9 Extension of the Optimal Gradient Method (First-Order Method,
Accelerated Gradient Method, Fast Gradient Method) for the
Min-Max Problems over Simple Closed Convex Sets

Suppose we are given @ a closed convex subset of R", simple enough to have an easy projection
onto it. E.g., positive orthant, n-dimensional box, simplex, Euclidean ball, ellipsoids, etc.
Given f; € S;’}J(Q) (i=1,2,...,m), we define the following function f: @ — R,
f(x) == max fi(x) for x € Q. (18)
1<i<m

This function is non-differentiable in general, but convex (see Theorem 5.6). We will see that the
method discussed so far can be easily adapted for the following min-max-type convex optimization
problem.

min.imize f(x) (19)

subject to x € Q,

where @ is a closed convex set with a simple structure, and f(x) is defined as above.
For a given & € @, let us define the following linearization of f(x) at .

f(®;x) = max [fi(z) + (VFfi(x),x—x)], for x € Q.

1<i<m

Lemma 9.1 Let f; € SilL(Q) (i=1,2,...,m) and & € Q. For x € @), we have
-, K =112
fla)> flEa) + L - 2]}

f@) < f@a) + 5o~ a3,

Proof:
It follows from the properties of f; € S;i(Q) 1

Theorem 9.2 A point * € @ is an optimal solution of (19) with f; € S;lL(Q) (i=1,2,...,m)if
and only if
fxhz) > f(x%2") = f(z¥), Ve

Proof:
Indeed, if the inequality is true, it follows from Lemma 9.1 that

[@) 2 f@a) + Sz - 27|} = fa") + Sllz — "3 2 f@), VecQ.

For the converse, let * be an optimal solution of the minimization problem (19). Assume by
contradiction that there is a € @) such that f(z*;x) < f(z¥).

Therefore, from the definition of f(-), letting j € {1,2,...,m} (which temporarily we assume is
unique) such that f;(x*) = maxi<i<m fi(x*), we have

fix) + (V@) 2 — ) < fi(x*) for i=12....m (20)

Notice that * + a(x — x*) € @Q for o € [0,1] since @ is convex. Then, calling ¢;(a) =
fi(z* + a(x — =*)), we have ¢;(0) = (V f;(x*),x — x*). Moreover, ¢;(0) = fi(z*) < f;j(x*) for
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i=1,2,...,m,i# j,and ¢;(0) = fj(x*) = f(x*) and (V f;(x*),z —x*) <0 from (20) for i = j.
Therefore, there exists & > 0 small enough such that

¢j(a) = fi(a" + a(x — 7)) < ¢;(0) = fj(z)
and
¢i(@) = filx" +a(x —x*)) < fj(x*) for i =1,2,...,m i # j.

Finally, we have f(z* + &(x — x*)) = maxi<ij<m fi(z* + a(x — x*)) < fj(x*) = maxi<j<m fi(z*) =
f(x*). Therefore, we arrived to a contradiction. In the case there exists ji,jo such that f(x*) =
fi(@*) = fi,(x*) and fj (x* + a(x — x*)) < fj,(x* + a(x — =*)), we choose j = jo and still we
have the same conclusion.

Corollary 9.3 Let «* be a minimum of a max-type function f(x) over the set @) as (18). If
fi € Si(Q) (i=1,2,...,m), then

f(@) 2 f@) + Sl —a"[3, VecQ.

Proof:
From Lemma 9.1 and Theorem 9.2, we have for V& € @,

* ILL *
@) > fam)+ e - o3
> f(@5a) + Sle— 2t = f@%) + Elle — 27

Lemma 9.4 Let f; € SL(Q) for (i =1,2,...,m) with g > 0 and @ be a closed convex set. Then
there is a unique solution «* for the problem (19).

Proof:
Left for exercise. ]

Definition 9.5 Let f; € C1(Q) (i = 1,2,...,m), Q a closed convex set, Z € ), and v > 0. Denote
by

_ . _ 7 — 112

) = y) + =y — :
x(Z;7) arg min f(z;y) 2Hy z|3
gr(®;y) = (& —zp(T57))

We call g;(z;7v) the gradient mapping of max-type function f on Q. Observe that due to
Lemma 9.4, x(Z;) exists and it is uniquely defined.

