9 Extension of the Optimal Gradient Method (First-Order Method, Accelerated Gradient Method, Fast Gradient Method) for the Min-Max Problems over Simple Closed Convex Sets

Suppose we are given Q a <u>closed convex</u> subset of \mathbb{R}^n , <u>simple enough</u> to have an easy projection onto it. *E.g.*, positive orthant, *n*-dimensional box, simplex, Euclidean ball, ellipsoids, *etc.* Given $f_i \in S_{\mu,L}^{1,1}(Q)$ (i = 1, 2, ..., m), we define the following function $f : Q \to \mathbb{R}$,

$$f(\boldsymbol{x}) := \max_{1 \le i \le m} f_i(\boldsymbol{x}) \quad \text{for} \quad \boldsymbol{x} \in Q.$$
(18)

This function is non-differentiable in general, but convex (see Theorem 5.6). We will see that the method discussed so far can be easily adapted for the following min-max-type convex optimization problem.

$$\begin{cases} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & \boldsymbol{x} \in Q, \end{cases}$$
(19)

where Q is a closed convex set with a simple structure, and f(x) is defined as above.

For a given $\bar{x} \in Q$, let us define the following linearization of f(x) at \bar{x} .

$$f(\bar{\boldsymbol{x}}; \boldsymbol{x}) := \max_{1 \le i \le m} \left[f_i(\bar{\boldsymbol{x}}) + \langle \boldsymbol{\nabla} \boldsymbol{f}_i(\bar{\boldsymbol{x}}), \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle \right], \quad \text{for } \boldsymbol{x} \in Q.$$

Lemma 9.1 Let $f_i \in \mathcal{S}_{\mu,L}^{1,1}(Q)$ (i = 1, 2, ..., m) and $\bar{\boldsymbol{x}} \in Q$. For $\boldsymbol{x} \in Q$, we have

$$egin{aligned} f(m{x}) &\geq f(m{x};m{x}) + rac{\mu}{2} \|m{x} - m{x}\|_2^2, \ f(m{x}) &\leq f(m{x};m{x}) + rac{L}{2} \|m{x} - m{x}\|_2^2. \end{aligned}$$

Proof:

It follows from the properties of $f_i \in \mathcal{S}_{\mu,L}^{1,1}(Q)$.

Theorem 9.2 A point $x^* \in Q$ is an optimal solution of (19) with $f_i \in S^{1,1}_{\mu,L}(Q)$ (i = 1, 2, ..., m) if and only if

$$f(\boldsymbol{x}^*; \boldsymbol{x}) \ge f(\boldsymbol{x}^*; \boldsymbol{x}^*) = f(\boldsymbol{x}^*), \quad \forall \boldsymbol{x} \in Q.$$

Proof:

Indeed, if the inequality is true, it follows from Lemma 9.1 that

$$f(\boldsymbol{x}) \ge f(\boldsymbol{x}^*; \boldsymbol{x}) + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2 \ge f(\boldsymbol{x}^*) + \frac{\mu}{2} \|\boldsymbol{x} - \boldsymbol{x}^*\|_2^2 \ge f(\boldsymbol{x}^*), \quad \forall \boldsymbol{x} \in Q.$$

For the converse, let \mathbf{x}^* be an optimal solution of the minimization problem (19). Assume by contradiction that there is a $\mathbf{x} \in Q$ such that $f(\mathbf{x}^*; \mathbf{x}) < f(\mathbf{x}^*)$.

Therefore, from the definition of $f(\cdot)$, letting $j \in \{1, 2, ..., m\}$ (which temporarily we assume is unique) such that $f_j(\boldsymbol{x}^*) = \max_{1 \le i \le m} f_i(\boldsymbol{x}^*)$, we have

$$f_i(\boldsymbol{x}^*) + \langle \boldsymbol{\nabla} \boldsymbol{f}_i(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle < f_j(\boldsymbol{x}^*) \quad \text{for} \quad i = 1, 2, \dots, m$$
(20)

Notice that $\boldsymbol{x}^* + \alpha(\boldsymbol{x} - \boldsymbol{x}^*) \in Q$ for $\alpha \in [0, 1]$ since Q is convex. Then, calling $\phi_i(\alpha) := f_i(\boldsymbol{x}^* + \alpha(\boldsymbol{x} - \boldsymbol{x}^*))$, we have $\phi'_i(0) = \langle \nabla \boldsymbol{f}_i(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle$. Moreover, $\phi_i(0) = f_i(\boldsymbol{x}^*) < f_j(\boldsymbol{x}^*)$ for

