m) with µ > 0 and Q be a closed convex set. Then

there is a unique solution x∗ for the problem (19).

Proof:
Left for exercise.

Definition 9.5 Let fi ∈ C1(Q) (i = 1, 2, . . . ,m), Q a closed convex set, x̄ ∈ Q, and γ > 0. Denote
by

xf (x̄; γ) := arg min
y∈Q

[
f(x̄;y) +

γ

2
∥y − x̄∥22

]
,

gf (x̄; γ) := γ(x̄− xf (x̄; γ)).

We call gf (x̄; γ) the gradient mapping of max-type function f on Q. Observe that due to
Lemma 9.4, xf (x̄; γ) exists and it is uniquely defined.

Theorem 9.6 Let fi ∈ S1,1
µ,L(Q) (i = 1, 2, . . . ,m), γ ≥ L, γ > 0, Q a closed convex set, and x̄ ∈ Q.

Then

f(x) ≥ f(xf (x̄; γ)) + ⟨gf (x̄; γ),x− x̄⟩+ 1

2γ
∥gf (x̄; γ)∥22 +

µ

2
∥x− x̄∥22, ∀x ∈ Q.

Proof: Let us use the following notation: xf := xf (x̄; γ) and gf := gf (x̄; γ).
From Lemma 9.1 and Corollary 9.3 (taking f(x) in there as f(x̄;x) + γ

2∥x − x̄∥22), we have
∀x ∈ Q,
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f(x)− µ

2
∥x− x̄∥22 ≥ f(x̄;x)

= f(x̄;x) +
γ

2
∥x− x̄∥22 −

γ

2
∥x− x̄∥22

≥ f(x̄;xf ) +
γ

2
∥xf − x̄∥22 +

γ

2
∥x− xf∥22 −

γ

2
∥x− x̄∥22

= f(x̄;xf ) +
γ

2
∥xf − x̄∥22 +

γ

2
⟨x̄− xf , 2x− xf − x̄⟩

= f(x̄;xf ) +
γ

2
∥xf − x̄∥22 +

γ

2
⟨x̄− xf , 2(x− x̄) + x̄− xf ⟩

= f(x̄;xf ) +
γ

2
∥xf − x̄∥22 + ⟨gf ,x− x̄⟩+ 1

2γ
∥gf∥22

≥ f(xf ) + ⟨gf ,x− x̄⟩+ 1

2γ
∥gf∥22,

where the last inequality is due to the fact that γ ≥ L.

Now, we are ready to define our estimated sequence. Assume that fi ∈ S1,1
µ,L(Q) (i = 1, 2, . . . ,m)

possible with µ = 0 (which means that fi ∈ F1,1
L (Q)), x0 ∈ Q, and γ0 > 0. Define

ϕ0(x) := f(x0) +
γ0
2
∥x− x0∥22,

ϕk+1(x) := (1− αk)ϕk(x) + αk

[
f(xf (yk;L)) +

1

2L
∥gf (yk;L)∥22 + ⟨gf (yk;L),x− yk⟩

+
µ

2
∥x− yk∥22

]
,

for the sequences {αk}∞k=0 and {yk}∞k=0 which will be defined later.
Similarly to the previous subsection, we can prove that {ϕk(x)}∞k=0 can be written in the form

ϕk(x) = ϕ∗
k +

γk
2
∥x− vk∥22

for ϕ∗
0 = f(x0), v0 = x0:

γk+1 = (1− αk)γk + αkµ

vk+1 =
1

γk+1
[(1− αk)γkvk + αkµyk − αkgf (yk;L)],

ϕ∗
k+1 = (1− αk)ϕ

∗
k + αkf(xf (yk;L)) +

(
αk

2L
−

α2
k

2γk+1

)
∥gf (yk;L)∥22

+
αk(1− αk)γk

γk+1

(µ
2
∥yk − vk∥22 + ⟨gf (yk;L),vk − yk⟩

)
.

Now, ϕ∗
0 ≥ f(x0). Assuming that ϕ∗

k ≥ f(xk),

ϕ∗
k+1 ≥ (1− αk)f(xk) + αkf(xf (yk;L)) +

(
αk

2L
−

α2
k

2γk+1

)
∥gf (yk;L)∥22

+
αk(1− αk)γk

γk+1
⟨gf (yk;L),vk − yk⟩

≥ f(xf (yk;L)) +

(
1

2L
−

α2
k

2γk+1

)
∥gf (yk;L)∥22

+(1− αk)

⟨
gf (yk;L),

αkγk
γk+1

(vk − yk) + xk − yk

⟩
+

(1− αk)µ

2
∥xk − yk∥22,
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where the last inequality follows from Theorem 9.6.
Therefore, if we choose

xk+1 = xf (yk;L),

Lα2
k = (1− αk)γk + αkµ,

γk+1 := Lα2
k,

yk =
1

γk + αkµ
(αkγkvk + γk+1xk),

we obtain ϕ∗
k+1 ≥ f(xk+1) as desired.

Hereafter, we assume that L > µ to exclude the trivial case L = µ with finished in one iteration.

Constant Step Scheme for the Optimal Gradient Method for the Min-Max
Problem

Step 0: Choose x0 ∈ Q, α0 ∈ (0, 1) such that α0(α0L−µ)
1−α0

> 0, µ ≤ α0(α0L−µ)
1−α0

≤ L,

set y0 := x0, k := 0.
Step 1: Compute fi(yk) and ∇f i(yk) (i = 1, 2, . . . ,m).

Step 2: Set xk+1 := xf (yk;L) := arg min
x∈Q

[
max

i=1,2,...,m
fi(yk) + ⟨∇f i(yk),x− yk⟩

+αk(αkL−µ)
2(1−αk)

∥x− yk∥22
]
.

Step 3: Compute αk+1 ∈ (0, 1) from the equation α2
k+1 = (1− αk+1)α

2
k +

µ
Lαk+1.

Step 4: Set βk := αk(1−αk)
α2
k+αk+1

.

Step 5: Set yk+1 := xk+1 + βk(xk+1 − xk), k := k + 1 and go to Step 1.

The rate of converge of this method is exactly the same as Theorem 8.6 for γ0 := α0(α0L −
µ)/(1 − α0), but we need to solve a convex program in Step 2 for each iteration, and it can turn
the method computationally expensive.

9.1 Exercises

1. Prove Lemma 9.4.
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