Theorem 9.6 Let f; € S;lL(Q) (1=1,2,...,m),vy> L, v >0, Q a closed convex set, and & € Q.
Then

F(@) = flay(@) + g(@ 7). @ = 2) + - log@) I3+ Sle—ali Ve e

Proof:  Let us use the following notation: x; := x(Z;v) and gy := g;(Z;7).
From Lemma 9.1 and Corollary 9.3 (taking f(x) in there as f(z;x) + ||z — 2||3), we have
Ve € Q,
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f@)-blz -2} > f@eo)

= f@o)+Jlz -]} - e -2
> f@ap)+ g les -2+ 2w — a3 - e - 23
= f(mxy) + %fo —z|3+ %<56 —xy,2x —xp — T)
= f(Zzy)+ %fo —z|3+ g@ —zy,2(x—2)+T —xy)
= f@wg) + ey —ali + (g0~ @) + -l
> o)+ oy —a)+ 5ol

where the last inequality is due to the fact that v > L. 1

Now, we are ready to define our estimated sequence. Assume that f; € SilL(Q) (1=1,2,...,m)

possible with ¢ = 0 (which means that f; € .7:}:’1(@)), xo € @, and 9 > 0. Define

do(@) = f(@o)+ 5l — ol
Prr1(x) = (1 — ap)or(x) + g [f(wf(yk§ L))+ %Hgf(yk; D)3+ (g;(yx; L), — yy.)
+Llle —wil)

for the sequences {ay}32, and {y;}72, which will be defined later.
Similarly to the previous subsection, we can prove that {¢(x)}32, can be written in the form

* Yk
() = ¢p + ?Hw — |3
for ¢8 = f(wo), Vo = Ip:
Y1 = (1 —ap)v +agp
1

Vip1 = —[(1— o) vk + arpyy — arg s (Yi; L)),
V41

by = <1ak>¢z+akf<wf<yk;m>+<

+ak(1 — )Yk
V41

Zr L 2
o~ e gyl DI

7]
(5llws = vell3 + (g (was D)o — )

Now, ¢§ > f(xo). Assuming that ¢; > f(xy),
a o
2L 2k

by > <1ak>f<mk>+akf<wf<yk;m>+< )ngf(yk;L)n%

op (1 — ag)v
+—( ) (97(Yp; L), vk — yp)
Ve+1

Fas( 'L>>+(1— %
e 2L~ 21

OEYE
- ) <gf<yk;L>, B o — ) + 0~ yk> ;

k+1

\Y]

) g (s D)2

(1 —ap)p
5 llmk = w3,
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where the last inequality follows from Theorem 9.6.
Therefore, if we choose

i1 = xf(yp L),
Loj = (1 —ap)v+ s,
Ve+1 = LO(%,
1
Y = —— (kY + Vet+1Tk),
F V& + akzﬂ( +1%k)

we obtain ¢y ; > f(xpy1) as desired.

Hereafter, we assume that L > u to exclude the trivial case L = p with finished in one iteration.

Constant Step Scheme for the Optimal Gradient Method for the Min-Max

Problem
Step 0: Choose xg € Q, ag € (0,1) such that %ﬁo_“) >0, u < %(ff'igo_“) <L,
set Yo 1= xo, k := 0.
Step 1: Compute f;(y;) and V f;(y,) (i =1,2,...,m).
Step 2: Set @iy = x(yy; L) := arg min L%axmfi(yk) +(VFi(yr), ® —yp)
L—
e e — w3
Step 3: Compute akal € )(O, 1) from the equation o, ; = (1 — agy1)af + Loy
. 7 — QO
Step 4: Set fj := %
Step 5: Set y;,q := Tpi1 + Br(Tr41 — k), k :=k + 1 and go to Step 1.
The rate of converge of this method is exactly the same as Theorem 8.6 for vy := ap(apL —

1)/ (1 — ap), but we need to solve a convex program in Step 2 for each iteration, and it can turn

the method computationally expensive.

9.1 Exercises

1. Prove Lemma 9.4.
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