 $i = 1, 2, \ldots, m, i \neq j$, and $\phi_j(0) = f_j(\boldsymbol{x}^*) = f(\boldsymbol{x}^*)$ and $\langle \nabla \boldsymbol{f}_j(\boldsymbol{x}^*), \boldsymbol{x} - \boldsymbol{x}^* \rangle < 0$ from (20) for i = j. Therefore, there exists $\tilde{\alpha} > 0$ small enough such that

$$\phi_j(\tilde{\alpha}) = f_j(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*)) < \phi_j(0) = f_j(\boldsymbol{x}^*)$$

and

$$\phi_i(\tilde{\alpha}) = f_i(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*)) < f_j(\boldsymbol{x}^*) \text{ for } i = 1, 2, \dots, m \ i \neq j.$$

Finally, we have $f(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*)) = \max_{1 \le i \le m} f_i(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*)) < f_j(\boldsymbol{x}^*) = \max_{1 \le i \le m} f_i(\boldsymbol{x}^*) = f(\boldsymbol{x}^*)$. Therefore, we arrived to a contradiction. In the case there exists j_1, j_2 such that $f(\boldsymbol{x}^*) = f_{j_1}(\boldsymbol{x}^*) = f_{j_2}(\boldsymbol{x}^*)$ and $f_{j_1}(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*)) < f_{j_2}(\boldsymbol{x}^* + \tilde{\alpha}(\boldsymbol{x} - \boldsymbol{x}^*))$, we choose $j = j_2$ and still we have the same conclusion.

Corollary 9.3 Let x^* be a minimum of a max-type function f(x) over the set Q as (18). If $f_i \in S^1_{\mu}(Q)$ (i = 1, 2, ..., m), then

$$f(x) \ge f(x^*) + \frac{\mu}{2} ||x - x^*||_2^2, \quad \forall x \in Q.$$

Proof:

From Lemma 9.1 and Theorem 9.2, we have for $\forall x \in Q$,

$$\begin{aligned} f(\boldsymbol{x}) &\geq f(\boldsymbol{x}^*; \boldsymbol{x}) + \frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{x}^* \|_2^2 \\ &\geq f(\boldsymbol{x}^*; \boldsymbol{x}^*) + \frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{x}^* \|_2^2 = f(\boldsymbol{x}^*) + \frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{x}^* \|_2^2. \end{aligned}$$

Lemma 9.4 Let $f_i \in S^1_{\mu}(Q)$ for (i = 1, 2, ..., m) with $\mu > 0$ and Q be a closed convex set. Then there is a unique solution \boldsymbol{x}^* for the problem (19).

Proof: Left for exercise.

Definition 9.5 Let $f_i \in \mathcal{C}^1(Q)$ (i = 1, 2, ..., m), Q a closed convex set, $\bar{x} \in Q$, and $\gamma > 0$. Denote by

$$\begin{aligned} \boldsymbol{x}_f(\bar{\boldsymbol{x}};\gamma) &:= & \arg\min_{\boldsymbol{y}\in Q} \left[f(\bar{\boldsymbol{x}};\boldsymbol{y}) + \frac{\gamma}{2} \|\boldsymbol{y} - \bar{\boldsymbol{x}}\|_2^2 \right], \\ \boldsymbol{g}_f(\bar{\boldsymbol{x}};\gamma) &:= & \gamma(\bar{\boldsymbol{x}} - \boldsymbol{x}_f(\bar{\boldsymbol{x}};\gamma)). \end{aligned}$$

We call $\boldsymbol{g}_f(\bar{\boldsymbol{x}};\gamma)$ the gradient mapping of max-type function f on Q. Observe that due to Lemma 9.4, $\boldsymbol{x}_f(\bar{\boldsymbol{x}};\gamma)$ exists and it is uniquely defined.

Theorem 9.6 Let $f_i \in \mathcal{S}_{\mu,L}^{1,1}(Q)$ $(i = 1, 2, ..., m), \gamma \geq L, \gamma > 0, Q$ a closed convex set, and $\bar{x} \in Q$. Then

$$f(\boldsymbol{x}) \geq f(\boldsymbol{x}_f(\bar{\boldsymbol{x}};\gamma)) + \langle \boldsymbol{g}_f(\bar{\boldsymbol{x}};\gamma), \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle + \frac{1}{2\gamma} \|\boldsymbol{g}_f(\bar{\boldsymbol{x}};\gamma)\|_2^2 + \frac{\mu}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|_2^2, \quad \forall \boldsymbol{x} \in Q.$$

Proof: Let us use the following notation: $\boldsymbol{x}_f := \boldsymbol{x}_f(\bar{\boldsymbol{x}}; \gamma)$ and $\boldsymbol{g}_f := \boldsymbol{g}_f(\bar{\boldsymbol{x}}; \gamma)$.

From Lemma 9.1 and Corollary 9.3 (taking $f(\boldsymbol{x})$ in there as $f(\bar{\boldsymbol{x}}; \boldsymbol{x}) + \frac{\gamma}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|_2^2$), we have $\forall \boldsymbol{x} \in Q$,

$$\begin{split} f(\boldsymbol{x}) &- \frac{\mu}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|_{2}^{2} \geq f(\bar{\boldsymbol{x}}; \boldsymbol{x}) \\ &= f(\bar{\boldsymbol{x}}; \boldsymbol{x}) + \frac{\gamma}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|_{2}^{2} - \frac{\gamma}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|_{2}^{2} \\ &\geq f(\bar{\boldsymbol{x}}; \boldsymbol{x}_{f}) + \frac{\gamma}{2} \|\boldsymbol{x}_{f} - \bar{\boldsymbol{x}}\|_{2}^{2} + \frac{\gamma}{2} \|\boldsymbol{x} - \boldsymbol{x}_{f}\|_{2}^{2} - \frac{\gamma}{2} \|\boldsymbol{x} - \bar{\boldsymbol{x}}\|_{2}^{2} \\ &= f(\bar{\boldsymbol{x}}; \boldsymbol{x}_{f}) + \frac{\gamma}{2} \|\boldsymbol{x}_{f} - \bar{\boldsymbol{x}}\|_{2}^{2} + \frac{\gamma}{2} \langle \bar{\boldsymbol{x}} - \boldsymbol{x}_{f}, 2\boldsymbol{x} - \boldsymbol{x}_{f} - \bar{\boldsymbol{x}} \rangle \\ &= f(\bar{\boldsymbol{x}}; \boldsymbol{x}_{f}) + \frac{\gamma}{2} \|\boldsymbol{x}_{f} - \bar{\boldsymbol{x}}\|_{2}^{2} + \frac{\gamma}{2} \langle \bar{\boldsymbol{x}} - \boldsymbol{x}_{f}, 2(\boldsymbol{x} - \bar{\boldsymbol{x}}) + \bar{\boldsymbol{x}} - \boldsymbol{x}_{f} \rangle \\ &= f(\bar{\boldsymbol{x}}; \boldsymbol{x}_{f}) + \frac{\gamma}{2} \|\boldsymbol{x}_{f} - \bar{\boldsymbol{x}}\|_{2}^{2} + \frac{\gamma}{2} \langle \bar{\boldsymbol{x}} - \boldsymbol{x}_{f}, 2(\boldsymbol{x} - \bar{\boldsymbol{x}}) + \bar{\boldsymbol{x}} - \boldsymbol{x}_{f} \rangle \\ &= f(\bar{\boldsymbol{x}}; \boldsymbol{x}_{f}) + \frac{\gamma}{2} \|\boldsymbol{x}_{f} - \bar{\boldsymbol{x}}\|_{2}^{2} + \langle \boldsymbol{g}_{f}, \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle + \frac{1}{2\gamma} \|\boldsymbol{g}_{f}\|_{2}^{2} \\ &\geq f(\boldsymbol{x}_{f}) + \langle \boldsymbol{g}_{f}, \boldsymbol{x} - \bar{\boldsymbol{x}} \rangle + \frac{1}{2\gamma} \|\boldsymbol{g}_{f}\|_{2}^{2}, \end{split}$$

where the last inequality is due to the fact that $\gamma \geq L$.

Now, we are ready to define our estimated sequence. Assume that $f_i \in S^{1,1}_{\mu,L}(Q)$ (i = 1, 2, ..., m) possible with $\mu = 0$ (which means that $f_i \in \mathcal{F}^{1,1}_L(Q)$), $\boldsymbol{x}_0 \in Q$, and $\gamma_0 > 0$. Define

$$\begin{split} \phi_0(\boldsymbol{x}) &:= f(\boldsymbol{x}_0) + \frac{\gamma_0}{2} \| \boldsymbol{x} - \boldsymbol{x}_0 \|_2^2, \\ \phi_{k+1}(\boldsymbol{x}) &:= (1 - \alpha_k) \phi_k(\boldsymbol{x}) + \alpha_k \left[f(\boldsymbol{x}_f(\boldsymbol{y}_k; L)) + \frac{1}{2L} \| \boldsymbol{g}_f(\boldsymbol{y}_k; L) \|_2^2 + \langle \boldsymbol{g}_f(\boldsymbol{y}_k; L), \boldsymbol{x} - \boldsymbol{y}_k \rangle \right. \\ & \left. + \frac{\mu}{2} \| \boldsymbol{x} - \boldsymbol{y}_k \|_2^2 \right], \end{split}$$

for the sequences $\{\alpha_k\}_{k=0}^{\infty}$ and $\{\boldsymbol{y}_k\}_{k=0}^{\infty}$ which will be defined later. Similarly to the previous subsection, we can prove that $\{\phi_k(\boldsymbol{x})\}_{k=0}^{\infty}$ can be written in the form

$$\phi_k(\boldsymbol{x}) = \phi_k^* + \frac{\gamma_k}{2} \|\boldsymbol{x} - \boldsymbol{v}_k\|_2^2$$

for $\phi_0^* = f(x_0), v_0 = x_0$:

$$\begin{split} \gamma_{k+1} &= (1-\alpha_k)\gamma_k + \alpha_k\mu \\ \boldsymbol{v}_{k+1} &= \frac{1}{\gamma_{k+1}}[(1-\alpha_k)\gamma_k\boldsymbol{v}_k + \alpha_k\mu\boldsymbol{y}_k - \alpha_k\boldsymbol{g}_f(\boldsymbol{y}_k;L)], \\ \phi_{k+1}^* &= (1-\alpha_k)\phi_k^* + \alpha_kf(\boldsymbol{x}_f(\boldsymbol{y}_k;L)) + \left(\frac{\alpha_k}{2L} - \frac{\alpha_k^2}{2\gamma_{k+1}}\right)\|\boldsymbol{g}_f(\boldsymbol{y}_k;L)\|_2^2 \\ &+ \frac{\alpha_k(1-\alpha_k)\gamma_k}{\gamma_{k+1}}\left(\frac{\mu}{2}\|\boldsymbol{y}_k - \boldsymbol{v}_k\|_2^2 + \langle \boldsymbol{g}_f(\boldsymbol{y}_k;L), \boldsymbol{v}_k - \boldsymbol{y}_k\rangle\right). \end{split}$$

Now, $\phi_0^* \ge f(\boldsymbol{x}_0)$. Assuming that $\phi_k^* \ge f(\boldsymbol{x}_k)$,

$$\begin{split} \phi_{k+1}^* &\geq (1-\alpha_k)f(\boldsymbol{x}_k) + \alpha_k f(\boldsymbol{x}_f(\boldsymbol{y}_k;L)) + \left(\frac{\alpha_k}{2L} - \frac{\alpha_k^2}{2\gamma_{k+1}}\right) \|\boldsymbol{g}_f(\boldsymbol{y}_k;L)\|_2^2 \\ &\quad + \frac{\alpha_k(1-\alpha_k)\gamma_k}{\gamma_{k+1}} \langle \boldsymbol{g}_f(\boldsymbol{y}_k;L), \boldsymbol{v}_k - \boldsymbol{y}_k \rangle \\ &\geq f(\boldsymbol{x}_f(\boldsymbol{y}_k;L)) + \left(\frac{1}{2L} - \frac{\alpha_k^2}{2\gamma_{k+1}}\right) \|\boldsymbol{g}_f(\boldsymbol{y}_k;L)\|_2^2 \\ &\quad + (1-\alpha_k) \left\langle \boldsymbol{g}_f(\boldsymbol{y}_k;L), \frac{\alpha_k\gamma_k}{\gamma_{k+1}}(\boldsymbol{v}_k - \boldsymbol{y}_k) + \boldsymbol{x}_k - \boldsymbol{y}_k \right\rangle + \frac{(1-\alpha_k)\mu}{2} \|\boldsymbol{x}_k - \boldsymbol{y}_k\|_2^2, \end{split}$$

where the last inequality follows from Theorem 9.6.

Therefore, if we choose

$$\begin{aligned} \boldsymbol{x}_{k+1} &= \boldsymbol{x}_f(\boldsymbol{y}_k; L), \\ L\alpha_k^2 &= (1 - \alpha_k)\gamma_k + \alpha_k\mu, \\ \gamma_{k+1} &:= L\alpha_k^2, \\ \boldsymbol{y}_k &= \frac{1}{\gamma_k + \alpha_k\mu} (\alpha_k\gamma_k \boldsymbol{v}_k + \gamma_{k+1}\boldsymbol{x}_k) \end{aligned}$$

we obtain $\phi_{k+1}^* \ge f(\boldsymbol{x}_{k+1})$ as desired.

Hereafter, we assume that $L > \mu$ to exclude the trivial case $L = \mu$ with finished in one iteration.

The rate of converge of this method is exactly the same as Theorem 8.6 for $\gamma_0 := \alpha_0(\alpha_0 L - \mu)/(1 - \alpha_0)$, but we need to solve a convex program in Step 2 for each iteration, and it can turn the method computationally expensive.

9.1 Exercises

1. Prove Lemma 9.4.